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Small Area Estimation:

An Appraisal

M. Ghosh and J. N. K. Rao

Abstract. Small area estimation is becoming important in survey sam-
pling due to a growing demand for reliable small area statistics from
both public and private sectors. It is now widely recognized that direct
survey estimates for small areas are likely to yield unacceptably large
standard errors due to the smallness of sample sizes in the areas. This
makes it necessary to “borrow strength® from related areas to find more
accurate estimates for a given area or, simultaneously, for several areas.
This has led to the development of alternative methoeds such as syn-
thetic, sample size dependent, empirical best linear unbiased prediction,
empirical Bayes and hierarchical Bayes estimation. The present article
is largely an appraisal of some of these methods. The performance of
these methods is also evaluated using some synthetic data resembling a
business population. Empirical best linear unbiased prediction as well
as empirical and hierarchical Bayes, for most purposes, seem to have a
distinct advantage over other methods.

Key words and phrases: Borrowing strength, demographic methods,
empirical Bayes, empirical best linear unbiased prediction, hierarchical

Bayes, synthetic estimation

1. INTRODUCTION

The terms “small area” and “local area™ are com-
monly used to denote a small geographical area,
such as a county, a municipality or a census divi-
sion. They may also describe a “small domain” i.e.,
a small subpopulation such as a specific age-sex-race
group of people within a large geographical area. In
this paper, we use these terms interchangeably.

The use of small area statistics originated several
centuries ago. Brackstone (1987) mentions the exis-
tence of such statistics in 11th century England and
17th century Canada. Many other countries may
well have similar early histories. However, these
early small area statistics were all based either on a
census or on administrative records aiming at com-
plete enumeration.

For the past few decades, sample surveys, for
most purposes, have taken the place of complete
enumeration or census as a more cost-effective
means of obtaining information on wide-ranging
topics of interest at frequent intervals over time,
Sample survey data certainly can be used to derive
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ment of Mathematics and Statistics, Carleton Uni-
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reliable estimators of totals and means for large ar-
eas or domains. However, the usual direct survey
estimators for a small area, based on data only from
the sample units in the area, are likely to yield un-
acceptably large standard errors due to the unduly
small size of the sample in the area. Sample sizes
for small areas are typically small because the over-
all sample size in a survey is usually determined to
provide specific accuracy at a much higher level of
aggregation than that of small areas. Thus, until re-
cently, the use of survey data in developing reliable
small area statistics, possibly in conjunction with
the census and administrative data, has received
very little attention.

Things have changed significantly during the last
few years, largely due to a growing demand for re-
liable small area statistics from both the public and
private sectors. These days, in many countries in-
cluding the United States and Canada, there is “in-
creasing government concern with issues of distri-
bution, equity and disparity” (Brackstone, 1987).
For example, there may exist geographical sub-
groups within a given population that are far below
the average in certain respects, and need definite
upgrading. Before taking remedial action, there is
a need to identify such regions, and accordingly, one
must have statistical data at the relevant geograph-
ical levels. Small area statistics are also needed
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in the apportionment of government funds, and in
regional and city planning. In addition, there are
demands from the private sector since the policy-
making of many businesses and industries relies on
local socio-economic conditions. Thus, the need for
small area statistics can arise from diverse sources.

Demands of the type described above could not
have been met without significant advances in sta-
tistical data processing. Fortunately, with the ad-
vent of high-speed computers, fast processing of
large data sets made feasible the provision of timely
data for small areas. In addition, several power-
ful statistical methods with sound theoretical foun-
dation have emerged for the analysis of local area
data. Such methods “borrow strength” from related
or similar small areas through explicit or implicit
models that connect the small areas via supplemen-
tary data (e.g., census and administrative records).
However, these methods are not readily available
in a package to the user, and a unified presentation
which compares and contrasts the competing meth-
ods has not been attempted before.

Earlier reviews on the topic of small area esti-
mation focussed on demographic methods for pop-
ulation estimation in post-censual years. Morri-
son (1971) covers the pre-1970 period very well, in-
cluding a bibliography. National Research Coun-
cil (1980) provides detailed information as well as
a critical evaluation of the Census Bureau's proce-
dures for making post-censual estimates of the pop-
ulation and per capita income for local areas. Their
document was the report of a panel on small-area es-
timates of population and income set up by the Com-
mittee on National Statistics at the request of the
Census Bureau and the Office of Revenue Sharing
of the U.S. Department of Treasury, This document
also assessed the “levels of accuracy of current esti-
mates in light of the uses made of them and of the
effect of potential errors on these uses.” Purcell and
Kish (1979) review demographic methods as well as
statistical methods of estimation for small domains.
An excellent review provided by Zidek (1982) in-
troduces a criterion that can be used to evaluate
the relative performance of different methods for
estimating the populations of local areas. McCul-
lagh and Zidek (1987) elaborate this eriterion more
fully. Statistics Canada (1987) provides an overview
and evaluation of the population estimation meth-
ods used in Canada.

Prompted by the growing demand for reliable
small area statistics, several symposia and work-
shops were also organized in recent years, and some
of the proceedings have also been published: Na-
tional Institute on Drug Abuse, Princeton Confer-
ence (see National Institute on Drug Abuse, 1979),
International Symposium on Small Area Statistics,

Ottawa [see Platek et al. (1987) for the invited
papers and Platek and Singh (1986) for the con-
tributed papers presented at the symposium]; Inter-
national Symposium on Small Area Statistics, New
Orleans, 19388, organized by the National Center
for Health Statistics; Workshop on Small Area Es-
timates for Military Personnel Planning, Washing-
ton, D.C,, 1989, organized by the Committee on Na-
tional Statistics; International Scientific Conference
on Small Area Statistics and Survey Designs, War-
saw, Poland, 1992, (see Kalton, Kordos and Platek,
1993). The published proceedings listed above pro-
vide an excellent collection of both theoretical and
application papers.

Reviews by Rao (1986) and Chaudhuri (1992)
cover more recent techniques as well as traditional
methods of small area estimation. Schaible (1992)
provides an excellent account of small area estima-
tors used in U.S. Federal programs (see NTIS, 1993,
for a full report prepared by the Subcommittee on
Small Area Estimation of the Federal Committee on

_ Statistical Methodology, Office of Management and

Budget).

The present article considerably updates earlier
reviews by introducing several recent techniques
and evaluating them in the light of practical consid-
erations. Particularly noteworthy among the newer
methods are the empirical Bayes (EB), hierarchical
Bayes (HB) and empirical best linear unbiased pre-
diction (EBLUP) procedures which have made sig-
nificant impact on small area estimation during the
past decade. Before discussing these methods in the
sequel, it might be useful to mention a few impor-
tant applications of small area estimation methods
as motivating examples.

As our first example, we cite the Federal-State
Cooperative Program (FSCP) initiated by the U.S.
Bureau of the Census in 1967 (see National Re-
search Council, 1980). A basic goal of this pro-
gram was to provide high-quality, consistent series
of county population estimates with comparability
from area to area. Forty-nine states (with the ex-
ception of Massachusetts) currently participate in
this program, and their designated agencies work
together with the Census Bureau under this pro-
gram. In addition to county estimates, several mem-
bers of the FSCP now produce subcounty estimates
as well. The FSCP plays a key role in the Cen-
sus Bureau's post censual estimation program as the
FSCP contacts provide the bureau a variety of data
that can be used in making post censual population
estimates. Considerable methodological research on
small area population estimation is being conducted
in the Census Bureau.

Our second example is taken from Fay and Her-
riot (1979) whose objective was to estimate the per
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capita income (PCI) for §é%eral small places. The
U.S. Census Bureau was required to provide the
Treasury Department with the PCI estimates and

other statistics for state and local governments re- -
ceiving funds under the General Revenue Sharing ]

Program. These statistics were then used by the
Treasury Department to determine allocations to
the local governments within the different states
by dividing the corresponding state allocations, Ini-
tially, the Census Bureau determined the current
estimates of PCI by multiplying the 1970 census
estimates of PCI in 1969 (based on a 20 percent
sample) by ratios of an administrative estimate of
PCI in the current year and & similarly derived es-
timate for 1969. The bureau then confronted the
problem that among the approximately 39,000 lo-
cal government units about 15,000 were for places
having fewer than 500 persons in 1970. The sam-
pling errors in the PCI estimates for such small
places were large: for a place of 500 persons the
coefficient of variation was about 13 percent while
it increased to about 30 percent for a place of 100
persons. Consequently, the Bureau initially decided
to set aside the census estimates for these small
areas and use the corresponding county PCI esti-
mates in their place. This solution proved unsat-
isfactory, however, in that the census estimates of
PCI for a large number of small places differed sig-
nificantly from the corresponding county estimates,
after taking account of the sampling errors. Fay
and Herriot (1979) suggest better estimates based
on the EB method and present empirical evidence
that these have average error smaller than either
the census sample estimates or the county aver-
ages. The proposed estimate for a small place is
a weighted average of the census sample estimate
and a “synthetic” estimate obtained by fitting a lin-
ear regression equation to the sample estimates of
PCI using as independent variables the correspond-
ing county averages, tax-return data for 1969 and
data on housing from the 1970 census. The Fay-
Herriot method was adopted by the Census Bureau
in 1974 to form updated estimates of PCI for small
places. Section 4 discusses the Fay-Herriot model
and similar models for other purposes, all involving
linear regression models with random small area ef-
fects.

