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A Glimpse of 1990 U.S. Census Evaluation Studies for
the Purpose of Undercount Adjustment

Jongik Kim

In the middle of 1980°‘s, the U.S. Deparment of Commerce, in
particluar, the Bureau of the Census, was sued by many large
cities such as New York City and Chicago, to name a few, to force
them to adjust the population counts which are to be derived from
the 1990 decennial census. The evaluation of the previous censuses
indicated that there were undercounts for some racial groups, even
if there were sometimes overcounts in some parts of the country.
The undercount of the population is a serious problem, since the
apportionment, i.e., allocation of congressional seats among the
states, and the allocation of funds among different governmental
units depend on the census population counts. The Federal judge
ordered the Commerce Deparment to investigate +the undercount
igsues. Thus the Bureau did an extensive study of the undercount
and census adjustment issues. Subsequently, the Bureau conducted
the 1990 decennial census on April 1, 1990. They also designed and
conducted the Post Enumeration Survey (PES) to estimate the
undercount rate of the 1990 census. Since PES itself is a survey
and subject to errors, a followup survey called PES Evaluation
Survey was designed and conducted. Note that the PE5 Zvaluation
Survey is to estimate the bias or systematic error of the PES
estimate.

In a general terminology, census is an interview and PES is a
reinterview. Concentrating on PES and PES Evaluation, the former
is an interview and the latter is a reinterview.

In the following, reinterview, nonsampling errors in surveys
and some examples of census/PES evaluation studies will be dealt
with.

II. Reinterview

To measure the nonsampling errors in a survey, reinterview is
usually conducted. Usually reinterview is conducted on a subset
of the original survey including the respondents and questions.
The reinterviews are conducted mainly for 3 purposes: 1). check on
the interviewer’s performance and deter falsification; ii).
estimate the bias and iii). estimate the variance. The bias here
does not mean the sampling bias, but systematic nonsampling error
such as caused by the interviewers framing questions favoring a
specific response.

Reinterview is conducted differently whether the primary goal
of the reinterview is the estimaticn of bias or variance. If the
estimation of the bias is the primary reason for the reinterview,



best possible interviewers with a lot of interviewing eéxperience
need to be hired to get the response as close as to the truth.
Thus usually supervisory interviewers (or field representatives)
are hired for the reinterview. Probing gquestions are sometimes
added to the original questions to get to the truth and if the
response to the reinterview differs from that from the original
interview for the same item, the interviewer is sent back to get
more information from the same respondent for the reconcilliation
of the difference. Or if it were a Computer Assisted Interview
such as Computer Assisted Telephone Interview (CATI) or Computer
Assisted Personal Interview (CAPI), the difference is resolved on
the spot. That is, when the interviewer keys in the response to
the reinterview, if is different from the original response, the
computer pops up the original response so that the interviewer can
tell that there is a difference. Thus the interviewer asks further
guestions and resolve the difference during the reinterview.

Again the variance here does not mean the sampling variance,
rather it means the response variance. 1In order to estimate the
response variance, reinterview situation should be created which is
as tlose to the initial interview. Thus, regular interviewers, not
the supervisory interviewers are used for the reinterview and the
same questions without probing gquestions are asked.

The reinterview to estimate bias can be used to improve the
estimator. The resulting estimator is called the Dual System
Estimator (DSE). For the DSE, see the following table.

Table 1. Situation for Dual System Estimator

Reinterview
in out sum
in Xy X2 X
Initial Interview
out X5 X,; X,.
sum X, X, X =N
where X, , = X_, ;. and X,,; is an indicator signifing whether or not
i=1
the i*" respondent is in cell (a,b) or not for a,b = 1,2, .

In terms of probability for the respondent i, the table can be
expressed as follows;



Table 2. Table 1 reexpressed in Probability

Reinterview
in out sum
L ) in Piy Pl Pis
Initial Interview
out Py P Py
sum P P2 1

f the event of being included in the reinterview is independent of
the event of being in the initial interview (which is called causal
independence), then

PPy = PraiPasy for i=,2,, ¢ N

1f the causal indenpendence is assumed in Table 1, then

X,y = X%, .
X114

The above is the formula which can be used to estimate those who
were missed in both interviews.
From Table 1, we can see that

Xy, _ X

Xl. X
Thus

X%

x = N =
Xll

Note in the above N is the DSE. In the census, X, and X, are a
little complicated, which will be shown later.

It should be noted that for the census evaluation studies, we
used the reinterview approach for estimating the bias. The
experienced interviewers for the Bureau of the Census were hired to
do the PES interview (or reinterview).

IIT. Adjusting the 1990 U.S. Census

The Bureau had two tools to measure the coverage {(undercount
rate) of the 1990 census: Demographic Analysis (DA) and PES. DA
was handled by the demographers and was not considered as a good
approach as the PES. Thus I will concentrate on the PES.



PES is composed of two samples: E- and P- sample. Based on the
1980 undercount rate, the nation was stratified and from each
stratum a predetermined number of blocks were selected. Note that
the sampling units are blocks even if ultimate seampling units
(USU's) are persons in the housing units. Around 9,000 blocks
amounting to 150,000 housing units were selected in the PES.

From the same blocks, 2 enumerations were taken; census on
April 1, 1990 and PES on July 15, 1990. The terminology of "PES"
has double meanings. It most often means the E- and P- samples,
but sometimes it basically means only P-sample. The PES conducted
on July 15 is essentially P-sample. Thus,

E-sample is composed of households enumerated during the
census from the selected blocks;

P-sample is composed of households enumerated during the
PES from the same blocks as before;

Thus, in terms of geography, the two samples are the same. Only
difference is that E-sample i1s composed of the initial interviews
and P-sample the reinterviews. :

Table 1 can be rephrased as follows;

Table 3. PES

P-Sample
in out sum
in Xll=M X12=C-M Xl_'—'c .
E~Sample
OU.t X21=N?—M X22 . X2-
sum X, =N, X, L. =N

In the above table, X,;;=M is the total number of matches between
interview and reinterview. To determine whether a person in E-
sample is a match to a perspon in P-sample, we used "Matcher,"
whcih is a computerized version of Felligi-Sunter algorithm. Based
on 5 to 6 Key variables, computer determines whether a case is
"mathch,"” "non-match"” or "unresolved." The unresolved cases come to
the clerks’ attention for resolution. Then they investigate the
cases further. Sometimes we send out the interviewers to the field
or call the respondents from the processing offices for more
information.

Roughly speaking, X,;=N,-M is omissions, i.e., they should have
been counted in the census, but not enumerated. C is the census
count and X,,=C-M is the number of errcneous enumerations, which are
mainly duplications and falsifications.

_6_



Now the DSE can be expressed more precisely as follows:

¢' is modified C excluding the erroneous enumerations and
substituted persons. :

So far we have talked about the total persons in the sample
blocks. In order to extend this to the whole population, we weight
each sample person up, and thus if weighted C’, N, and M are used,
we have the the estimated national population total.

Let WN, WN., WC", wC and WM are the weighted counts of N, N,
¢*, ¢ and M, respectively. Then the adjustment factor is

WN _ WC*/WC

WC Wi/ WN,

Let the above be denoted by R. Then the undercount rate is

IV. Nonsampling Errors Affecting the Adjustment

Eight potential sources of error affect coverage measurements
produced by PES. They are

i). errors committed in matching each person in P-sample to the
original census enumeration, including

false matches
false nonmatches

ii). errors in the reporting in the P-sample interview of census
day address, including false reports by movers that they did
not move

iii). fabrications in the P-sample interview, where the
interviewer completes a questionnaire with fictitious people
or ficticious characteristics instead of conducting a proper
interview :

iv). errors in the measurement of enumeration status of the
original census enumeration, including

false erronecus enumeration
false correct enumeraticn

_7_.



v). “correlation bias" due to heterogeneous census capture
pobabilities whithin a poststratum

vi). errors introduced by the statistical treatment of any
missing data

vii). uncertainty in balancing the estimates of gross undercount
and gross overcount created by misspecification or
inconsistent application of a common reference (or search)
area in the P- and E-sample.

viii). random error due to sampling or to various forms of random
nonsampling error

The first seven components of error are known to bias the DSE
of population size. The eighth component causes its variance.

In the following we will discuss the estimation of correlation
bias, capture probability and evaluation of synthetic assumption.



V. Estimation of Correiation Blas Using CondHional Logistic Regression

1. BACKGROUND
The dual system estimation used for the U.S.

Bureau of the Census 1990 Post Enumeration
Survey (PES) estimates is based on three
independence assumptions: causality, homogencity,
and autonomy. Basically these assumptions say,
respectively, that inclusion in the PES sample and
the census are independent, that everyone has the
same probability of inclusion, and that everyone acts
on their own as to whether they are included in the
PES sample population or the census. The violation
of any of these three assumptions may cause the
estimate of the proportion of the populaton
enumerated in the census, and thereby the estimates
of the population, to be biased. Such a bias is
known as a correlation bias. The focus of this
paper is on evaluating whether the homogeneity
assumption holds.

2. STATISTICAL METHODOLOGY

To discuss the estimation of correlation bias, we
need to define the dual system estimater (DSE).
The present application of the dual system estimator
invoives two incomplete lists of the population. The
census enumerations of the population not living in
institutions or bomeless comprise the first list, The
szcond is an implicit list of those persons covered by
the sampling frame for the P sample of the PES,
which we will call the P-sample population; this list
would be obtained if the P sample were conducted
for the entire U.S. (instead of a sample) with no
measurcment errors or missing data.
- Whether the i-th individual in the population of
size N is in the census or not and in the P sample
or pot are assumed to be random events with
probabilities as shown in Table 21. The true
population size in each category is also shown in
Table 2.1, and N, , =N is the total population size,
Even if we could observe the Ny's in the first row
and first column, the Ny,'s in parentheses would not
be observed directly but would have to be
estimated. The estimator, N = N, N, /N, is
called the DSE. The DSE is accurate only to the
~ extent that N, /N, is an accurate estimate of the
proportion of the population enumerated in the
census. Accuracy depends on certain independence
assumptions being satisfied (Wolter 1986}

Table 21. Probabilities of Inclusion and Population
Sizes in a Cell

Inclusion Probability | True Population Size

Originai Enumeration

In Out Total

P-sampie In P, [N, Py,|N, P, [N,

Pop. Out Py |Ny Po|(Na) Py, |(N1+)
Tom Plﬂ INH Pml(Nu) Pi+4-|(N++)

Causal Independence. The event of being
included in the census is independent of the event
of being included in the P-sample population. That
is, the cross-product ratio ¢, = Py, P, /PPy ks
equal to 1 for each personi = 1, fori=1,.., N.