Our third example refers to the highly debated
and controversial issue of adjusting for population
undercount in the 1980 U.S. Census. Every tenth
year since 1790 a census has been taken to count
the U.S. population. The census provides the pop-
ulation count for the whole country as well as for
each of the 50 states, 3000 counties and 39,000 civil
divisions. These counts are used by the Congress
for apportioning funds, amounting to about 100 bil-

lion dollars a year during the early 1980s, to the
different state and local governments.

It is now widely recognized that complete cover-
age is impossible. In 1980, vast sums of money and
intellectual resources were expended by the U.S.
Census Bureau on the reduction of non-coverage.
Despite this, there were complaints of undercounts
by sevéral major cities and states for their respec-
tive areas, and indeed New York State filed a law-
suit against the Census Bureau in 1980 demanding
the Bureau to revise its count for that state.

An undercount is the difference between omis-
sions and erroneous inclusions in the census, and
it is typically positive. In New York State’s law
suit against the Census Bureau, E.P. Ericksen and
d.B. Kadane, among other statisticians, appeared as
the plaintiff’s expert witnesses. They proposed us-
ing weighted averages of sample estimates and syn-
thetic regression estimates of the 1980 Census un-
dercount, similar to those of Fay and Herriot (1979)
for PCI, to arrive at the adjusted population counts
of the 50 states and the 16 large cities, including the
State of New York and New York City. The sam-
ple estimates are obtained from a Post Enumera-
tion Survey. Their general philosophy on the role of
adjustment as well as the explicit regression mod-
els used for obtaining the regression estimates are
documented in Ericksen and Kadane (1985) and Er-
icksen, Kadane and Tukey (1989). These authors
also suggest using the regression equation for areas
where no sample data are available. As a histori-
cal aside, we may point out here that the regression
method for improving local area estimates was first
used by Hansen, Hurwitz and Madow (1953, pages
483-486), but its recent popularity owes much to
Ericksen (1974).

While the Ericksen-Kadane proposal was ap-
plauded by many as the first serious attempt to-
wards adjustment of Census undercount, it has also
been vigorously criticized by others (see, e.g., the
discussion of Ericksen and Kadane, 1985). In par-
ticular, Freedman and Navidi (1986, 1992) criticized
them for not validating their model and for not mak-
ing their assumptions explicit. They also raise sev-
eral other technical issues, including the effect of
large biases and large sampling errors in the sam-
ple estimates. Ericksen and Kadane (1987, 1992),
Cressie (1989, 1992), Isaki et al. (1987) and oth-
ers address these difficulties, but clearly further re-
search is needed. Researchers within and outside
the U.S. Census Bureau are currently studying var-
ious models for census undercount and the proper-
ties of the resulting estimators and associated mea-
sures of uncertainty using the EBLUP, EB, HB and
related approaches.

Our fourth example, taken from Battese, Harter
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and Fuller (1988), concerns the estimation of areas
under corn and soybeans for each of 12 counties
in North-Central Iowa using farm-interview data
in conjunction with LANDSAT satellite data. Each
county was divided into area segments, and the ar-
eas under corn and soybeans were ascertained for a
sample of segments by interviewing farm operators;
the number of sample segments in a county ranged
from 1 to 6. Auxiliary data in the form of num-
bers of pixels (a term used for “picture elements”
of about 0.45 hectares) classified as corn and soy-
beans were also obtained for all the area segments,
including the sample segments, in each county us-
ing the LANDSAT satellite readings. Battese, Har-
ter and Fuller (1988) employ a “nested error regres-
sion” model involving random small area effects and
the segment-level data and then obtain the EBLUP
estimates of county areas under corn and soybeans
using the classical components of variance approach
{see Section 5). They also obtain estimates of mean
squared error (MSE) of their estimates by taking
into account the uncertainty involved in estimating
the variance components. Datta and Ghosh (1991)
apply the HB approach te these data and show that
the two approaches give similar results.

Our final example concerns the estimation of
mean wages and salaries of units in a given in-
dustry for each census division in a province using
gross business income as the only auxiliary vari-
able with known population means (see Sirndal and
Hidiroglou, 1989). This example will be used in Sec-
tion 6 to compare and evaluate, under simple ran-
dom sampling, several competing small area esti-
mators discussed in this paper, treating the census
divisions as small areas. We were able to compare
the actual errors of the different small area estima-
tors since the true mean wages and salaries for each
small area are known.

The outline of the paper is as follows. Section 2
gives a brief account of classical demographic meth-
ods for local estimation of population and other char-
acteristics of interest in post-censual years. These
methods use current data from administrative reg-
isters in conjunction with related data from the lat-
est census. Section 3 provides a discussion of tra-
ditional synthetic estimation and related methods
under the design-based framework. Two types of
small area models that include random area-specific
effects are introduced in Section 4. In the first
type, only area specific auxiliary data, related to
parameters of interest, are available. In the sec-
ond type of models, element-specific auxiliary data
are available for the population elements; and the
variable of interest is assumed to be related to these
variables through a nested error regression model.
We present the EBLUP, EB and HB approaches to

small area estimation in Section 5 in the context of
basic models given in Section 4. Both point esti-
mation and measurement of uncertainty associated
with the estimators are studied. Section 6 compares
the performances of several competing small area
estimators using sample data drawn from a syn-
thetic population resembling the business popula-
tion studied by Siarndal and Hidiroglou (1989). In
Section 7, we focus on special problems that may be
encountered in implementing model-based methods
for small area estimation. In particular, we give
a brief account of model diagnostics for the basic
models of Section 4 and of constrained estimation.
Various extensions of the basic models are also men-
tioned in this section. Finally, some concluding re-
marks are made in Section 8.

The scope of our paper is limited to methods of
estimation for small areas; but the development
and provision of small area statistics involves many
other issues, including those related to sample de-
sign and data development, organization and dis-
semination. Brackstone (1987) gives an excellent
account of these issues in the context of Statistics
Canada’s Small Area Data Program. Singh, Gam-
bino and Mantel (1992) highlight the need for de-
veloping an overall strategy that includes planning,
designing and estimation stages in the survey pro-
cess.

2. DEMOGRAPHIC METHODS

As pointed out earlier, demographers have long
been using a variety of methods for local estimation
of population and other characteristics of interest
in post-censual years. Purcell and Kish (1980) cat-
egorize these methods under the general heading
of Symptomatic Accounting Techniques (SAT). Such
techniques utilize current data from administrative
registers in conjunction with related data from the
latest census. The diverse registration data used in
the U.8. include “symptomatic” variables, such as
the numbers of births and deaths, of existing and
new housing units and of school enrollments whose
variations are strongly related to changes in popu-
lation totals or in its components, The SAT methods
studied in the literature include the Vital Rates (VR)
method (Bogue, 1950), the composite method (Bogue
and Duncan, 1959), the Census Component Method
IT (CM-II) (U.S. Bureau of the Census, 1866), and
the Administrative Records (AR) method (Starsinie,
1974), and the Housing Unit (HU) method (Smith
and Lewis, 1980).

The VR method uses only birth and death data,
and these are used as symptomatic variables rather
than as components of population change. First, in
a given year, say ¢, the annual number of births,
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by, and deaths, d;, are determined for a local area.

Next the crude birth and death rates, r;, and ry,, for
that local area are estimated by
rie = riolfy /Ry), roe = rop(Ra, /Ryg),

where ryp and ry respectively denote the crude birth
and death rates for the local area in the latest cen-
sus year (¢ = 0) while Ry,(Ry) and Rp(Rg) respec-
tively denote the crude birth (death) rates in the
current and census years for a larger area contain-

ing the local area. The population P; for the local
area at year ¢ is then estimated by

Py = 3(befry +de/roy).

As pointed out by Marker (1983), the success of the
VR method depends heavily on the validity of the as-
sumption that the ratios r;/r1p and ry, /ryg for the lo-
cal area are approximately equal to the correspond-
ing ratios, Ry,/Ryg and Ry /Rog, for the larger area.
Such an assumption is often questionable, however.
The composite method is an extension of the VR
method that sums independently computed age-sex-
race specific estimates based on births, deaths and
school enrollments (see Zidek, 1982, for details).
The CM-II method takes account of net migration
unlike the previous methods. Denoting the net mi-
gration in the local area during the period since the
last census as m,, an estimate of P, is given by

P[' =Po+b:—d;+m¢,

where Py is the population of the local area in the
census year £ = 0. In the U.8,, the net migration is
further subdivided into military and civilian migra-
tion. The former is readily obtainable from admin-
istrative records while the CM-II estimates civilian
migration from school enroliments. The AR method,
on the other hand, estimates the net migration from
records for individuals as opposed to collect units
like schools (see Zidek, 1982, for details).
The HU method expresses P; as

Pg = (Hg)(PPHg) + GQ‘,

where H, is the number of occupied housing units at
time ¢, PPH, is the average number of persons per
housing unit at time ¢ and GQ, is the number of per-
sons in group quarters at time ¢. The quantities H,,
PPH; and GQ; all need to be estimated. Smith and
Lewis (1980) report different methods of estimating
these quantities.