Autonomous Independence. The two lists, census
and the P-sample populations, are formed in N
mutually independent trials.

Heterogeneous Independence. The covariance
between Py, and P, is 0, with covariance defined
asN'E By, - byy) Py -Poy), with py, = N'T
P,. and p,, = N'EZ P, . A sufficient condition
for heterogeneous independence is homogenaity, ie.,
Lh'atpiln—-PHO’PHI-PHfmi'-L—wN- -

Sekar and Deming (1949) suggested forming
poststrata, groupings of the population by
demographics (¢.g., age, race, sex) and geography,
so that the homogeneity assumption holds within
each poststratum.

The Census Burecau poststratifies the persons in
the PES according to demographic and geographic
variables (Alberti et al. 1988). An estimate of the
population size in each poststratum is calculated
and then the estimates are summed to give an
estimate for the total population.

Poststratification reduces but does not eliminate
the effet of fallure of the beterogenous
independence assumption. Having indepeadent
field operations avoids failure of the causality
assumption. Failure of autonomy tends to increase
variance but has only a negligible effect on the bias;
sez Cowan and Malec (1986) and Wolter (1986).

Let § = N, Ny /(N,; Ny, } be the overall cross-
product ratio and let r = § -1, We will refer to v



as the correlation bias factor that reflects faflure of
the independence assumptions. If the independence
assumptions hold thea 1 = # = § for i = 1,_N.
The correlation bias may be cxprcsscd as follows:
N-N=-rN;N, /Ny +0 (Nm)

with the O, term the mdom component of
correlation bias that is negligible in this application
(Wolter 1986).

Qur goal is to estimate the correlation bias factor.
A conditional logistic estimation procedure (Alho,
1990) is used to estimate the probabilities of
inclusion in the census and the P sample, P, and
P,,;- This method allows analysis of dual system
data using individual level covariate information.
No grouping of the data is required as in the
method of Sckar and Deming, and no completely
independent source of information, such as
demographic analysis, is needed. Having estimated
the inclusion probabilitics, we can estimate the
correlation and obtain an estimate of r, the
comelation bias facior.

2.1 Calculation of Inclusion Probabilities

For ease of notation, let P, = P, be the
probability of the i-th individual being included in
the census, and let Py = Py, be probability of the
i-th individual being included in the P-Sample
population.

Conditional logistic regression requires assuming
that we have vectors X, and Xy of “explanatory®
variables giving the characteristics (e.g. age, sex,
teaure) of individuals correlated with inclusion.
The inclusion probabilitics, Py and Py, can be
modeled as follows:

m(
Py

toof ) -z

Pyy

e, =
a - P,_‘)] Lk,

where a, and a; are vectors of parameters, which
are estimated. Newton's method is used to estimate
the parameters, a, and a, iteratively.

22 Estimation

A conditional logistic regression model produces
an E-sample inclusion probability and a P-sample
inclusion probability for each person. These
probabilities may be used to calculate a correlation
bias factor using Spencer’s estimator.

222 Speacer’s Method of Calculating r Using
Ounly Resolved Cases

Spencer has developed an estimator of r using the
covariance of P, and P; (1991). Whea only
resolved cases are used, the estimator has the
following form.

Cov(Py4, Pyy)
(P, -~ P (Py - P)

wvhere
Cov{F,, P,,) = P,

o~ WP Py = '1-911

z ?'3

[
F’ﬂ

= 3:3:'
P, =

o WPy
-y
2 ”‘

IO

W, = stratum weight for the i-th individual
$ =Py +Py-Py*Py fori=1.n
n = number of resolved cases.

223 Spencer's Methad of Calcuhting v Using
Resolved and Unresolved Cases

The difference between the estimator using
unresolved E-sample cases and the estimator using
unresoived P-sample cases is in the calculation of
P,, P, and P. Using unresolved E-sample cases,
they are calculated as follows:

= WP P,y
+ ¥, P
p — & ?: 1714524

P. - = 3 .
4 2
a Uy
WP,y
+ V114
F - E i .
1 ﬂ, ’
. 2
ﬁ WiPay | ;’: Vit:1Pzq
> -l *1 LI P 11




Ug = number of unresotved E-sample cases.

~u = the probability of being correctly enumerated,

which is estimated for each unresolved E-sample

case. .. .
Using P-sample unresolved caszs, P, P, and P,

are calculated as follows:

.P, H, &
DR i e
ﬂ, '
5 i +i &
2 ﬂ,’ 7
where &, = ;i‘ 1“:
=3

U, = number of unresolved P-sample cases.

3. IMPLEMENTATION

3.1 Adjustment of P-sample Capture
Probabilities for Migration

Applying the conditional logistic modeling in the
PES setting is compiicated because of migration.
Some people move in to PES sample blocks, and
others move out. Only those individuals who were
present in the PES sample arca at census lime
should be included in the estimation of correlation
bias. Therefore the inclusion probability for each
person in the P-sample is multiplied by an estimate
of the probability that the person was in the PES
sample area at census time. The interpretation of
the E-sample probabilities is in no way confounded
by migration.

32 Accounting for Data Errors

The application of the conditional logistic model
also is complicated by errors during the PES data
collection. These data ertors create issues of which
cases to include in mode! fitting and which to
include in estimation. One issuc of this is the cases
which remain unresolved at the end of the matching
operation. These cases are excluded from the
model ﬁttmg but are included in the two of thres
estimators in Section 22  The underlying
assumption is that the unresolved individuals have

the same capture characteristics as those individuals
that were resolved, given cqual covariates.

Another issue is caused by geocoding error.
Some P-sample people match to census people in
the search area of the PES block. The search arca
is a ring of blocks surrounding the PES block. Such
a match is allowed to compensatz for minor
geocoding ervors in the cepsus or PES. Such cases
are mcluded in the model Stting as a match. This
formulation has the effect of adding the census
people who match P-sample people to the E-
sample.

4. DATA ANALYSIS

4,1 Moda! Building

Medels were built for the following four minority
evaluation poststrata which are aggregates of PES
poststrata: Northeast central citics, South central
cities, West central cities, and Midwest central
cties. Models were buili for E- and P-sample
separately in each evaluation poststratum, Table 4.1
displays the regression coefficieats for the E-sample
and P.sample models.

Sex, race, teaure, place type 0, relatonship,
marital siatus, and census division (CD) are
indicator variables, ie. they receive 2 value of 0 or
1. Thbe values for the indicator variables are
assigned as follcws. sex is "1’ If female, race is 1" if
black, tenure is '1" if renter, place type 0 is "Y' if
living in central ctes in primary metropolitan
statistical areas (the most densely populated areas),
relationship is '1" if not related to the person who
completed the questionnaire, marital status is '1” if
married, and census division is ’1' if living in the
particular CD.

The 'rate’ variabies, such as renter rate, are block
level variables. The variables age, houschold size,
and the block level variables are standardized to
give them a leve! of magnitude equivalent to the
indicator variables.

Variables are selected baszd on significance tests,
multicollincarity, and assumed sociological
importance. There is a group of “core vanables®
which are common to cach of the eight models.
Not all the "core variables” have an impact on cach
of the four models, however, each of these variables
does have an impact for some of the evaluation
poststrata and was included for each poststrata in
order to make comparisons and to simplify the
model building process. The remaining variables
are place type, place type x race, census division,



Table 4.1 Regression Coefficients (and Standard Exrors) for the
Minority, Cenmat City Evaluation Poststrata

E Samole P Sample
Northeastl  South | Midwest | __West | Northeast] Soyth | Midwest| West
Intercept 1.863 2757 2422 2.853 1.190 2.387 2291 2208
©0119) | @118 | 0109 { ©.119 | 0109 | 0096 | (0.100) | (0]26)
Age 0.054 0326 0.112 0.143 0.032 0.353 0.014 0.1085
0064 | 0112 | 0089 | ©.069 | 0058 | (0108} { 0010) | (Q.056)
{Age)2 0.083 0.764 0.132 0.059 0.144 0.618 0.110 0.141
0N | one | 0oe | ©040) | 0028 | ©08D | (003) | Q.05
(Age)3 0021 0357 0012 0022 0.058 0.889 L0712 0.055
0018) | 0129 | 004 | ©023 | 0015 ! 0149 | Q01T | (00200
Sex 0.159 0.281 0.256 0.111 0212 0.187 0262 0.140
(0.043) § ©041) | (0.049) | (0.058) | (0.040) | (0.034) | (0.04L) | (0.049)
Race (Black) 0.166 0315 0.187 -0.589 0351 D464 | 0288 -0.143
(0.129) | (0,144 | (0071) | (0155 | Q118) | @119 | (0.068) | .13
Hispanic 0.077 0.006
{0.128) {0.101)
Tenure .657 -0.603 -0.715 -0.755 0446 0.773 0578 0357
(0.108) | 0.086) | 00 | 0.089) | 0101) | (0.074) | (0036 | (0.07
HH Size -0.163 -0.155 0338 .146 | -0.165 0308
0.032) 1 (0037 | (0.042) (0.030% | (0.031) ! (0.039)
Renter Rats 0.103 0041 0.136 -0.080 0.299 0424 0.128 0380
0037 | (0.034) | (0.042) | 0052 | Q33 | (0.028) | (0038) | (Q.Q45)
Black Rate 0012 0.026 0337 -0.283 0.041 0.000
003N | (0057 [0.066) | (0.036) | (0.046) 0.034)
Hispanic Rae £.169 0.008
(0.070 (0.054)
Muluunit Rate 0.124 0.023 0260 0.067 0.155 0.009 -0.003 0.108
0.034) | ©.029) | (0.03%) | (0045 | (0030 | (Q.022) | (0035 | (003N
Vacancy Rate 0.047 -0.156 D.109 | -0.018 0.017 £.108 | -0.156 -0.066
0.021) | (0.019) | (0.024) | (0.031) | (0021} | (0.01&) ! (0.022) | (D.025)
Place Type 0 0.045 0340 § 0275 0.017 0532 | 0401 -
(0.087Y | .087 | (0Q71) (0.081% { (0.069) | (0.066)
Relationship -1.020 0.962 0.797 -1.141 -0.878 -1.054 0.384 -1.180
0000y | 0085 | 0099 | 0096 | (0.081) | (0.071) | (0.089) | (0.082)
Marital Stams 0.180 0326
0.610 (0.051
Tenure*Race -0.035 0.167 0.752 0.089 (0.487 0.037
(0.117) | (0.094) 0,127 | (0.109) | (0.081} (0.120)
Tenure*HH Size 0.194 0.240 0.163 0.149 -0.010 0.164
{0.038) | (0.048) | (0.05H (0.035) | (0041 t (D04
Age*Race 0.139 0202 0.270 0.157 0.171 0.263 0.128 0.163
0054 | 01D 1 0018 | (0065 | (0.046) | (0.088) | (0.072) { (0.060)
Race*PL Type 0 0.063 0.021 0285 0.256
(0.100) 1 (0.115) (0.092) | (0.093)
Age*HH Size 0.043 0313 0.075 0.044 -0.053 0.004 0.006 0355
(0.024) | (0.055) | (0.030) | (0098 { (0023 | (0.041) { (0024) | (Q.084)
Sex®Age 0.094 0.440 0.119 0.027 0.020 0.204 0.132 0.025
(0.045) | (0.096) | (0.054) | [0.062) | (0.042) | (0076} | (0.045) | (Q03H)
South Atlantic 0366 -0.117
Census Division (0.065) (0.052)
East South Central 0.287 -0.001
Census Division 0.072) {0.05%)
East North Central 0.114 0.099
Census Division {0.097 {0.08%)
Pacific 0344 0.031
Census Division 0.031) (0.027




and Hispanic origin. Placs type and census division
are geographic variables which vary according to
evaluation poststrata. The Hispanic indicator and
Hispanic rate, a block level variable, are used in the
West poststratum because this poststratum includes
a substantial number of Asians.

42 Analysis of Odds Ratios

H the sex variable is coded as 0 for male and 1
for female, then the odds of being captured, or
enumerated, for females is defined as P(1)/[1-P(1)}],
where P(1) is the capture probability for females.
Similarly, the odds of being captured for males is
defined as P(0)/[1-P(0)], where P(0) is the capture
probability of male. The odds ratio, denoted by ¥,
is defined as the ratio of odds for females to the
ratio of odds for males. Thus

P{1}/11-P(2)]

L T Y TR

The odds ratios for both the E and P sample for
the Northeast and Midwest minority/ceatral city
evaluation poststrata are given in tables 42.1 and
422, The odds ratios for the South and West are
similar to those for the Midwest.

Among the five effects considered, three effects,
reater among black females in pilace type 0, non-
relative, and black renter among females in place
type 0, have an odds ratio consistently less than ome
for both the E and P sample. This implies that
cach of the three groups has a lower inclusion
probability than its respective counterpart. The
odds ratio for female among black renters in place
type O is greater than onc for both the E and P
samples in both poststrata. Except for the P-sample
for the Northeast, the odds ratio for black among
female renters in place type 0 is less than one.
Non-relatives and black renters have the consistently
lowest odds ratioes.

43 Inclusion Probabilities
Table 43 shows the average and range of

inclusion probabilities for the four minority, central

city poststrata. The South minority/central dty
poststratum had the highest average inclusion
probability for both the E-sample and P-sample,
920 and 813 respectively, and the Northeast had
the lowest for both the E and P sample, at .816 and
751 respectively. For each of the four poststrata,
the average E-sample inclusion probability is higher
than the average P-sample inclusion probability.

_13k

Table 421 Estimated Odds Ratios for Northeast,
Minority, Central City Evaluation Poststratum

Odds Rato
Effect Among E P
emaleBlack reater | 1.220 [1.236
place type 0
lack [Female renter| 847 [1.421
place type 0
cater Black female | 519 | .640
place type 0
on- jAll S03 | 416
ﬂ:lati'm
emale 398 |.748
Renter jplace type 0

Table 422 Estimated Odds Ratios for Midwest,
Minority, Central City Evaluation Poststratum

Odds Ratio |
Effect Among E P
[FemalelBlack reater | 1292 {1298 T‘
place type 0
Black [Female renter| 829 |.750
place type 0
Renter {Black female | 489 | 3561
place type 0
Non- |All 451 | 413
relativel
Black {Femaie 406 | .421
Renter blacr. type 0 '

Table 43 Average and Range of Inclusion
Probabilities for Minority, Central City Evaluation
Poststrata

E-sample P-sample
Ave Max Min Ave, Max Ming
NE 816 944 496 751 948 350
SO 920 998 S07 B13 979 429
MW 3864 991 373 794 963 368
WE 879 881 308 J85 974 249



4.4 Corvreiation Bias

The correlation bias factors are estimated using
the capture probabilities for E- and P-sample based
on Spencer’s method for these four evaluation
poststrata. Table 4.4 shows the correlation bias
factors, their comditional standard errory, the
undercount rates calculated using the usual DSEs,
and undercount rates czlculated using DSEs
adjusted for correlation bias. The inclusion of
unresolved cases has little impact on the estimates
probably because the number of unresolved cases is
small relative to the number of resolved cases.
Thus, estimates which include unresolved cases are
given for the Midwest only. MW(ue) includes
unresolved E-sample cases, and MW(up) includes
unresolved P-sample cases. T-test values are 2.02
for MW and MW(ue) and 2.454 for MW and
MW(up). The correlation bias factor estimate for
the South using unresolved P-sample cases was the
only other estimate using unresolved cases which
differed significantly, at the .05 level from the
corresponding estimate using only resolved cases.

Table 4.4 Corrclation Bias Factors and the Effect
of Correlation Bias oa Undercount Rates for
Minority, Central City Evaluation Poststrata

Corr. Bias Std* Unda Adj. Undat

Factor Error Raie Rate
NE 0.14 002 68% 731%
SO 034 0.4 3568% 613%
WE 042 B3 614% 727%
MW 025 03 397% 4.12%
MW(ue) 0.26 003 397% 4.12%
MW(up) 027 0.3 397% 4.12%

* Standard errors are conditional on the models.

We conclude by poting that the undercount
estimates based on conditional logistic regression in
table 4.4 are all higher than the ones based on the
usual DSEs. This suggests that there has been
some residual heterogeneity in the inclusion
probabilities that the logistic regression has
rcvcaled. The E and P samples appear to have bad
a higher positive correlation than the one expected
based oa the usual stratified analysis,
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VI. EVALUATION OF THE SYNTHETIC ASSUMPTION IN THE
1990 POST ENUMERATION SURVEY

Abstract

The Census Bureau considered adjusting the 1990 decennial
census counts by a "synthetic adjustment” procedure which is
valid under the assumption that undercount rates are homogeneous
within poststrata defined by geography and demographic
characteristics. This paper reports on evaluations of this
assumption with an emphasis on detecting interstate heterogeneity
within poststratum (PS).

Five surrogate variables (allocation rate, mail return rate,
multiunit structure rate, mail universe rate and substitution
rate) believed to be associated with undercount rate were
analyzed. Significant interstate heterogeneity was found within
most poststratum groups (poststrata collapsed over age and sex)
by logistic regression.

A second analysis focused on data from the Post Enumeration
Survey (PES). Estimated adjustment factors were calculated for
state by poststratum group (PSG) domains (state parts). In every
division, PSG explained more of the variance of these factors
than did state, supporting the decision to use PSG as the

adjustment cell.



Linear models were applied to a linearized version of the
influence of each block part on the overall undercount rate to
test the significance of state effects within PS. Although in
some divisions there were several PSG’'s with significant state
effects on adjustment factor, in only one division was the
additive effect of state significant (a = .05) in the state x PSG
model when unweighted data was used. However, when weighted data
was used, no division showed a significant state effect (a =
.05). Thus, there was not significant evidence that in the
aggregate the poststratification was biased against certain
states, although in 19 out of 99 PSG’'s the state effects were
significant. The majority of these PSG’'s corresponded to non-
urban areas, suggesting room for improvement in

poststratification in those areas.

Xey Words: Undercount Rate, Heterogeneity, Poststratum,

Linearized Statistics
1. Introduction

The Post Enumeration Survey (PES) of the 1990 Decennial
Census was designed to produce coverage estimates for 1392
poststrata. The nation was first divided into 116 domains,
called poststratum groups (PSG’s) according to geography,
race/Spanish origin and tenure (owner vs renter). With only 4

exceptions, all PSG’'s are defined within a census division, one



of nine contiguous geographic areas each composed of several
states. Each PSG was further divided into 12 age by sex groups,
the poststrata. For example, roughly all Black renters in New
York city constitute a PSG and all females age 0-9 of this P5G
make a poststratum (PS). Further details on the PES are in Hogan
(1992,1993).

Small area undercount rates were calculated by synthetic
estimation; the same adjustment factor was applied to persons
from a given PS in all areas. This procedure is accurate under
the "synthetic assumption"” of homogeneity of undercount rate
within a 2S. This paper reports research conducted as a part of
the PES evaluation project on whether or not this objective of
poststratification was achieved. It uses two data sets, one drawn
from the Census and the other a combinaticon of PES and Census
data. The census data are a stratified cluster sample extract
of 1990 Census data whose sample design is the same as that of
the PES; the census extract has 204,394 blocks while the PES has
12,144 blocks.

In the analysis of the Census data, we selected variables
which were considered highly correlated with the undercount rate
to act as surrogates for undercount (Isaki, 1988). The selected
surrogates are the allocation (item nonresponse) rate, mail
return rate, multiunit structure rate, mail universe rate
{fraction of units receiving mail guestionnaire) and

substitution (unit nonresponse) rate.