As pointed out by Marker (1983), most of the es-
timation methods mentioned above can be identi-
fied as special cases of multiple linear regression.

Regression-symptomatic procedures also use multi-
ple linear regression for estimating local area popu-
lations utilizing symptomatic variables as indepen-
dent variables in the regression equation. Two such
procedures are the ratio-correlation method and the
difference-correlation method. Briefly, the former
method is as follows: Let 0,1 and #(> 1) denote two
consecutive census years and the current year, re-
spectively. Also, let P;, and S;;, be the population
and the value of the jth symptomatic variable for the
ith local area (i = 1,...,m) in the year a(= 0,1,8).
Further, let p;, = P;,/%;P;, and Sija = ,;,-0/2,-8;;&
be the corresponding proportions, and write R =
Pi/pios Bi = pu/pun, T; = sn/spo and ry = sy /sy,
Using the data (R],r};,... WTipit=1,...,m) and mul-
tiple regression, we first fit

(2.1) Ri=Py+Birh+...+ Byrl,

where fs are the estimated regression coefficients
that link the change, R/, in the population pro-
portions between the two census years to the cor-
responding changes, ri;» in the proportions for the
symptotmatic variables. Next the changes, R;, in
the post censual period are predicted as

Ri=f+Biry +oo 4 Brg,

using the known changes, ry, in the symptomatic
proportions in the post censual period and the es-
timated regression coefficients. Finally, the current
population counts, P;, are estimated as

Py =Ripy (Z Pit) ;

where the total current count, X;P;, is ascertained
from other sources. In the difference-correlation
method, differences between the proportions at the
two pairs of time points, (0,1) and (1,#), are used
rather than their ratios.

The regression-symptomatic procedures described
above use the regression coefficients, B}, in the last
intercensual period, but significant changes in the
statistical relationship can lead to errors in the cur-
rent postcensal estimates. The sample-regression
method (Ericksen, 1974) avoids this problem by us-
ing sample esfimates of R; to establish the current
regression equation. Suppose sample estimates of
{_?,— are iavailable for £ out of m local areas, say
Ry, ...,R;. Then one fits the regression equation

-~

R,'=50+,61!'51+...+,6pﬁp
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to the data (R;,ry,...,ryp) from the £ sampled ar-
eas, instead of (2.1} arld then obtains the sample-
regression estimators, Ri(eg), for all the areas using
the known symptomatic ratios ri; (i =1,...,mk

Ritreg) = fo + Birit, + .. . + BpTip-

Using 1970 census data and sample data from the
Current Population Survey (CPS), Ericksen (1974)
has shown that the reduction of mean error is slight
compared to the ratio-correlation method but that
of large errors (10% or greater) is more substantial.
The success of Ericksen’s method depends largely on
the size and quality of the samples, the dynamics of
the regression relationships and the nature of the
variables.

3. SYNTHETIC AND RELATED ESTIMATORS

Gonzalez (1973) describes synthetic estimates as
follows: “An unbiased estimate is obtained from
a sample survey for a large area; when this esti-
mate is used to derive estimates for subareas un-
der the assumption that the small areas have the
same characteristics as the large area, we iden-
tify these estimates as synthetic estimates.” The
National Center for Health Statistics (1968) first

used synthetic estimation to calculate state esti-

mates of long and short term physical disabilities
from the National Health Interview Survey data.
This method is traditionally used for small area es-
timation, mainly because of its simplicity, applica-
bility to general sampling designs and potential of
increased accuracy in estimation by borrowing in-
formation from similar small areas. We now give
a brief account of synthetic estimation and related
methods, under the design-based framework.

3.1 Synthetic Estimation

Suppose the population is partitioned into large
domains g for which reliable direct estimators, Y,
of the totals, Y.., can be calculated from the survey
data; the small areas, i, may cut across g so that
Y, = L;Y,, where Y}, is the total for cell (i,g). We
assume that suxiliary information in the form of
totals, X, is also available. A synthetic estimator
of small area total Y; = £,Y,, is then given by

(3.1 Y8 =Y /X7,
&

where X, = XX;; (Purcell and Linacre, 1976;
Ghangurde and Singh, 1977). The estimator (3.1)

has the desirable consistency property that E,—?is
equals the reliable direct estimator ¥’ = Egi:'_’g of

the population total Y, unlike the original estimator
proposed by the National Center for Health Statis-
tics (1968) which uses the ratio X, /2, X, instead of
Xig/X . ~

The direct estimator Y, used in (3.1) is typically
a ratio estimator of the form

Fie (3 o))

where 5., denotes the sample in the large domain g
and we is the sampling weight attached to the £th
element. For this choice, the synthetic estimator

(3.1) reduces to Y5 = X, (¥ 2/X ).
If Y, is approximately design-unbiased, the
design-bias of Y8 is given by

Xy =T XX,

EFS-Yi2Y XugVe/Xy - Yig/Xsp),
g

which is not zero unless Y /X, =Y. /X; forallg. In
the special case where the auxiliary information X,
equals the population count Nj,, the latter condition
is equivalent to assuming that the small area means
Y in each group g equal the overall group mean,
—f.g. Such an assumption is quite strong, and in fact
synthetic estimators for some of the areas can be
heavily biased in the design-based framework.

It follows from (3.1) that the design-variance of ¥5
will be small since it depends only on the variances
and covariances of the reliable estimators Y/,. The
variance of Y7 is readily estimated, but it is more
difficult to estimate the MSE of Y5. Under the as-
sumption cov(?,-,?is) = 0, where f’,- is a direct, un-
biased estimator of Y;, an approximately unbiased
estimator of MSE is given by

(3.2) mse(¥F) = (VF - V)2 - u(¥)).

Here v(Y;) is a design-unbiased estimator of vari-
ance of Y;. The estimators (3.2), however, are very
unstable. Consequently, it is customary to average
these estimators over i to get a stable estimator of
MSE (Gonzalez, 1973), but such a global measure
of uncertainty can be misleading. Note that the as-
sumption cov(Y;, Yf) = 0 may be realistic in practice
since Y? is much less variable than ¥;.

Nichol (1977) proposes to add the synthetic esti-
mate, Y?, as an additional independent variable in
the sample-regression method. This method, called
the combined synthetic-regression method, showed
improvement, in empirical studies, over both the
synthetic and sample-regression estimates.
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Chambers and Feeney (1977) and Purcell and
Kish (1980) propose structure preserving estimation
(SPREE) as a generalization of synthetic estimation
in the sense it makes a fuller use of reliable direct
estimates. SPREE use¢s the well-known method of
iterative proportional fitting of margins in a multi-
way table, where the margins are direct estimates.

3.2 Composite Estimation

A npatural way to balance the potential bias of a
synthetic estimator against the instability of a di-
rect estimator is to take a weighted average of the
two estimators. Such composite estimators may be
written as
38.3) YE =wi¥y + (1 — w)¥a,
where f’h- is a direct estimator, 172, is an indirect es-
timator and w; is a suitably chosen weight (0 <w; <
1). For example, the unbiased estimator Y may | be
chosen as ¥;, and the synthetic estimator Y8 as Y.
Many of the estimators proposed in the hterature
both design-based and model-based, have the form
(38.3). Section 5 gives such estimators under realis-
tic small area models that account for area-specific
effects, In this subsection, we mamly focus on the
determination of weights, w;, in the design-based
framework using ¥y; = ¥; and ¥y, = = Y8,

Optimal weights, wi{opt), may be obtained by
minimising the MSE of ¥¥ with respect to w; as-
suming cov(¥;, ¥$) = 0:

(3.4) w{opt) = MSE (Y5)/[MSE (¥5) + V(¥)1.

The optimal weight (3.4) may be estimated by sub-
stituting the estimator mse (Y¥) given in (3.2) for
the numerator and (?'.S — ¥)? for the denomina-
tor, but the resulting weights can be very unsta-
ble. Schaible (1978) proposes an “average” weight-
ing scheme based on several variables to avercome
this difficulty, noting that the composite estimator
is quite robust to deviations from w;(opt). Another
approach (Purcell and Kish, 1979) uses a common
weight, w, and then minimizes the average MSE,

i.e., m~'E; MSE (YF), with respect to w. This leads
to estimated weight of the form

35  wlopt)=1-3 ¥/ 3 F - T)7.

If the variances of ¥’s are approximately equal,
then we can replace v(Y) by the average ¥

Ziu(f',-)/m in which case (3.5) reduces to James-
Stein type weight:

ilopt) =1 —mp [ 3 (P - T2,

The choice of a common weight, howevgr, is not rea-
sonable if the individual variances, V(Y}), vary con-
siderably. Also, the James-Stein estimator can be
less efficient than the direct estimator, Y;, for some
individual areas if the small areas that are pooled
are not “similar” (C.R. Rao and Shinozaki, 1978).

Simple weights, w;, that depend only on the do-
main counts or the domain totals of a covariate x
have also been proposed in the literature. For ex-
ample, Drew, Singh and Choudhry (1982) propose
the sample size dependent estimator which uses the
weight

1, if N, > 6N,
(3.6) wi{D) = A
N;/(6N;), otherwise,

where N; is the direct, unbiased estimator of the
known domain population size N; and § is subjec-
tively chosen to control the contribution of the syn-
thetic estimator. This estimator with § = 2/3 and
a generalized regression synthetii estimator replac-
ing the ratio synthetic estimator Y? is currently be-
ing used in the Canadian Labour Force Survey to
produce domain estimates. Sirndal and Hidiroglou
(1989) propose an alternative estimator which uses
the weight

{ 1, if N; > N;
(3.7 wi(8) =

(N;/N:}-1, otherwise,

where h is subjectively chosen. They, however, sug-
gest & = 2 as a general-purpose value. Note that the
weights (3.6) and (3.7) are identical if one chooses
§=1and h =2,

To study the nature of the weights w;(D) or w;(S),
let us consider the special case of simple random
sampling of n elements from a population of N ele-
ments. In this case, N; = N(n; /n.) where the randem
variable n; is the sample gize in ith domain. Taking
6 = 1 in (3.6), it now follows that w;(D) = wi(S) = 1
if n; is at least as large as the expected sample size
E(n;) = n(N;/N), that is, the sample size dependent
estimators can fail to borrow strength from related
domains even when E(n,) is not large enough to
make the direct estimator Y; reliable. On the other
hand, when N; < N; the weight w;(D), which equals
w;(S) when h = 2, decreases as n; decreases. As a
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result, more weight is given to the synthetic compo-
nent as n; decreases. Thus, the weights behave well
unlike in the case N; > N;. Another disadvantage is
that the weights do not take account of the size of
between area variation relative to within area vari-
ation for the characteristic of interest, that is, all
characteristics get the same weight irrespective of
their differences with respect to between area ho-
mogeneity.

Holt, Smith and Tomberlin (1979) obtain a best
linear unbiased prediction (BLUP) estimator of Y;
under the following model for the finite population:

Yigt = kg t€igy,

(3.8)
£ g=1,...,G;

=1,...,Nig; i=1,...,m

where yjg is the y-value of the £th unit in the cell
(£,8), pg's are fixed effects and the errors ey, are un-
correlated with zero means and variances o7. Fur-
ther, N;, denotes the number of population elements
in the large domain g that belong to the small area
i. Suppose nj, elements in a sample of size n fall
in cell (i,g), and let 7, and 7., denote the sample
means for (,g) and g, respectively.

The best linear unbiased estimator of p, under
(3.8) is fi; = 7, which in turn leads to the BLUP
estimator of Y; given by

i“’l;8=2?g’
g

where f’g is a composite estimator of the total ¥,
giving the weight w;, = n; /N, to the direct esti-
mator f’,vg = Ny, and the weight 1 — w;, to the
synthetic estimator f’g = N It therefore fol-
lows that the BLUP estimator of Y; tends to the
synthetic estimator Y3 = I N¥, if the sampling
fraction n;; /Ny, is negligible for all g, irrespective of
the size of between area variation relative to within
arez variation. This limitation of model (3.8) can be
avoided by using more realistic models that include
random area-specific effects. We consider such mod-
els in Section 4, and we obtain small area estimators
under these models in Section 5 using a general EB
or a variance components approach as well as a HB
procedure.

4. SMALL AREA MODELS

We now consider small area models that include
random area-specific effects. Two types of mod-
els have been proposed in the literature. In the
first type, only area-specific auxiliary data x; =

(xi1,-..,%;p)" are available and the parameters of in-
terest, 0;, are assumed to be related to x;. In partic-
ular, we assume that

41 G=x"B+uvz, i=1,..m, -

where the z;’s are known positive constants, 3 is the
vector of regression parameters and the v;’s are in-
dependent and identically distributed (iid) random
variables with
E@w)=0, V()=02

In addition, normality of the random effects v; is of-
ten assumed. In the second type of models, element-
specific auxiliary data x;; = (xy, ..., % )7 are avail-
able for the population elements, and the variable of

interest, y;;, is assumed to be related to x;; through
a nested error regression model:

Yij = X8 + Ui + ey,
j= 11--‘1NE;

(4.2) .
t=1,...,m.

Here ¢;; = é;k; and the g;'s are iid random variables,
independent of the v;'s, with
E@;)=0, V(g =0d?,

the ks being known constants and N; the number
of elements in the ith area. In addition, normality
of the v;'s and &;’s is often assumed. The parameters
of inferential interest here are the small area totals
Y; or the means ¥; = Y;/N..

For making inferences about the ;s under model
(4.1), we assume that direct estimators, 9,—, are avail-
able and that
(4.3) bi=8+e;, i=1,...,m
where the g;’s are sampling errors, E(e;]6;) = 0 and
Vie;|8;) = 1;, that is, the estimators 6; are design-
unbiased. It is also customary to assume that the
sampling variances, 1;, are known. These assump-
tions may be quite restrictive in some applications.
For example, in the case of adjustment for census
underenumeration, the estimates §; obtained from
a post-enumeration survey (PES) could be seriously
biased, as noted by Freedman and Navidi (1986).
Simlarly, if 8; is a nonlinear function of the small
area total Y; and the sample size, n; is small, then
8; may be seriously biased even if the direct estima-
tor gf Y; is unbiased. We also assume normality of
the 6€;"s, but this may not be as restrictive as the nor-

mality of the random eﬁ'ectsav,-, due to the central
limit theorem’s effect on the #;'s.
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Combining (4.3) and (4.1),_ we obtain the model

(4.4) b; = X;j ﬁ+vlz,+e,, i=1,....m
which is a special case of the general mixed linear
model. Note that (4.4) involves design-induced ran-
dom variables, e;, as well as model-based random
variables v;,

Turning to the nested error regression model (4.2),
we assume that a sample of size n; is taken from the
ith area and that selection bias is absent; that is, the
sample values also obey the assumed model. The
latter is satisfied under simple random sampling. It
may also be noted that model (4.2) may not be appro-
priate under more complex sampling designs, such
as stratified multistage sampling, since the design
features are not incorporated. However, it is possi-
ble to extend this model to account for such features
(see Section 7).

Writing model (4.2) in matrix form as

¥P=XPBavtf wef,

whereX,PmN xp, yr,ef and If are N; x 1 and
I =(1,...,1)T, we can partition (4.5) as
X; L ]

46 yf= [,y,:] = [x;]ﬂ“" [l,] +[

where the superseript  denotes the nonsampled el-
ements. Now, writing the mean ¥; as

Y =fyi+(1 - f,)51,

with f; = n;/N; and ¥;, 77 denoting the means for
sampled and nonsampled elements respectively, we
may view estimation of ¥; as equivalent to predic-
tion of ¥ given the data {y;} and {X;}.

Various extensions of models (4.4) and (4.6), as
well as models for binary and Poisson data, have
been proposed in the literature. Some of these ex-
tensions will be briefly discussed in Section 7.

In the examples given in the Introduction, the
models considered are special cases of (4.4) or (4.6).
In Example 3, Ericksen and Kadane (1985 1987)
use model (4. 4) with z; = 1 and assume o? to be
known. Here §; is a PES estimate of census under-
count §; = {(T; — C;)/T;}100, where T; is the true
(unknown) count and C; is the census count in the
ith area. Cressie (1992) uses (4.4) with z; = C_l/ 2
where §; is a PES estimate of the adjustment factor
0; = T;/C;. In Example 2, Fay and Herriot (1979)
use (4.4) with z; = 1, whiie &; is a direct estimator
of §; = log P; and P; is the average percapita income
(PCI) in the ith area. Further, x78 = f + fix; with
x; denoting the associated county value of log (PCI)

(4.5)

€;
-

&

(4.7

from the 1970 census. In Example 4, Battese, Har-
ter and Fuller (1988) use model (4.6) with k;

and xT,B Bo + Prxyij + Boxai;, where yy, 21 and 'Czu
respectlvely denote the number of hectares of corn
(or soyheans), the numoer of pixels classified as corn
and the number of pixels classified as soybeans in
the jth area segment of the ith county. A suitable
model for our final example is also a special case

of (4.6) with xT8 = B, + fyxy and ky = x;/%, where
yy and xy; respectively denote the total wages and
salaries and gross business income for the jth firm

in the ith area (census division).

5. EBLUP, EB AND HB APPROACHES

We now present the EBLUP, EB and HB ap-
proaches to small area estimation in the context of
models (4.4) and (4.6). Both point estimation and

measurement of uncertainty associated with the es-
timators will be studied.

5.1 EBLUP (Variance Components) Approach

As noted in Section 4, most small area models
are special cases of a general mixed linear model
involving fixed and random effects, and small area
parameters can be expressed as linear combinations
of these effects. Henderson (1950) derives BLUP
estimators of such parameters in the classical fre-
quentist framework. These estimators minimize the
mean squared error among the class of linear un-
biased estimators and do not depend on normal-
ity, similar to the best linear unhiased estimators
(BLUES) of fixed parameters. Robinson (1991) gives
an excellent account of BLUP theory and examples
of its application.