Under the homogeneity assumption, the rates are the same
within a PS regardless of state. Thus, this assumption can be
tested by comparing the surrogate variables or undercount rate
from state to state within a PS; this test focuses attention on
the gquestion of whether synthetic estimation is "unfair" to
certain state. The unit of the analysis is the intersection of a
census block and a PS or PSG, called a block part (BP). A census
block is a small area bounded by visible features such as
streets, streams etc and/or by political boundaries. In fact,
most of our analyses are performed on PSG’s, since the age-sex
breakdown of the PSG did not vary much from state to state.
Hence, the analysis focuses on whether BP's differ between states
within PSG.

A two-way ANOVA is fitted to undercount rates for the state
parts, intersections of a state and PSG. This helps to compare

the state effect with the PSG effect in undercount rates.

2, Analysis of Surrogate Variables

Surrogate variables are analyzed by logistic regression. Two
forms of logistic regression model were used. For the
within-PSG analysis, the model for PSG i is

log [Py /(1-Py)]= A + C,

and for the within-division analysis,



log [Py /(1-Py)]= A + B, + <y

where P,, is the rate for a surrogate variable in the i*" PSG and
j*® state, A is the intercept, B, is the i*" PSG effect and C, is
the j* state effect. The models used only the 99 PSG's astride
two or more states. Models were built for surrogate variables in
the 99 PSG’s and in each of nine divisions. SAS PROC CATMOD
estimated the parameters by maximum likelihood and provided Wald
statistics for testing the significance of state effects.

The data were collected with a cluster samplé rather than a
simple random sample so the test statistics must be divided by a

design effect. We estimate a design effect,

kwky

351 135 (Bijx = Byy) :

by =

where ﬁnx is the rate for the i** PSG, j*" state and k™ BP; n;u is
the size of the BP; X is the number of BP’s in the i** PSG in the
3" state and 5” is the rate for the i*» PSG and j** state. The
fraction is the ratio of the observed between-block variance to

that expected under binomial sampling.



For division models, which span multiple PSG's, design
effects were multiplied by the judgmentally chosen factor, 1.25,
to account for the fact that the sampling unit is a block, which
sometimes includes parts of more than one PSG. Without the
factor, the design effect accounts for clustering ohly within a
BPSG.

A design effect was calculated for each surrogate variable
and PSG. It is small (around 2) in most PSG’s for the allocation
and substitution rate. The effect is slightly higher for mail
return rate, but it tends to be large (as much as 20} for
multiunit structure and mail universe rate, since these factors
are usually fairly uniform within a block.

Table 1 summarizes the design-corrected tests for state ef-
fects within PSG. WNationally, for each surrogate variable the
state effect is sgsignificant for at least 84% of the PSG’'s. (The
total number of PSG’'s varies because when a PSG falls entirely
within one state or when only one state has non-zero observations
for a particular variable, the corresponding model cannot be
fit.). The results are summarized at the division level.
(Divisions 1 through 9 are New England, Mid-Atlantic, South
Atlantic, East South Central, West South Central, East Neorth

Central, West North Central, Mountain and Pacific Division.)
Table 2 shows the magnitude of state effects, expressed as x?

values of test statistics adjusted for design effect, for three



rates having relatively high correlation with the undercount

rate.
In Table 2, the x? values have from 1 to 8 degrees of

freedom.

3. Analysis of Undercount Rate

The results described above for surrogate variables were
obtained early in the census process, but they have limited
relevance to homogeneity of undercount itself. After PES data
were processed, direct analysis of the distribution of undercount
became possible.

The data set for these analyses merged two data sets for the
12,144 PES sample blocks, one for the E-sample (Census followup)
and the other for the P-sample (PES). Correct enumerations and
E-sample total counts are on the E-sample file and match and P-

sample total counts are on the P-sample file.

3.1 vVariance Explained by State and PSG

For each division, a two-way ANOVA was fitted to undercount
rates for state parts. Table 3 shows the ratio of the sum of
squares due to PSG’'s to that due to states within a division. The
ratio is always greater than one and in Division 9 it is 40.28,
showing much larger effects for PSG than for state. The mean

square for group also exceeds the mean square for state in each



division except Division 2. This supports the decision to use the
PS rather than the state as the cell for undercount estimation

and adjustment.
3.2 Tests for State Effects on Undercount Rates

Assuming the substitution rate (fraction of units imputed for
nonresponse) is negligible, the adjustment factor (R) for a
domain is

WCE/WE

fi= WCE/WE
wM/ WP

and the undercount rate is

where WE and WP are the estimated population sizes weighted up
from the E and P-sample, respectively. WCE is the weighted
numper of correct enumerations and WM is the weighted numbér of
matches in the PES.

The statistic for the influence (see Appendix) of the i BP
on the adjustment factor or undercount rate is

;g WCEy, WP, WE, WM,

K WCE WP WE WM”

where WCE,, WP,, WE, and WM; are contributions from the i*® BP to
totals above.
A linear model was fitted to BP influence statistics to %*est

for state effects. Under the null hypothesis, all the state



parts in a PSG have the same undercount rate and the expected
mean of the influence statistics for each state is 0 within each
PSG. The influence statistics can be analyzed with one way ANOVA
within a single PSG or two way ANOVA for all PSG's within a
division.

Table 4 summarizes the tests for state effects on linearized
statistics within each PSG. The tests reveal significant heter-
ogeneity between states in 19 out of 99 groups at the 5%
significance level. The magnitude of the estimated state effect
ranges from a few percent up to 20%, but the standard errors of
these estimates are very large.

Table 5 summarizes the results of these analysis by place
type. Place types 0, 1, 2 and 3 are large central cities in
PMSA, place types 4, 5 and 6 are non-central cities in PMSA with
large central cities and place types 7, 9 and 9 are other areas.
The significant results are concentrated in PSG’s for small areas
(place types 7, 8 and 9). 10 out of 19 such groups show signifi-
cant interstate heterogeneity at the 5% level. This suggests that
the poststratification c¢an be improved in those areas.

A linear model for linearized undercount at the division
level showed no significant state effects when both PSG and state
effects were included in the model.

Table 6 shows the F statistics and p-value for state effect
for state x PSG models, once weighted by the size of domain and

once without weights.
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The additive effect of state was significant in only one
division (p=.01) in the unweighted state x PSG model; when data
were weighted by size of domain, the smallest p-value for the
state effect was .18. 1In either case, the most significant
effect was observed in Division 2, in which New Jersey appeared
to have higher undercount rate, controlling for PSG, than New
York, possibly because the most undercounted area in New York
(New York City) had its own poststrata. Elsewhere, because the
state effects in different PSG’'s varied in magnitude and
scmetimes in sign, and because only within a minority of PSG’s in
any division were there significant state effects, there was not
significant evidence that in the aggregate the poststratification

was blased against certain states.
4. Discussion

This paper evaluates the homogeneity, or synthetic,
assumption for the 1990 Post Enumeration Survey.

The evaluation used 1990 Census data and 1990 PES data.
Surrogate variables from the 1990 Census were tested for signifi-
cant heterogeneity among states within PSG. At the PSG level,
state effect was significant {(a = .05) for 84%-95% of its PSG’s
for the various surrogate variables,

ANOVA on linearized undereount based on the PES data at the
PSG level showed significant (a = .05) state effects for 19 out

of 99 PSG’s. The significant results were concentrated in the



poststratification in the relatively unurbanized areas was not as
successful as in the more urbanized areas.

How can we explain the different findings of the two studies?
The two data sets had very different sample sizes, i.e., the
Census data had 204,394 blocks but the PES data had 12,144
blocks. Furthermore, the correlation between the undercount rate
and the surrogate variables are low as shown in Table 7. It is
therefore not surprising that small differences between states on
surrogate variables would be statistically significant although
corresponding differences would not be demonstrable with respect
to undercount rates.

when this research was first embarked upon, the PES data were
unavailable and were not expected to become available for
analysis before the scheduled completion date.

Given the modest correlation between undercount rates and
surrogate variables, we prefer to give greater weight to the
analysis of the PES data.

We conclude from these data that there are no demonstrable
differences in average undercount rate between states within each
division, after adjusting for PSG effects. While there is weak
evidence for a difference between New Jersey and New York within
the Mid-Atlantic division, this result must be downweighted in
the context of the number of divisions (nine) for which the test
was performed. We conclude that if adjustment of population
counts had been carried out based on the 1990 PES, no state would

have been able to show that the poststratification was manifestly
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counts had been carried out based on the 1990 PES, no state would
have been able to show that the poststratification was manifestly
unfair in that it underadjusted that state relative to what
direct state estimates showed that it deserved.

Our gqguestion does not address another form of heterogeneity
within the poststrata that has been mentioned by some critics as
a source of error in the proposed undercount adjustment. Wachter
and Freedman (193%3) and Hengartner and Speed (1993) have
suggested that undercount rates vary within PSG, considering
units smaller than the state part (such as local political
divisions or even individual blocks). They argue that this is an
additional source of error in synthetic estimates for small areas
that is considered in the Census Bureau’s error models. The
research of Fay and Thompson (1993) suggests that this type of
heterogeneity probably does not have a systematic effect on
comparisons of the accuracy of the adjusted and unadjusted

counts.,

This paper reports the general results of research undertaken by
the authors. The views expressed are atiributable to the authors
and do not necessarily reflect those of the Census Bureau or
Harvard University.

The second author was with the Bureau of the Census when the

research was in progress.



Appendix : Testing for Interstate Differences Using

Linearized Statistics

A two-way ANOVA for adjustment factors in state parts yields
an intuitively meaningful summary of the relative contributions
of state and PSG effects to the variation in adjustment factors.
Because the sampling unit of the PES is the block cluster rather
than the state part, these models do not yield valid statistical
tests of the significance of the state effects.

Consider a statistic whose sample estimate for a state or
state part is a weighted mean of the sample estimates in each
component block or BP. Significance of the state effects for
this statistic within a PSG could be evaluated by one-way ANOVA
with the included block parts as units (corresponding to PSUs),
or aggregated across PSGs by two-way ANOVA for state and PSG
effects.

The sample adjustment factor estimate (WCE/WE)/(WM/WP) is a
nonlinear function of sample counts. 1In small primary sampling
units (PSUs) such as block pa}ts this nonlinearity may be very
noticeable, especially when the number of matches in a PSU is
very small or zero so that the sample estimate of the adjustment
factor is large or infinite. 1In this situation, if PSU sample
estimates are treated as data, the additive assumptions of ANOVA
are vioclated. Useful tests may be recovered, however, by using a

linearized version of the statistic of interest.



Suppose that we are interested in a parameter Z = f(X) where
X is a vector of population proportions in certain cells. Let

X, x; represent the corresponding sample proportions in the
entire sample and in PSU i respectively, so X = Y Nx,/Y N, is a

size-weighted average of block cell proportions. Let £,(X) be

the gradient of f at X. Then by Taylor linearization
£(D) - £(x) = £, (X)X-X) = Y NE X)X/ Ny - £,(X)7X, i.e. we may

treat the problem as one of inference regarding the quantities

(pseudo-observations) Z; = flhn’xi. Because the approximate

{linearized) influence of PSU i on the estimate f{x), that is,
the difference between the estimate with and without PSU i

included, is Lﬁflhw’(xi—i), we may describe this as a method

based on influence statistics (Hampel et al. 1986) or the
infinitesimal jackknife (Efron 1982, Chapter 6).

To derive a sensible variance model, suppose that we may
regard PSU i as sample (not necessarily SRS) from a
superpopulation with cell proportions X,. A simple model is
then, for some covariance matrices U, and Vs

superpopulation model:

E(X,) = X, Var(X,) =V,
and

sampling model:

E(x.]X.) = X, Var(x/x,) = uv,.

_2 9_



The sampling covariance U, will typically be proportional to
N,”'. A plausible and mathematically convenient specification for
v, is V, a N,”! (i.e. smaller PSUs more variable than larger ones}),
so Var z, = o¢'/N, for some constant o’. The corresponding linear
model weight for PSU i is N, so the model-based estimate of the
mean agrees with the design-based estimate obtained by

aggregating the cell counts if N, is a weighted size measure.

In the case of the adjustment factor R = (WCE/WE)/(WM/WP),

the pseudo-observations are of the form z, = £, (X)/(x;-X)} =

. WCE. WP, WE, ;
5 WCE, WP, WE, WM.

WCE WP WE WM

where WCE,, WP,, WE, and WM, are similar to the above for the i*
BP. We approximate the appropriate weight of a block part by N, =
(WE, + WP,)/2.

If the variance specifications of the model are inaccurate so
there is some heteroskedasticity, or if the distribution is very
long-tailed, then there will be a long-tailed distribution of
residuals, making the tests at least slightly liberal. Some care
must be taken to note the presence of outliers signalling this
heteroskedasticity, for example, outlying blocks due to large-
scale geocoding errors.

The assumption of approximately independent observations in
ANOVA may be violated in two ways. First, the PSUs are not
selected by SRS but rather by a geographical stratification

somewhat finer than reflected in the poststratification scheme.
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To the extent that this geographical stratification reduces the
sampling variance of the state effect estimates, inferences under
the independence model will be somewhat conservative. Second,
there will be correlations between adjustment factors for
different block parts from the same block (in multi-PSG models).
These will tend to make inferences assuming independence somewhat
liberal. ©On the balance, we regard the tests performed here as

useful.
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Table 1. Number of PSG’'s with Significant (a=.05)
State Effect (Logistic Regression)
Div. | No. Grp Alloc Mail Ret | Mult Str | Mail Unv Sub
1 5 5 5 5 (1) 3(4)
2 12 11 11 12 7(10) 12
3 16 15 16 16 3(3) 12(12)
4 8 8 8 X/ 5(6) 5(8)
5 19 10 9 10 4(4) 7(8)
6 15 15 13 15 5(7) 15
7 9 8 9 9 4(4) 8(8)
8 7 7 7 7 2(3) 6(6)
9 17 15 14 14 5(5) 6(12)
sSum 99 94 92 95 36(43) 74 (84)

The numbers

()

are the number of PS5G’'s for which tes+®

statistics are available when they are less than the number of

groups.
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Table 2. Magnitude of State Effects with respect to
Test Statistics
Allocation Mail Return Substitution

Rate Rate Rate

Minimum 4.3 0.28 5.46
25 %-ile 27.5 102.83 49.80
50 %-ile 68.9 254 .49 97:35
75 %-ile 140.3 644.05 260.88
Maximum 945.2 8779.88 1815.12
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Table 3. Variance of Undercount Rate Explained by
State and PSG
Div. No. of No. of SS(Group) MS (Group)
Groups States SS(State) MS(State)
1 5 6 4.51 5.64
2 12 3 4.88 .89
3 16 9 12.69 6.77
4 8 4 8.73 3.74
5 10 4 8.17 2.72
6 15 5 7.67 2+19
7 9 7 2.78 2.09
8 7 8 1.31 1.53
9 17 5 40.28 10.07

*®

States include D.C.
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Table 4. Analysis of Linearized Undercount at the PSG Level

Division Number of PSG | Number of PSG with P<.05
1 5 0
2 12 3
3 16 4
4 8 5
5 10 2
6 15 1
7 9 0
8 7 1
9 17 3

sum 29 19
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Table 5. Summary of Analysis of Linearized Undercount

by Place Type

Place Type Number of PSG | Number of PSG with P<.0S
0 13 3
1 23 1
2 12 L
3 8 1
4 0 0
5 6 2
6 6 1
7 11 3
8 11 4
g 190 3

....37_




Table 6. State Effects by Division - Weighted and Unweighted

Data
Unweighted Models Weighted Models
Division D.F. F p F D
1 5 - .57 .72 .40 .85
2 2 4.64 0 1.72 .18
3 8 .43 » 91 .65 .74
4 3 .64 .59 .66 s 58
5 3 .66 .58 1.37 «25
6 4 .60 .66 .24 « 92
7 6 + 39 .88 »22 » 37
8 ¥ .62 .74 .76 ‘ «62
9 4 .77 .54 .48 <75




Table 7. Correlation Coefficlents between the

Surrogate Variable and Undercount Rate by PSG

Variable Correlation
Allocation Rate .44
Mail Return Rate -.57

Multiunit Str Rate .39
Mail Universe Rate .08
Substitution Rate .47
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Logistic Regression in Capture-Recapture Models

Juha M. Alho

Institute for Environmental Studies and Department of Statistics,
University of Illinois, 1101 W. Peabody Dnve, Urbana, Nlinois 61801, U.S.A.

SUMMARY

The effect of population heterogeneity in capture-recapture, or dual registration, models is discussed.
An estimator of the unknown population size based on a logistic regression model is introduced. The
model allows different capture probabilities across individuals and across capture times. The proba-
bilities are estimated from the observed data using conditional maximum likelihood. The resulting
population estimator is shown to be consistent and asymptatically normal. A variance estimator
under population neterogeneity is derived. The finite-sample properties of the estimators are studied
via simulation. An application to Finnish occupational disease registration data is presented.

1. Introduction

We consider the problem of estimating the size of a ciosed population based on a capture
and a single recapture (e.g., Seber, 1982, Chap. 3; Seber, 1986, p. 273). In demography this
is known as dual-system estimation {e.g., Ericksen and Kadane, 1985, pp. 102-103).
Several authors have studied the problems caused by heterogeneity in capture probabilities
{(Seber, 1982, pp. 85-88). Burnham and Overton (1978, 1979) and Ous et al. (1978)
postulated a model of unobservable heterogeneity in which the individual capture proba-
bilities are a random sample from an unknown distribution. A jackknife estimator based
on several recaptures is used to estimate the population size. This work has been extended
by, e.g., Pollock and Otto (1983) and Chao (1987, 1988), who study the bias, variance, and
robustness of alternative estimators. Rodrigues, Bolfarine, and Leite (1988) propose a
Bayesian analysis using both noninformative and informative priors. Closer to our contri-
bution is Pollock, Hines, and Nichols (1984), who introduced a logistic regression technique
to account for observable population heterogeneity in the capture probabilities. In other
words, the characteristics of the captured individuals are used 10 explain their probabilities
of capture. To avoid problems connected with the unobservable part of the likelihood (due
to those members of the population that are not captured at all), they categorized the
independent variables to carry out the estimation (Pollock et al, 1984, p. 332). We
circumvent these problems by conditioning (cf. Sanathanan, 1972; Bishop, Fienberg, and
Holland, 1975, Chap. 6; Seber, 1982, pp. 489-490). This allows us to use independent
variables without any grouping. Huggins (1989) has independently suggested a similar
approach 1o the problem.

In Section 2 we generalize the classical estimator of population size to cover. for instance,
the case in which ail capture probabilities are different between individuals and captures.
In Section 3 we develop the conditional maximum likelihood estimation procedures and
establish sufficient conditions for the strong consistency and asvmptotic normality of the
proposed estimator. Part of the material is somewhat technical and can be skipped by a

Key words:  Asympiotic theory; Capture-recapture modeis; Logistic regression; Simulation.
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reader interested in applications. In Section 4 we generalize the variance formula of Sekar
and Deming (1949) to cover our model. The finite-sample properties of our estimators are
investigated via simulation in Section 5. We show that the analysis based on logistic
regression corrects for the bias caused by observable population heterogeneity. However,
in very small populations the estimator becomes unstable. Finally, in Section 6 we present
an application to Finnish occupational disease data.

The notation used in capture—recapture/dual registration literature is not standard (cf.
Cormack, 1968, p. 457), and the existing loose conventions (e.g., in Seber, 1982) differ
from those used in many other parts of statistics. An attempt is made here to formulate the
results in a language familiar in the capture-recapture literature.