Under model (4.4), the BLUP estimator of §;
x'B + v;z; mmphﬁes to a weighted average of the
direct estimator f; and the regression-synthetic es-
timator xTB

(5.1) 0 = v + (1 - vl B,

where the superscript H stands for Henderson,

-1
B= [Z x;x! flo2z? + 11),-)]
[Zx\!g /( z + Y ]

is the BLUE estimator of 8 and

(5.2)

w =022k fla22F + ).
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The weight -; measures the uncertainty in mod-
elling the 6;s, namely, o22? relative to the total vari-
ance o? z + ;. Thus, the BLUP estimator takes
proper account of between area variation relative
to the precision of the direct estimator. It is valid
for general sampling designs since we are modelling
only the 8;s and not the individual elements in the
population. It is also design consistent since v; — 1
as the sampling variance 3; — 0.

The mean squared error (MSE) of 6 under model
(4.4) may be written as

My(o?) = E(B2 — 6,)% = g1:(0?) + gaile?),
where

£1i(0?) = o222 yloz? + ) L =

and
.
g2(02) = (1 — % PPx] [Z x;x! flo2z? + ¢;)] X;.

The first term gy;(02) is of order O(1) while the sec-
ond term gs(o2), due to estimating 3, is of order
O(m~1) for large m.

The BLUP estimator (5.1) depends on the vari-
ance component o which is unknown in practical
applications. However, various methods of estimat-
ing variance components in a general mixed linear
model are available, including the method of fitting
constants or moments, maximum likelihood (ML)
and restricted maximum likelihood (REML). Cressie
(1992) gives a succinct account of these methods in
the context of model (4.4). All these methods yield
asymptotically consistent estimators under realistic
regularity oonditions.

Replacing o2 with an asymptotically consistent
estimator &7, we obtain a two-stage estimator, 8,
which is referred to as the empirical BLUP or
EBLUP estimator (Harville, 1991), in analogy with
the EB estimator. It remains unbiased provided (i)
the distributions of v; and e; are both symmetric
(not necessarily normal); (ii) 62 is an even function
of §;s and remains invariant when §; is changed to
b; — x‘ a for all a (Kackar and Harville, 1984). Stan-
dard methods of estimating variance components all
safisfy (ii). We may also point out that the MSE of
the EBLUP estimator appears to be insensitive to
the choice of the estimator 52,

If normality of the errors v; also holds, then we
can write the MSE of@f’ as

(5.3) Myi(o?) = Myi(o?) + E( — g2,

-see Kackar and Harville (1984). It follows from (5.3)

that the MSE of 9"1-” is always larger than that of the

BLUP estimator QH The second term of (5.3) is not
tractable, unlike the first term My;(02); but it can
be approximated for large m (Kackar and Harville.
1984; Prasad and Rao, 1990; Cressie, 1992). We
have, for large m,

(5.4) E@GH — 61) = gyi(o?)
where

£alo}) = Yizf(al2? + ) °V(a?

and the neglected terms in the approximation (5.4)
are of lower order than O(m~1). Here V(62) de-
notes the asymptotic variance of 62; Cressie (1992)
gives the asymptotic variance formulae for ML and
REML estimators It is customary to lgnore the un-
certainty in 67 and use My;(62) = £1/(62) + g2:(62) as
an estimator of MSE of 88, but this procedure could
lead to severe underestlmatmn of the true MSE.

A correct, approxnmately unbiased estimator of
MSE (69) is given by

(6.5) mse(8]!) = g1;(62) + g2:(62) + 285:(62),

(see Prasad and Rao, 1990). The bias of (5.5) is of
lower order than m 1.

Noting that E[Z;(y; — x7 8 /(c2z; + ¥)] = m — p,
a method of moments estimator 62 can be obtained
by solving iteratively

> Gi—x Bz + ) =m—p

i=1

in conjunction with (5.2) and letting 42 = 0 when
no positive solution exists (Fay and Herriot, 1979).
This method does not require normality, unlike the
ML and REML. Alternatively, a simple moment es-
timator is given by 62 = max(52, 0), where

o - 1

&2 ={t—p) I[E Eb’i"‘
(5.6) ——Z%{l—x,T(Zngr)—lx;}J
and 8° = (Tixx!)~! (Zix;8) is the ordmary least

squares estlmator of B. The estimator 5% is unbi-
ased for o2 and under normality,

x‘Tﬁt )2

V(62 = V(62) = 2672 Y (0% + 11 /22)?

_10_
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(see Prasad and Rao, 1990 for the case z;=1),
Lahiri and Rao (1992) show that the estimator of

MSE, (5.5), using the moment estimator (5.6), is also

valid under moderate nonnormality of the random
effects, v;. Thus, inference based on 6% and mse(4¥)
is robust to nonnormality of the random effects.

We next turn to the nested error regression model
(4.6). The BLUP estimator of Y; in this case is ob-
tained as follows: (i} using the model y; = X; + Viln,
+ ¢; for the sampled elements, obtain the BLUP es-
timator of i-'Tﬁ + v;, where IT(: is the mean for non-
sampled elements; (ii) substitute this estimator for
¥ in (4.7). Thus the BLUP estimator of Y; is given
by

6D ¥E =f5i+ £ [X7B+ w6 - 23]
where 3 is the BLUE of 3,
% = 0202 + 0 fw;.) !

with w;. = E;-;"lwu and wy = kEz, and ¥, and x;, are
the weighted means with weights w;; (see Prasad
and Rao, 1990, and Stukel, 1991). The BLUE
B is readily obtained by applying ordinary least
squares to the transformed data {(y; — v:5u.)/k;,
(x5 — 71X ) [k} (see Stukel, 1991, and Fuller and
Battese, 1973). If the sample fraction f; is negligi-

ble, we can write Y# as a composite estimator of
the form

(5.8) TH 2 iy + K; — %u)TB] + (1 - X, B,

where X; is the ith area population mean of x;'s.
It follows from (5.8) that the BLUP estimator is a
weighted average of the “survey regression” estima-
tor Fi, + X; — %,,)73 and the regression synthetic
estimator X/ 3. If k; = 1 for all (ij), then the sur-
vey regression estimator is approximately design-
unbiased for ¥; under simple random sampling even
if n; is small. In the case of general k;'s, it is model-
unbiased conditional on the realized local effect Vi,
unlike the BLUP estimator which is conditionally
biased. N

An empirical BLUP estimator, Y, is obtained
from (5.7) by replacing (02, 0?) with asymptotically
consistent estimators (5%,62%). Further, assuming
normality of the errors an approximately unbiased
estimator of MSE (Y ), similar to (5.5) under model
(4.4), is given by
mse(¥ ) = (1 - £)% [ g1:(62, 6% + gui(6?, 5%
(5.9

+285(62,8%).

Here
£1:(0k,0%) = y(o?w.) + (1 = PNk TR

with k; denoting the vector of ks for nonsampled
units in ith area, and

E2i(0?,0%) = (&] ~ 7%,%, ) TA™UE] — 7,%; )02

with

m nj
A= Z [Z nguxg — 'yiw,'.i,-wi;{;] ;

i=1 Lja1
Further,
g3i(o2,0%) = w ol + % jw; ) [02V(5f) +02V(52)
— 20202052, 52 )] ,

where ¢ov denotes the asymptotic covariance (see
Stukel, 1991 and Prasad and Rao, 1990).

For the ML and REML methods, the asymptotic
covariance matrix of (52, 5%) can be obtained from
general theory (see, e.g., Cressie, 1992). Stukel
(1991) and Fuller and Battese (1973) use the method
of fitting constants which involves two ordinary
least square fittings: first, we calculate the residual
sum of squares, SSE(1), with v, degrees of freedom
by regressing through the origin the y-deviations
kl—; 1(}’;’)"‘5’:’:4,:) on the nonzero x-deviations k;—' l(xg—i,-w)
for these areas with n; > 1. Second, we calculate the
residual sum of squares SSE(2) by regressing y;;/k;;
on x;;/k;. Then &2 = v! SSE(1) and 62 = max(52, 0)
with

&; = MSSE2) - (n — p)a?],
where

n" = Zw;.(l -~ w. XL AT'%,,)
i

with
Al = Z ZwUxeg.
P

The Appendix gives the variances and covariance of
6% and 42,

Again, ignoring the uncertainty in 42 and 42 and
using {ffu(&.?,&z) = £1:(6%,6%) as an estimator of
MSE (Y ) could lead to severe underestimation of
the true MSE.

Limited simulation results (Prasad and Rao,
1990; Datta and Ghosh, 1991 and Hulting and

‘1]—
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Harﬁue, 1991) indicate that the estimator of MSE,

mse (?f" ), given by (5.9), performs well even for
moderate m (as small as 15), provided o2/c? is not
close to zero.

5.2 EB Approach

In the EB approach, the posterior distribution of
the parameters of interest given the data is first
obtained, assuming that the model parameters are
known. The model parameters are estimated from
the marginal distribution of the data, and inferences
are then based on the estimated posterior distribu-
tion. Morris (1983) gives an excellent account of the
EB approach and significant applications.