2. Population Heterogeneity

2.1 Classical Model

Suppose we sample twice from a closed population of unknown size N. Let n, be the
number of individuals captured the first time, 7, the number captured the second time,
and m the number captured twice. Let p, be the probability of capture on the first occasion,
p» the probability of capture on the second occasion, and py; the probability of being
captured twice. We assume that the captures are /ndependent, so that pz = p\ pz.

Define ¥, = n, — m, 4, = n; — m, and M = n, + n; = m. Assuming that different
individuals are registered independently of each other, we have a multinomial model (e.g.,
Seber, 1986, p. 274)

(wy, 12, m, N — M) ~ Mult{N; pi(l = p2)i (1 — p)p2s pipas 1 — @),

where ¢ = p, + p, — p\ ;2. The classical model is often phrased conditionally on the values
of n, and n,. This leads to a hypergeometric distribution for m, with the weil-known
maximum likelihood estimators
' 1‘?2=E, ﬁ___’flmz’

mn m
{e.g., Feller, 1968, pp. 45-46), Sgkar and Deming (1949, pp. 114—-115) derived an estimator
for the asymptotic variance of & in the hypergeometric setting:

b=

SlE

Iy Ryl Un
v, = 2200
m

We shall show that &V is maximum likelihood, and derive ¥, under the multinomial model
as a special case in Examples 3.1 and 4.2.

We shall now extend the model to allow for variation in the individual probabilities of
registration, by treating each individual as a separate stratum. Define indicator variables
Uiy U, and my, fori= 1, ..., N,

i 1, if individual { is captured on occasion j only, j = 1, 2;
H 0, otherwise;

0l ey 1, if individual i is captured twice:
. m; = :
b : 0, otherwise.
Let‘n:—,- = ﬁ,-,- o m (j=1,2), ﬁf!,- = uy; + uy; + my, and define for each individual the
probabilities of being registered as p;; = E[n] (J = 1, 2), and pyz; = E[m;]. Assume that
these probabilities are strictly between 0 and 1. We shall complete the definition of the

_,41_



Logistic Regression in Capture-Recaprure Modefs

model allowing for population heterogeneity, by assuming that the registers operate inde-
pendently on the individual level, or p2; = p) P2, and that the multinomial vectors

(g, sy, M, 1 — M) ~ Mult(l_; pull = pu); (1 = puidpa; Pu'}?:.-; 1 — @), :

where ¢; = p\; + P + DDz, are independent for i = 1, ..., N. As we shall see below, this
model allows for a population-level correlation between the captures.

It is well known both empirically (Seber, 1982, p. 563) and theoretically (¢.g, Burnham
and Overton, 1979, Table 4, pp. 931-932) that the classical estimator may be severely
biased under population heterogeneity. The expected bias can be expressed in terms of the
sample covarance of the pairs (py, pv), 1 = 1, ..., N: N gives asymptotically an
underestimate if the covanance is positive, and an overestimate if it is negative. Under zero
covariance the estimator is consistent (cf. Sekar and Deming, 1949, pp. 105-106; Seber,
1982, p. 86).

2.2 Estimarion Under Observable Heterogeneity

Suppose for the moment that we know the probabilities of being caprured at least once, ¢,
and consider the estimator ‘

v

R

=1 @ M=t P
The summation on the right means summarion over those indices i for which M, = 1. V is
obviously an unbiased estimator of ¥, One can also show (using sufficiency and compiete-
ness) that it has minimum varance among such estimators. However, for our purposes it
is more important to note that ¥ can be calculated when ¢; is known oniv for those
individuals that have been captured at least once. This means that if we can estimate g;’s
from the data concerning the captured individuals, then we can replace N by its estimator,
and get an estimator of V (cf. Sanathanan. 1972, p. 144). This is precisely what we shall do
in Section 3.

However. some regulartv conditions must be imposed on the true underlying ¢'s to
suarantee the consistency of ¥ in large samples. Despite the fact that ¥V is always unbiased,
its variance may explode uniess the o,'s are bounded in some way. We shall now prove a
technical result that gives a sufficient condiiion for consistency. The result will also be used
in the proof of Proposition 3.2.

Proposirion 2.1 Suppose there is a constant ¢ > 0 such that g < ¢, forail 1 = [, 2. ...,
Then N is strongly consistent for N,

— 1 a.s. as vV -— o,

212

o

If in addition ¢, € | — g forail i = 1.2, ..., then N has an asymptotic normal distribution.

Proof Since var{M,/¢,) = (1 — 9, )}/e: < {1 — g)/a, the strong law of large numbers (e.z.,
Chung, 1974, Theorem 5.1.2, p. 103) implies that ¥/~ — | almost surely. As a sum of
independent variabies with variances bounded from above and away from zero, N is
asymptotcally normal.

This gives a sufficient condition for the strong consistency of V. It does exclude certain
practical situations from consideration, such as the case in which part of the population is
effectively uncatchable, ie., it has positive, but very small capture probabilities. [Seber
(1982, p. 72) relates an example due to Avre of an ant populauon for which such condiuons
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-

held: Only z fracion of znis go foraging. for others remain 1 the ant hill and so are
uncatchabie.] Then N is sull unbizsed. but it mayv not be consistent. Furthermore, by

considening, e.g.. o, = (™ (0 < §; 1 = i, 2, ...} we have that var(N/N) = O(N*'").
For é = | the varmance does not vanish as VN — =, so we do not ge: even weak consisiency.
For 0 < 4 < |, the terms var(M,;/¢ )i~ = ("¢ = (7 (i =1, 2. ...) form 2 convergen:

series, 5o the sirong consistency. follows from Koimogoroy's sirong iaw of large numbers
(Chung, 1974, Corcllary, p. 125). These axamples show that the exisience of 2 bound ¢ > 0
1s not necessary for Propesition 2.1 to hold, but scme dound jor the frequency of
exireme values of o, 1s essenual.
in pracuce the o;'s would not be known. Instead. we shail suppose that there is a
parameter vector 8 such that p); = pi(8) and py; = po;(0). We shall write py,, pmi, ©;, and rY,
for pvi, pa, ©i, and N, when ¢ has been estimated by 2 maximum likelihood estmator .
Under popuiation homogeneity
Fw T dm§ —
Ml Di e Pi{0)
wii] agree with the ciassical estimater so that the same symool can be used for the ssiimater
we have introduced.

3. Logistic Anaiysis

We shzll now denve a conditional maximum likelthood estimator of 4 under logistc
regression. The iterative formulas for the solution of the iikeiithood equations are given
below, before Zxampie 3.1, so a reader interesied in appiications may want 1o procee

there. Assume we have vectors Xy, = (X, ..., Xi)” and Xy = (Xagy, ..., Saa)” of
“explanatory” vanables giving the charactenstcs of individual i reievant 1o capturs, with

Xy =Xy, = 1, for i =1, ..., N. We model the p;'s by letting iog(p;/(1 = p;)) =
X;aﬂi (j = 1, 2}, where 4, = (g, ..., Gu)' and 2; = (g, ..., au)’ are vectors of
parameters.

Let M = (A, ..., My)7, and define u,, v, and m correspondingly. The conditional

likefihood of 6 = (a7, a )", given M, can (with some zigebra} be shown 10 be

L{@|w, vy, m; M) = [[ Priuy, 1, mi| M, = 1),
M=t

where

By ) exoluy, X, a, = ua,. lag = m{XTa, = X1.a:))
ST, e, m,-;.ﬂ\/f,- = J) = : i
X.(8)
with
T ’ par T 2 Uy -7
Ki(8) = exp{X|;a;) = exp(X32:) + exp(X,, 2 — Xia7).
Consequently, we can write

L(BTuy, vz, m; M) = exp(Tia, = Tia,) ] X.(6)7,

Ao

where

This shows that the conditoral distribution of u,, v,. and m. given M. belongs to the
exponential family of degree X + A, and the veciors T, and T: form the minimal sufficient
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statistic for 8 {Andersen, 1980, p. 28). This is also a generalized linear model with the
natural link function (Nelder and Wedderburn, 1972, p. 372; Fahrmeir and Kaufmann,
1985, p. 345). It follows (cf. Andersen, 1980, Theorem 3.1, p. 56, for the 1.i.d. case) that
the likelihood equations are

E[T;iMl=¢t, j=12

where t; is the observed value of T; (j = 1, 2). Let us write

r-[5] e[} <=3 &

where XT = (X;y, ..., Xin), j = 1, 2. Write also Y = (n,, ..., My M1, - - -, Man)’, and
note that T = XTY. The likelihood equations can now be written as

t — XTE[Y|M] =0,

where for i=1,..., Nwe have E[Y;| M, = 1] =Pr(1,0,0| M, =1} + Pr(0,0, 1 | M, = 1),
with Pr(u,;, us, m;| M; = 1) as above; for i = ¥ + 1, ..., 2N, we have E[Y;| M, = 1] =
Pr(0, 1, 0| M; = 1) + Pr(0, 0, 1| M; = 1). Note that for all i, we have E{Y:|M;=0] =0,
so the X;;’s belonging to unobserved individuals do not enter into the likelihood equations
even through they are formally included in the formulas. ‘

To solve the equations we need cov(T | M) = XTcov(Y | M)X (cf. Andersen, 1980, proof
of Lemma 3.3, p. 59, and Theorem 3.4, p. 63, for the i.i.d. case). Components of Y relating
to different individuals are independent by assumption. However, conditionally on M,, ¥;

is dependent on Yy.;, i = 1, ..., ¥ It follows that cov(Y | M) = W is of the form
_iw, ow,
w=l% W)

where W,'s are diagonal N X N matrices. To define their elements, denote W, =
(W) (J=1,....,4ik=1,..., N), where

5. Pii pff :
wh = var(n; | M, = 1) = 2= 2 =12,
' ( i |~’ ) ¢j/ érz J
@',:: = 'f;': = COV(HH, nz,vlfd,— = [) = p”‘py S p”{):f.
O &7

Now define the elements of W, = (w/) by taking wj = M, M, Wwi.
With these notations Newton’s method vields the recursion

By = 0, + (XTW.X)'XT(Y —EfY[M]}, 5=0,1, ...,

where s = 0 corresponds to an initial value we use to start the iteration, and W, and
E.[Y|M] contain the estimates of W and E[Y|M] based on 8,. Using the “working
variate”

g. = X8, + W7'(Y — E[Y|M])
renders the recursion into the familiar regression form
B = (XTWJX)—IXTW:gs-

This can be implemented by running regressions with any statisticai package that allows
weighting of observations in regression or that has matrix algebra.
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An estimator for the covariance matrix of 4 is
cov(fiM) = (XTWX)™,

where W is the matrix W, corresponding to §, = 4.

Example 3.1 Assume k = i = 1, i.e.. there is no population heterogeneity. Then ¢, = n,
and; =n;. Fori=1,... . N, wehave E[Y,|M.=]=p//é.and fori =N+ 1, ..., 2N,
we have E[Y, | M, = 1] = p./¢. Conditionally on A/, the maximum likelihood estimators
of these are n,/M and n./M because they satisfy the likelihood equations. Solving for p,
and p» gives us py = m/m and p, = m/n, as the maximum likelihood estimators. The
estimator for | /¢ is (n; /M )} n;/m), and consequently N = n,n./m, or the classical estimator.

Example 3.2 Suppose k = 2 and & = 1, i.e., there is no heterogeneity at second capture
time. Two of the three likelihood equations are

m= ¥ &1 n= 3 E=P21\7»
M=t @ M= D
when we wnite py; = p, for all i. Since pi, = (¢ — p2)/(1 = p.), the first equation becomes
n = (M — p2N)/1 — p.). Solving these equations gives p» = m/n, and N = nny/m.
Consequently, the classical estimator p, is conditionally maximum likelihood even when
there is heterogeneity of the probabilities of #,,'s. Similarly, our proposed estimator for N
agrees with the classical one.

The existence, consistency, and asymptotic normality of the maximum likelihood esti-
mator follow from the theory of generalized linear models under suitable conditions. One
set of sufficient conditions is given below. The proofs can be found in the Appendix.

Proposition 3.1 Assume that the elements of ‘5 are bounded,_and that XTX/N converges
10 a positive-definite matrix, as ¥ — =, Then § — 8 a.s. and § has an asvmptotic normal
distribution that does not depend on M a.s.

Proposition 3.2 Under the conditions of Proposition 3.1, N is strongly consistent for N,

1‘\' !
—_——— —_
v as. as N :

and it has an asymptotic normal distribution.

An advantage of the logistic analysis over the stratified analyses proposed by Sekar and
Deming (1949, pp. 106-107) is that we can use continuous explanatory variables (such as
age) in our models. Second, we have the standard theory of exponential families at our
disposal for inference. Even in the situation of Example 3.2 the logistic analysis may be
helpful in understanding the underlying capture mechanisms. The logistic analysis provides
also a simple means of estimating the distribution of explanatory variables in the population
of interest, such as age distribution in a human population, or, say, the distnbution of
“size” (weight, length, ...} in a fish population.

4. Variance Estimation

We shall first derive an estimator of the conditional asymptotic variance of N, given M.
This estimator does not account for the vanability in M itself. Then we present an
approximation to the unconditiona) variance. The resulting estimator can be thought of as
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a generalization of V) introduced by Sekar and Deming (1949). We saw in Section 3
that the conditional maximum likelihood estimators combined with the estimator N of
Section 2 result in estimators of N that are consistent and asymptoticaily normal. The uncon-
ditional variance estimator derived below will aliow us to present unconditional confidence
intervals for N under population heterogeneity even though a conditional likelthood was
used in the estimation of 4. A . L.

Let us make the dependency of & on @ explicit by writing & = N(8) = M\(8) + --- +
Nu(d), where Ni{(8) = M,/¢:(8). We shall calculate the conditional asymptotic var-
iance of N(§), given M. For i = 1, ..., N, define the vectors

aN, N, .\
vl(o) - (661 (e)s S L ) 39;“.;' (8)) 3

and let V(8) = V,(8) + --- + V{8). The first-degree Taylor approximation gives the
asymptotic variance of N(8), given M, as

N
var(N(@)| M) = 3 V.(8) cov(f | M)V,(8) = V(8)Tcov(d | M)V(8).

tyw|

A straightforward calculation shows that, fori=1, ..., N, and j=1,.:., k&

Eﬂ—; (8) = —Xlijll-":‘(a),
where ¥:(8) = M,exp(XT,a,))(1 + exp(X%,2.))/K,(0)*. Similarty, for j=k + I, ..., k + 4
we have

anN;

36; (8) = —Xnen+i(8),
— ‘p!\“‘i(o) - lwiexp(x‘zriaz)(l + exp(x.{jal))/K.'(ﬂ)z_ Let ‘#(8) = (‘pl(a); § Galy ‘Pl\’(e))r.
Then we can write

V(8) = - XTy¥(8),
and our formula for the estimator ¥» of the conditional asymptotic Vvariance
var(N{8)| M) becomes
Vs = w(8)TX(XTWX) X"y (d),

where W is as in Section 3.
To show that conditioning on M reduces the variability of N, let us consider the case of
no population heterogeneity.

Example 4.1 We saw in Example 3.1 that under population homogeneity, our point
estimators coincide with the classical ones. In this case X, = X, = vector of NV ones. A
direct substitution into the formula for ¥, yields after some algebra that

u; + U

V2 = Vl A H

or Vz< V|.

We shall now derive an estimator for the unconditional asymptotic variance of N.
Conditioning on M, we have

var(N) = E[var(N| M)] + var(E[N| MT).
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We estimate E{var(N | M)] by V,. To estimate the latter term. note that

i)

E[N|M] = i M,E[i_

1

=1
We shail first approximate E[l/cﬁ. | M] by 1ts limit value !/¢,, s0

N 2 — -
var(E[N |M]) = T w.
i=] i

Estimating the first ¢; by M;, and the remaining ¢,’s by ¢, gives us an estimator Vs, which
can be written as

| — &,

Vi= ¥ =
. M=1 o}
Combining the results, we get the unconditional estimator V; of var(V) as
Vo = Vg + V;.

£xample 4.2 A direct calculation shows that under population homogeneity,

2
mAM\{nyn, m
Vi=Ml1 - =] =V, —,
L ( n,nz)(mM) "M
Together with Example 4.1, this shows that ¥, = ¥, + V5 = V,, so that our unconditional
estimator agrees with the classical one under population homogeneity.

5. Finite-Sample Properties

We conducted a simulation study 10 see how the logistic analysis compares with the classical
one in terms of bias, variance, and accuracy of confidence intervals. in small samples. First,
we assumed that the probability mechanism generating population heterogeneity was |
correctly specified. Then the case of missing covariates was considered. .

Three unknown population sizes, N = 100, N = 300, and N = 1,000, were considered.
One covanate X ~ N(0, 1) was used to generate the observations under two models.

Under Model I the ny,;’s were generated by taking logit(p,;) = .5 + .8X;, and the ny's by
taking logit(py) = 1.5 + 4X;, i = |, ..., N. This implies that we have E[n,] = 608N,
E[n:] = .810N, E[m] = .503N, and E{M] = .915N. In other words, about 92% of the
unknown population are expected to be registered by at least one of the registers. The
distributions of the py;’s and p»;’s are slightly skewed to the left with standard deviations
.18 and .07, respectively.

Under Model Il we took logit(p,;) = —.5 + .8X; and logit{ pz;) = ~1.0 + .4.X;. Then we
have E[n ] = 392N, E[n;] = 276N, E[m] = .121, and E[M] = .547N. This time the
distributions of py;’s and py:’s are slightly skewed to the right with standard deviations .17
and .08, respectively. -

Under both models the pairs ( py;, p;) are essentially perfectly correlated. Based on the
bias results referred to in Section 2.1, we expect the classical estimator to be about 2.5%
downward biased under Model [ and about 11.2% downward biased under Model II.

The simulations were carried out as follows. (1) ¥ independent observations from
N(0, 1) were generated. (2) n, and n,,; were generated independently under Model I for
{=1,..., N.(3) The classical estimator for N and its variance were calculated. (4) Newton’s
method was used to estimate the logistic regression models, as outlined in Section 3.
and an unconditional variance estimator was calculated using formulas of Section 4.
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Steps (1)~(4) were repeated 600 times for N = 100, N = 300, and N = 1,000. After that
the same was done with Model II. The calculations were carried out using MINITAS On a
personal computer.

Table | presents results from these sunulanons Under both Models I and [I the classical
estimator & is downward biased but slightly less so than the first-order asymptotics would
imply. Its standard deviation is adequately estimated by JV,, and plots (not shown here)
indicate that its distribution is very close to normal. Due to the bias, the purported “95%
confidence intervals™ for NV do not come close to reaching the nominal level of coverage.

In contrast, the “95% confidence intervals” based on the flogistic estimator, denoted by
N, are very nearly adequate for both models and all three values of V. However, the way
this is accomplished needs a closer look.

The logistic analysis corrects for the bias of N. We pay for this in the increased vafance
of the estimator. Under Model I, the classical estimator N and the proposed logistic
estimator N’ have approximately the same mean squared errors (MSE) for ¥ = 300. For
N = 100 the MSE of &' is larger. and for ¥V = 1,000 it is smaller than that for N. For
Model 11 the break-even point of MSEs is further between &V = 300 and vV = 1,000. A
comparison of the mean and the median of ¥V’ for N = 100 under Mode! II indicates that
its distribution is highly skewed to the right. As /V increases, the skewness decreases.

The results of Table | do not give a direct indication of how well the merhod based on
logistic regression might perform in a real situation, in which one would test whether the
coefficients a,» and ap. vanish. If either one would be deemed not to be significantly
different from O, then, in view of Example 3.2. a classical analysis could be performed. Any
reasonable testing strategies should give results that fall between those obtained using
exclusively & or N, both in terms of bias and the coverage of confidence intervals.

Additional simulations (600 repetitions) were carried out with Model IT and ¥ = 1,000
to study the effect of model misspecification. The situation was modified by replacing X
by (X’ + X")/~2, where X’ and X" are independent N(0, 1) variables, and by assuming
that only X' was observable. From the point of view of classical estimation this situation

Table 1
Small-sample properties of the classical population size estimator N and the estimator applying
logistic regression N, based on 600 simulations of Models | and 11 for N = 100, 300, 1,000.