Under model (4.4) with normal errors, the poste-
rior distribution of 6; given §;, 8 and o2 is normal
with mean 67 and variance gy;(c2) = ~;3%;, where

68 = E8i6;,8,02) = v6; + 1 — 7)xT 8.

Under quadratic loss, 02 is the Bayes estimator
of §;. Noting that the §; ~ N(x?ﬁ, aEz? + ;) are
marginally independent, we can obtain the estima-
tors 62 and B as before using ML, REML or the
method of moments. The estimated posterior distri-
bution is N(6P2, g1;(52)), where 078 ig identical to the
EBLUP estimator §#. A naive EB approach uses 655
as the estimator of 6; and measures its uncertainty
by the estimated posterior variance
(5.10) V(8:16:, B, 82) = g1(8%).
This can lead to severe underestimation of the true
posterior variance V(§;|8) (under a prior distribution
on $ and o2), although éf"’ = E6;6;,8,5%) is ap-
proximately equal to the true posterior mean E(8;|8),
where 8 = (8y,...,0,)7.

The above point is better understood when one
writes

E(6:18) = Ep ;3 (E@:10;, 8,0))
and

V(0:18) = Eg ,2(V(6,(6:, B, 02)]

(5.11) -
+V,9|¢,.zJ [EX6;16:, B, o)),
where E .03 and Vﬁﬂﬁ respectively denote the ex-
pectation and variance with respect to the posterior
distribution of 8 and o2 given the data 8. It follows
from (5.11) that (5.10) is a good approximation only
to the first variance term on the right side of (5.11),
but the second variance term is ignored in the naive
EB approach, that is, it fails to take account of the

_12_

uncertainty about the parameters 8 and 0. Note
that the form of the prior distribution on @ and ¢
is not specified in the EB approach, unlike in the
HB approach (Section 5.3).

Two methods of accounting for the underestima-
tion of true posterior variance have been proposed
in the literature. The first method is based on the
bootstrap (Laird and Louis, 1987), while the second
method uses an asymptotic approximation to the
posterior variance V(6;|8) irrespective of the form
of the prior on B and o2 (Kass and Steffey, 1989).
In the bootstrap method, a large number, B, of in-
dependent bootstrap samples {#}(b),...,85,(b); b =
1,...,B} are first drawn, where 8;(b) is drawn from
the estimated marginal distribution N(x73,52z? +
¥;). Estimates 8°(b) and o*%(b) are then computed
from the bootstrap data {6;(b),x;, i = 1,...,m} for
each b. The EB bootstrap estimator of §; is given by

8 () = E[6;|6* (), B° (), o3 2(B)]

| =

07ER(b),

M= £

| =
v

1

and its uncertainty is measured by

* 1 u * L 2
Vi = g D VIbi6; (6), 8°(b), 0%(b))

(5.12) b=t

1

*H=1

B
S 16 EB(b) - 6;EB ().
b=1

The second term on the right side of {(5.12) accounts
for the underestimation. The EB bootstrap method
looks promising, but further studies on its frequen-
tist performance are needed,

In the Kass-Steffey method, 872 is taken as the es-
timator of 4;, but a positive correction term is added
to the estimated posterior variance V(6;|6;, 3,52) to

- account for the underestimation. This term depends

on the observed information matrix and the par-
tial derivatives of 9;'3 , evaluated at the ML esti-
mates 3 and 2. This method also looks promis-
ing, but its frequentist properties remain to be in-
vestigated. (Steffey and Kass, 1991 conjecture that
the MSE of EB estimator is approximately equal to
their approximation to the posterior variance.) Kass
and Steffey (1989) also give an improved second-
order approximation to the true posterior variance,
V(6;]0).

Turning to the nested error regression model (4.6),
the estimated posterior distribution of Y; given the
data y is normal with mean equal to the EBLUP

YH and variance equal to (1 — f;)%g1;(62,52) which
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is a severe underestimate c¢f the true posterior vari-
ance V(Y;[y). Again, thé bootstrap and Kass-Steffey
methods can be applied to account for the underes-
timation. ;

If one wishes to view the EB approach in the fre-
quentist framework, a prior distribution on 8 and
o2 cannot be entertained. In this case, MSE is a
natural measure of uncertainty and any differences
between the EB and EBLUP approaches disappear
under the normality assumption. It may also be
noted that the EB estimator can be justified without
the normality assumption, similar to the EBLUP,
using the “posterior linearity” property (Ghosh and
Lahiri, 1987; Ericson, 1969).

5.3 HB Approach

In the HB approach, a prior distribution on the
model parameters is specified and the posterior dis-
tribution of the parameters of interest is then ob-
tained. Inferences are based on the posterior distri-
bution; in particular, a parameter of interest is esti-
mated by its posterior mean and its precision is mea-
sured hy its posterior variance. The HB approach
is straightforward and clear-cut but computation-
ally intensive, often involving high dimensional in-
tegration. Recent advances in computational as-
pects of the HB approach, such as Gibbs sampling
(cf. Gelfand and Smith, 1990) and importance sam-
pling, however, seem to overcome the computational
difficulties to a large extent. If the solution involves
only one or two dimensional integration, it is often
easier to perform direct numerical integration than
to use Gibbs sampling or any other Monte Carlo
numerical integration method. Datta and Ghosh
(1991) apply the HB approach to estimation of small
area means, Y;, under general mixed linear models,
and also discuss the computational aspects.

We now illustrate the HB approach under our
models (4.4) and (4.6), assuming noninformative pri-
ors on 3 and the variance components ¢2 and o?.
The HB approach, however, can incorporate prior
information on these parameters through informa-
tive priors.

Under model (4.4), we first obtain the posterior
distribution of 6; given & and o2, by assuming that
B has a uniform distribution over R* to reflect ab-
sence of prior information on 8. Straightforward
calculations show that it is normal with mean equal
to the BLUP estimator # and variance equal to
Mj;(c2), the MSE of 7, that is, E(6;|8,02) = ¢ and
V(8:|0,02) = MSE (8"). Hence, when o2 is assumed
to be known, the HB and BLUP approaches lead to
identical inferences.

To take account of the uncertainty about ¢2, we
need to calculate the posterior distribution of o2

given & under a suitable prior on ¢2. The posterior
mean and variance of §; are then given by

(5.13) E6:|9) = E 3 (61"
and
(514 V(18) = E 3 Ml + VB,

where Eag and Vdﬁ respectively denote the expec-
tation and variance with respect to the posterior
distribution of ¢? given 8. Numerical evaluation of
(5.13) and (5.14) involves one dimensional integra-
tion. Ghosh (1992) obtains the posterior distribu-
tion, f(02|9), assuming that o2 has a uniform dis-
tribution over (0, 00) to reflect the absence of prior
information about ¢, and that ¢2 and 8 are inde-
pendently distributed. It is given by

-4

Fe}18) = @ "5" {1‘[7‘-"’-} > vt
1 i

- exp [ - %Qa(é)].

where
T
Qu(8) = (e)! {E %07 - (Z ‘Yigixi)

() (o) |

We next turn to the nested error regression model
(4.6). We first obtain the posterior distribution of
Y; given y, o2 and o2 by assuming that 8 has
uniform distribution over RP. Straightforward cal-
culations show that it is normal with mean equal
to the BLUP estimator Y;# and variance equal to
MSE (Y ¥) = M (02, 0®), that is, E¥;|y,02,62) =Y ¥
and V(Y;|y,0%,0% = MSE(Y ¥). Hence, when both
o2 and o? are assumed to be known, the HB and
BLUP approaches lead to identical inferences.

To take account of the uncertainty about o2 and
o?, Datta and Ghosh (1991) further assume 3, (¢?)~!
and (62)"! = (¢?)~!A to be independently dis-
tributed with (¢?)~! ~ gamma ((1/2)aqg, (1/2)g0) and
(021X ~ gamma ((1/2)a;,(1/2)g1), where ag > 0,
&0 >0,a; >0,g, 20 and A = 0%/02. Here gamma
(e, ) denotes the gamma random variable with pdf
f(2) = exp(~az)aP28-1 /1), z > 0. Datta and Ghosh
(1991) obtain closed form expressions for E(Y;|y, \)
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and V(Y;|y,\) by showing that f(y*|y, ) is a mul-
tivariate ¢-distribution. They also derive the pos-
* terior distribution of X given y, but it has a com-
plex structure making it necessary to perform _one-
dimensional numerical integration to get E(Y;|y)
and V(Y;|y) using the following relationships:

E(Y;|y) = EA[EX, |y, V]
and
V(Ti|y) = EalV(Tily, V] + ValE(T;ly, ),

where E, and V) respectively denote the expecta-
tion and variance under the posterior distribution
of A given the data y.

Datta and Ghosh (1991) compare the HB, EB and
EBLUP approaches using the data for our exam-
ple 4 and letting ag = a; = 0.005 and go =g = 0
to reflect the absence of prior information on o2
and o%. As one might expect, the three estimates
were close to each other as point predictors of small
area (county) means; the EB estimate was obtained
by replacing A with the method-of-fitting constants
estimate _5\ in E(Y;|y,)). The naive variance esti-
mate, V(¥;|y, ) = (sFB)? associated with the EB es-
_timate E(Y;ly,}), was always found _to be smaller
than the true posterior variance, V(Y;ly) = (s/F)?,
associated with the HB estimate ¥ #8 < E(Y,|y); for
one county, s% was about 10% smaller than s/
Note that the customary naive EB variance esti-
mate, V(¥ily,B,62,52), will lead to much more se-
vere underestimation than V(Y;|y, }) since the lat-
ter takes account of the uncertainty about 3 and

o?. The estimated MSE, mse (Y{) = (s¥)?, associ-

ated with the EBLUP estimate, ?f’ , was found to
be similar to the HB variance estimate. Our exam-
ple in Section 6 also gives similar results. Datta
and Ghosh (1991) have also conducted a simula-
tion study on the frequentist properties of the HB
and EBLUP methods using the Battese, Harter and
Fuller (1988) model. Their findings indicate that the
simulated MSEs for the HB estimator are very close
to those for the EBLUP estimator while the coverage

probabilities based on “{75}3 +(1.96)s8 turn out to be

slightly bigger than those based on %f" + (1.96)sH,

both being close to nominal confidence level of 95%.
Hulting and Harville (1991) obtain similar results in
another simulation study using the Battese, Harter
and Fuller (1988) model and varying the variance
ratio o7 /o®. However, they find the HB method pro-
duces different and more sensible answers than the

EBLUP procedure if the estimate for 02/0? is zero
or close to zero. ot

The HB approach looks promising, but we need to
study its rebustness to choice of prior distributions
on the model parameters.

6. EXAMPLE

Several of the proposed small area estimators are
now compared on the basis of their squared er-
rors and relative errors from the true small area
means Y;. For this purpose, we first constructed
a synthetic population of pairs (y;;,x;) resembling
the business population studied by Sirndal and
Hidiroglou (1989) where the census divisions are
small areas, y; denotes wages and salaries of jth
firm in the ith census division and x; the corre-
sponding gross business income. To generate the
synthetic population, we fitted the nested error re-
gression model (4.6) with x78 = By + fixy and k; =

xili’ ? to & real population to estimate Gy and 3, and

the variance components o2 and o?. The resulting
synthetic model is given by

yi = —2.47+0.20x; +v; + ey,

j=1,..Nyi=1,...m,

6.1 .
o1y y; A N(0,22.14),

iid

eg ~ N(0,0.47x;).

We then used model (6.1) in conjunction with the
population x;;-values to generate a synthetic popula-
tion of pairs (yy, x;) with m = 16 small areas. Table
1 reports the small area population sizes, N;, and
the small area means (Y;,X;) for this synthetic pop-
ulation of size N = 114. A simple random sample of
size n = 38 was drawn from the synthetic popula-
tion. The resulting small area sample sizes, n;, and
sample data (y;,x;) are reported in Table 2. Note
that direct estimators cannot be implemented for
areas 1, 4 and 13 since n; = 0 for these areas. We
have, therefore, confined ourselves to the following
indirect estimators valid for all n; > 0:

(i) Ratio-synthetic estimator: :ffs = (F/0)X;,
where (7, %) are the overall sample means.
(ii) Sample-size dependent estimator:

=sp §?EG=5’E+@/5?X}_G -%), fw, > W,
Yi =

HEEC) 4 (1- ST, ifw, < W,

where Y FEC ig a “survey regression” estima-
tor, (§;,%;) are the sample means, w; = n;/n
and W; = N;/N. This estimator corresponds
to the weight (3.6) with & = 1 or the weight
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TABLE 1
Small area sizes, N;, and means (¥}, X;) for a synthetic population (N = 114)

Area Area

No. N; X; Y; No. N; X; Y;
1 1 137.70 24.22 9 27 97.58 15.56
2 6 100.84 20.43 10 5 76.04 5.88
3 4 47.72 5.48 11 12 90.15 15.20
4 1 45.64 6.55 12 7 86.24 13.40
5 8 108.53 20.55 13 4 164.28 26.06
6 6 65.68 14.85 14 6 164.70 22.44
7 6 116.34 21.46 15 13 83.86 9.40
8 6 92.74 13.40 16 2 134.49 29.49

TaBLE 2

Data from a simple random sample drawn from a synthetic population (n = 38, N = 114)

Area Area
No. ‘ n; xy Yij No. n; xij X
1 0 —_— —_ 9 10  333.24 £7.62
80.91 527
2 3 33,70 5.90 43.65 6.97
47.19 13.22 29.29 —-0.19
75.21 17.44 102.66 15.94
109.34 19.84
3 1 36.43 2.54 30.56 2.57
127.96 24.61
4 0 —_— _—_ 190.34 35.41
52.16 2.54
b 1 28.82 361 10 1 4591 —-6.34
’ i1 2 43.03 8.83
6 2 30.60 11.48 190.12 27.31
129.69 21.45 12 1 47.39 1.70
13 0 —_ —_
7 4 200,60 45.96 14 3 35.66 -0.80
113.92 15.67 40,23 2.75
74.33 8.66 111.23 10.87
53.00 11.99 . 15 6 51.61 —3.20
67.46 12.47
B 3 95.43 11.76 190.97 21.77
35.75 ~0.69 35.11 2.92
39.08 21.46 25.09 —5.46
73.51 7.35
16 1 229.32 53.83
(3.7) with & = 2. We have not included the op- four estimates along with their average relative er-
timal composite estimator due to difficulties Tors
in estimating the optimal weight (3.4). 5
(iii) EBLUP (or EB) estimator Yff under model ARE = 1 Z lest. — Y;|/Y;
(4.6) with xT8 = Bo+f1x; and ky = x:,f % where =
o2 .and o? are estimated by the method of and average squared errors
fitting constants.

(iv) HB estimator ?fm under model (4.6) as in
(iii), using Datta-Ghosh’s diffuse priors with
a;=0,80=0,a,=0.05 and g, = 0.

1 _Ta2
ASE = o Z(est. Y-

i=l

) These values are reported in Table 3. We also cal-
Using the sample data (> xy) and the known small culated the standard error, sf, of EBLUP estima-
area population means X; we computed the above tor using (5.9) and the posterior standard deviation
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TABLE 3
Small area estimates and their (%) average relative errors and average squared roots; standard error (S.E.) of EBLUP and HB
estimators
S.E,
Area
No n; 7 RS SD EBLUP HB EBLUP HB
1 o- ™ 24.22 19.79 19,79 22.16 22.16 7.40 8.29
2 3 20,43 14.90 19.20 2047 20,18 2.20 2.47
3 1 5.48 6.86 5.34 4.85 4.87 2.62 2.60
4 0 6.55 6.56 6.56 4.97 4.94 5.40 5.99
b 1 20.55 15.60 15.52 17.98 17.81 3.10 3.17
6 2 14.85 944 14.39 13.99 13.47 2.07 2.40
7 4 21.46 16.72 21.62 21.31 21.22 1.59 1.94
8 3 13.40 13.33 11.22 11.44 11.58 1.86 2.00
9 10 15.56 14.02 14.27 13.95 13.88 1.14 1.22
10 1 5.88 1093 6.27 3.30 3.96 3.06 3.63
11 2 15.20 12.96 13.29 14.66 14.44 2.61 2.57
12 1 13.40 12.11 11.17 9.97 10.17 3.14 3.14
13 0 26.06 23.61 23.61 27.13 27.13 5.62 6.13
14 3 22,44 23.67 18.98 24.05 2422 3.10 3.48
15 6 9.40 12.05 7.40 B.24 8.43 1.32 1.50
16 1 2049 15.33 40.20 3031 30.24 2.58 2.87
Av, Rel. Error%: 17.85 12.40 11.74 11.23
Av. 8q. Ermor: 22.10 12.38 2.84 2.69

RS=ratio synthetic estimator; SD=sample-size dependent estimator; EBLUP=EBLUP or EB estimator; HB=HB estimator.

(standard error), si'Z, of HB estimator using one-
dimensional numerical integration. These values
are also reported in Table 3.

The following observations on the relative perfor-
mances of small area estimates may be drawn from
Table 3: (1) EBLUP and HB estimators give simi-
lar values over small areas, and their average rel-
ative errors (%) are 11.74 and 11.23 and squared
errors are 2.84 and.2.69 respectively. Asymptoti-
cally (as m — oo), the two estimators are identical,
and the observed differences are due to moderate
m(= 16) and the method of estimating ¢2 and o2
(REML or ML would give slightly different EBLUP
values). (2) Standard error values for EBLUP and
HB estimators are also similar. This is in agree-
ment with the empirical results of Datta and Ghosh
(1991) and Hulting and Harville (1991). (3) Un-
der the criterion of average squared error, EBLUP
and HB estimators perform much better than the
ratio-gsynthetic and sample-size dependent estima-
tors: 2.84 for EBLUP vs. 12.38 for sample-size de-
pendent {SD) and 22.10 for ratio-synthetic (RS). (4)
Under the criterion of average relative error (%),
however, EBLUP and HB estimates are not much
better than the sample-size dependent estimator:
11.74 for EBLUP versus 12.40 for SD. However, both
perform much better than the ratio-synthetic esti-
mator with % ARE = 17.85.