Model 1 Modei 11
N N N N N

Average of estimates 100 981 1.011 931 1.434
divided by ¥ 300 980 1.004 .898 1.044
1,000 980 1.002 .894 1.010

Median of estimates divided 100 982 1.002 896 1.021
by ¥ 300 980 1.003 887 1.006
1,600 981 1.001 891 599

Standard deviation of 100 .037 063 207 2.723
estimator divided by & 300 022 .030 096 191
1.000 012 D16 053 088

Average of estimated 100 035 058 185 1.082
standard deviations of 300 020 .031 .095 .183
estimator divided by NV 1,000 01l 016 051 .087
Coverage probability of 100 845 933 .802 933
“95% confidence intervais™ 300 798 953 703 945
1.000 582 975 432 955
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is identical to Model 1. However, the proposed logistic regression procedure performed
worse than under Model II, since only 50% of the population heterogeneity was ob-
servable: average/1,000 = 948; median/1,000 = .943; standard deviation/1,000 = .071;
average of estimated standard deviations/1,000 = .067; coverage of “95% confidence
intervals™ = .802.

A further effect of model misspecification is that the parameter estimates become biased.
Under the original Model II we had a,; = .8 and a;; = .4. When the model was correctly
specified, the average of 4,,'s was .809, and the average of &;’s was .399. Under the
modified model we had 2,; = .8/-\5 = 566, and a;; = .4/«/5 = ,283, In this case the
average of d,,'s was .524, and the average of d,;'s was .265. Their empirical standard errors
were .005 and .004, respectively. This bias appears analogous to the effect of “errors in
explanatory variables” in ordinary regression.

So far, all our simulations have been concerned with the case of positive correlation
between the captures. Since a negative correlation is also a possibility, we generated
additional data in the set-up where & = 1,000 and Model II has been modified to have
logit( p2;) = 1.0 — .4X,. In other words, the sign of the coefficient of X has been reversed.
Based on Section 2.1, the classical estimator was expected to be about 4% upward biased.
In 600 simulations this turned out to be the case. The logistic estimator was again nearly
unbiased in terms of both mean and median. The coverage probabilities of the “95%
confidence intervais” were .652 for the classical method and .948 for the proposed method.
Interestingly, in this case vvar(¥) = 86.7 > vvar(N’)} = 74.7. The estimators of both
variances were slightly downward biased. In this case both the bias and the variance of the
classical estimator are larger than those of the logistic estimator.

6. An Application to Occupational Disease Registration

We illustrate the logistic analysis by an application to occupational disease data from
Finiand in 1981. The Finnish Register of Occupational Diseases was founded in 1964. At
that time it was agreed that accident insurance companies would report all new cases of
occupational disease to the Register, irrespective of the compensation decision.

From 1975 every physician has been required to report all new cases of occupational
disease directly to a government agency, which reports the cases to the Register. Despite
the legal obligation, physicians neglect to report a large number of cases, presumably
because such a report causes paperwork, but does not directly benefit the patient. Unfor-
tunately, all cases are not reported via the other channel either.

The Finnish Register of Occupational Diseases can, thus, be thought of as a dual
registration system. However, the probabilities of registration are not constant over different
types of cases, nor are the two information channels independent (on a population level).
Alho (paper presented at 11th Nordic Conference on Mathematical Statistics, Uppsala,
1986) has shown previously that diagnosis has a strong impact on the probabilities of
registration. Using data from 1981, we found M = 5231. Stratifying the data into four
groups of diagnoses, (1) noise-induced hearing loss, (2) diseases of the musculo-skeletal
system caused by repetitive or monotonous work, (3) skin diseases, and (4) other diseases,
vielded N = 8,258, as opposed to N = 7,232 obtained without stratification,

Using the logistic techniques, we can check whether these findings hold when we control
for the possible effect of age. Age at which a disease is diagnosed may be correlated with
the severity of the case, making cases of older workers more likely to be reported through
either channel. On the other hand, one may argue that older workers are less likely to have
their diseases diagnosed as occupational ones due to fear of losing one’s job at an advanced
age. A logistic analysis with age as an explanatory variable might, thus, reveal additional
population heterogeneity within the groups of diagnoses. This turned out to be the case for
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noise-induced hearing loss and the “other” category, but in both cases the heterogeneity
pertained to only one channel, so it did not influence V. _

As an example, let us look at noise-induced hearing loss, which had A = 1,854 in 1981.
Let p, = probability that a case of noise-induced hearing loss is reported to the Register
from insurance companies, and p, = the corresponding probability for the other channel.
Let X = age. We estimated the model logit(p.) = ai, + a: X, and logit{ p;) = az; + an X,
but found @, not to be significant at 5% level. Taking @ = 0 gave 4 = —1.543, @z =
.0438 (estimated standard error = .0020), and &, = .0409. The range of pi,’s was from
.359 (corresponding to X = 22) to .881 (for A = 81), with a roughly normal distribution
with mean .663 and standard deviation .0870. It is likely that the cases of noise-induced
hearing loss that are diagnosed at a late age are more severe, due toa longer exposure time,
than the ones diagnosed at an early age. Consequently, the likelihood of positive compen-
sation decision probably increases with age. } .

In this case the classical analysis and the logistic analysis give & = 2,218, with JV, =
33.3.

7. Discussion

We have introduced a conditional logistic estimation procedure that allows us to analyze
capture~recapture data using individual-level covariate information. It is worth noting that
the distributions of the covariates typically are not the same in the observed and unobserved
segments of the population {cf. Cormack, 1989, p. 412). Our work can be viewed as an
extension of the classical procedures and a model introduced by Pollock et al. (1984). Both
asymptotic and finite-sample properties of the proposed estimator have been studied. This
indicates that the model may be of wide use when the required covariate information exists.
The model can be generalized to a multiple-recapture situation. It may be possible to
formulate the problem in terms of a nonparametric logistic regression model. Perhaps a
Bayesian approach could be used to reduce the instability of the estimator in small samples,
if suitable prior information exists.
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RESUME

L'effet d’une hétérogénéité de la population dans les modéles de capture-recapture on de double
enregistrement est discuté. Un estimateur de Ueffectif inconnu de la population basé sur un modéle
de regression logistique est obtenu. Le modéle permet des probabilités de capture différentes entre
individus et entre dates de capture. Les probabilités sont estimées a partir des données observées en
utilisant le maximum de vraisemblance conditionnel. On montre que 'estimateur résultant de 'effectif
de la population est convergent et asymptotiquement normal. Un estimateur de la vanance sous
'hypothése d’hétérogéneité de la population est obtenu. Les propriéiés des estimateurs pour des tailles
d’&chantillon finies sont étudiges par simulation. Une application a des données d’enregistremnent de
maladies professionnelles en Finlande est présentee.
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APPENDIX

A.1 Proof of Propesition 3.1

The boundedness of the elements of X implies that M — ® as, as N — o, Moreover, under our
hypothesis the conditions of Fahrmeir and Kaufmann's (1985, p. 355) Corollary 1 are easily satisfied.
It follows that 4 is strongly consistent for # and has an asymptotic normal distribution, conditionally
on M. The uaconditional strong consistency follows from Pr(]|§ — 8§ > ¢ i.0.) = E[Pr(]| § — 4|} >
¢ 1.0. [ M)] = 0, where “i.0.” means infinitely often in N (c¢f. Chung, 1974, Theorem 4.2.2, p. 73).
Consider the normality now. .

The asymptotic covariance matrix of vV (8 — 8) is given by (XTWX/N)"'. We shall show that
XTWX/N converges a.s. to a matrix (say) I that does not depend on M. Partition Z into four
submatrices corresponding to those of W. For instance, take the upper left-hand corner to be the
limit of XTW, X/N. Note that the (, j) element of this can be written as

1 ¥ .
ﬁ kZl M, wllrJ(X1k|'Xlkj~

By the boundedness of the summands this converges 1o its asymptotic expectation a.s. Hence, it does
not depend on_the particular realization M a.s. For the other elements we reason analogousty. It
follows that VN (§ — 8) ~ N(D, =-') asymptotically, conditionally on M.



Logistic Regression in C apture-Recapture Models

We can uncondition by noting that the normality of ¥N(# — 8) is equivalent to the condition
that for every vector » # 0, JN»T(d =8}~ N, »"Z7'7} asymptotically. This, in tumn, is the same
as E[f(VN»T(d — 8))| M] = E[f(»T§)]as N — = for £ ~ N(0, ') and any continuous function f
that vanishes outside a compact set (Chung, 1974, Theorem 4.4.1, p. 87). Using the dominated
convergence theorem, we get that

E(/(¥N»T(§ — 0))} — E[J(»"§)] as N — =

This proves the unconditional asymptotic normality.

A.2 Proof of Propaesition 3.2

The boundedness of the elements of X implies that ¢,’s are bounded away from both 0 and i, Hence,
by Proposition 2.1, (N — ¥N}/N — 0 a.s. Another consequence is that there is a neighborhood U of

the true value @ such that the first derivatives 5, and the second derivatives H;, of 1/¢,, are bounded
in it. Write the Taylor series expansion

where

i —
R = (% b M,S.(G)T)v'N(B - 8),

d |
and

1 = l + i, a
Rz = -z-m(ﬂ - G)T(:\{TE Z‘:‘, 1”.'H,(11))V[\‘{8 = 9).

where 5 is between d and 8. The boundedness of H,’s ensures that Rz — 0 a.s. as N — o, The sum in
R, converges to its asvmptotic expectation a.s. [t foilows from Proposition 3.1 that R,/ N — 0 as.,
so that N is strongly consistent. Second. R, has an asymptotic normal distribution that does not
depend on M as. It follows that (¥ - N/ VN, which is a function of M, and (N — N VN
are asymptotically independent. As a sum of two asymptotically independent normal vanables
(N — N)/ VN is asymptotically normai.
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Shimizu, I. M. and Bonhman,G. S. (1978). "Randomized response technique
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