It may be noted that EBLUP, EB and HB estima-
tors are optimal under squared error loss and cease

to be so under relative error loss. This is due to the
fact that the Bayes estimators under relative error
loss can often differ quite significantly from those
under squared error loss. This nonoptimality car-
ries over to EBLUP estimator which usually mim-
ica closely the Bayes estimators. The above obser-
vations could perhaps explain why in our example
the Bayes and EBLUP estimator did not improve
significantly over the SD estimator under relative
erTor.

All in all, our results in Table 3 clearly demon-
strate the advantages of using the EBLUP or HB
estimator and associated standard error when the
assumed random effects model fits the data well.
(Note that we simulated the data from an assumed
model.) It is important, therefore, to examine the
aptness of the assumed model using suitable diag-
nostic tools; Section 7.1 gives a brief account of di-
agnostics for models (4.4) and (4.6).

7. SPECIAL PROBLEMS

In this section we focus on special problems that
may be encountered in implementing model-based
methods for small area estimation. We also discuss
some extensions of our basic models (4.4) and (4.6).

7.1 Model Diagnostics

Model-based methods rely on careful checking of
the assumed models in order to find suitable models
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that fit the data well. Model diagnostics, therefore,
play an important role. However, the literature on
diagnostics for mixed linear models involving ran-
dom effects is not extensive, unlike standard regres-
sion diagnostics. Cnly recently have some useful
diagnostic tools been proposed. See, for example
Battese, Harter and Fuller (1988); Beckman, Nacht-
sheim and Cook (1987); Calvin and Sedransk (1991);
Christensen, Pearson and Johnson (1992); Cressie
(1992); Dempster and Ryan (1985) and Lange and
Ryan (1989).

We first consider the Fay-Herriot type model (4.4),
where only area-specific covariates are used. When
the model is correct, the standardized residuals
ri = (622} + )" Y/® (§; - xTB), i = 1,...,m are
approximately iid N(0,1) for large m where 3 is
the BLUE estimator (5.2) with o? replaced by &2.
We can, therefore, use a ¢ — ¢ plot of r; against
&Y Fy(r;)], where &r) and F,,(r) are the standard
normal and empirical cdfs, respectively. A primary
goal of this plot is to check the normality of the
random effects v; since the sampling errors e; are
approximately normal due to the central limit the-
orem effect. Dempster and Ryan (1985) note that
the above ¢ — ¢ plot may be inefficient for this pur-
pose since it gives equal weight to each observa-
tion, even though the §;8 differ in the amount of
information contained about the v;s, They propose
a weighted g ~ ¢ plot which uses a weighted em-
pirical cdf F3(r) = T;(r — r;)W;/Z;W; in place of
Fm(r), where I(t) = 1 for ¢ > 0 and 0 otherwise, and
W; = (3% + z72y)"! in our case. This plot is more
sensitive to departures from normality than the un-
weighed plot since it assigns greater weight to those
observations for. whxch &2 account for a larger part
of the total variance 62 +z] %y;.

We next turn to the nested errors regression
model (4.6), where the y;'s are correlated for each
i. In this case, the transformed residuals ry =
Bt (yy—AFue) k5! (xyj—%%u,)7 B are approximately
uncorrelated with equal variances ¢2. Therefore,
traditional regression diagnostics may be applied to
the rys, but the transformation can mask the effect
of individual errors e;. On the other hand, stan-
dardized BLUP residuals & l(Vu xﬂf‘] 9;)/é may
be used to study the eﬁ'ect of individual units (&)
on the model, provided they are not strongly corre-
lated. Lange and Ryan (1989) propose methods for
checking the normality assumption on the random
effects v; using the BLUP estimates ;.

Christensen, Pearson and Johnson (1992) develop
case-deletion diagnostics for detecting influential
observations in mixed linear models. Their meth-
ods can be applied to model (4.6) as well as to more
complex small area models.

7.2 Constrained Estimation

Direct survey estimates are often adequate at an
aggregate (or large area) level in terms of precision.
For exemple, Battese, Harter and Fuller (1988), in
their application, find that the direct regression es-
timator of the mean crop area for the 12 counties
together has adequate precision. It is, therefore,
sometimes desirable to modify the individual small
area estimators so that a properly weighted sum of
these estimators equals the model-free, direct esti-
mator at the aggregate level. The modified estima-
tors will be somewhat less efficient than the origi-
nal, optimal estimators, but they avoid possible ag-
gregation bias by ensuring consistency with the di-
rect estimator. One simple way to achieve consis-
tency is to make a ratio adjustment, for example,

the EBLUP estimator ¥# of a total ¥; is modified to
(7.1) Y (mod) = (17,.” /Ziﬂ) ¥,

where Y is a direct estimator of the aggregate
population total ¥ = 1;Y;. Battese, Harter and
Fuller (1988) and Pfeffermann and Barnard (1991)
propose alternative estimators involving estimated
variances and covariances of the optimal estimators
YH

The previous sections focused on simultaneous es-
timation of small area means or totals, but in some
applications the main objective is to produce an en-
semble of parameter estimates whose histogram is
in some sense close to the histogram of small area
parameters. Spjgtvoll and Thomsen (1987), for ex-
ample, were interested in finding how 100 munic-
ipalities in Norway were distributed according to
proportion of persons not in the labor force. They
propose constrained EB estimators whose variation
matched the variation of the small area population
means. By comparing with the actual distribution
in their example, they show that the EB estimators
are biased toward the prior mean compared to the
constrained EB estimators. Constrained estimators
reduce shrinking towards the synthetic component;
for example, in (5.1) the weight 1 — +;, attached to
the synthetic component, is reduced to 1 — 1/ 2. Fol-
lowing Louis (1984), Ghosh (1992) develops a gen-
eral theory of constrained HB estimation. Ghosh
obtains constrained HB estimates by matching the
first two moments of the histogram of the estimates,
and the posterior expectations of the first two mo-
ments of the histogram of the parameters and mini-
mizing, subject to these conditions, the posterior ex-
pectation of the Euclidean distance between the es-
timates and the parameters. Lahiri (1990) obtains
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similar results in the context of small area estima-
tion, assuming “posterior linearity,” thus avoiding
distributional assumptions. Constrained Bayes es-
timates are suitable for subgroup analysis where the
problem is not only to estimate the different compo-
nents of a parameter vector but also to identify the
parameters that are above or below a specified cut-
off point. It should be noted that synthetic estimates
are inappropriate for this purpose.

The optimal estimators (i.e., EBLUP, EB and HB
estimators) may perform well overall but poorly
for particular small areas that are not consistent
with the assumed model on small area effects. To
avoid this problem, Efron and Morris (1972) and Fay
and Harriot (1979) suggest a straightforward com-
promise that consists of restricting the amount by
which the optimal estimator differs from the direct
estimator by some multiple of the standard error
of the direct estimator. For example, a compromise
estimator corresponding to the HB estimator 872,
under a normal prior on the 6;'s, is given by
1B if ; — ey} < 08B < §; 4 cyp}?

$
b; — oy /%, if BHB < §, — cy}/?
b +cy}’?, if 08B > B, 4 cyl/?,

618 =

where ¢ > 0 is a suitable chosen constant, say ¢ = 1.
A limitation of the compromise estimators is that no
reliable measures of their precision are available.

7.3 Extenslons

Various extensions of the basic models (4.4) and
(4.6) have been studied in the literature. Due to
space limitation, we can only mention some of these
extensions.

Datta et al. (1992) extend the aggregate-level
model (4.4) to the case of correlated sampling errors
with a known covariance matrix and develop HB
and EB estimators and associated measures of pre-
cision. In their application to adjustment of census
undercount, the sampling covariance matrix is block
diagonal. Cressie (1990a) introduces spatial depen-
dence among the random effects v;, in the context
of adjustment for census undercount. Fay (1987)
and Ghosh, Datta and Fay (1991) extend model
(4.4) to multiple characteristics and perform hier-
archical and empirical multivariate Bayes analysis,
assuming that the sampling covariance matrix of
8;, the vector of direct estimators for ith area, is
known for each i. In their application to estimation
of median income for four-person families by state,
8; = (6;1,0;2)T with 8;; = population median income
of four-person families in state i and 8,2 = 2 (pop-

i R 4 0ET0
ulation median income of three-person families in

state i) +§ (median income of four-person families
in state i). By taking advantage of the strong corre-
lation between the direct estimators §;; and 6;5, they
were able to obtain improved estimators of 8;;.

Many surveys are repeated in time with partial
replacement of the sample elements, for example,
the monthly U.S. Current Population Survey and
the Canadian Labor Force Survey. For such re-
peated surveys considerable gain in efficiency can
be achieved by borrowing strength across both small
areas and time. Cronkite (1987) developed re-
pression synthetic estimators using pooled cross-
sectional time series data and applied them to es-
timate substate area employment and unemploy-
ment using the Current Population Survey monthly
survey estimates as dependent variable and counts
from the Unemployment Insuranece System and
Census variables as independent variables. Rao and
Yu (1992) propose an extension of model (4.4) to time
series and cross-sectional data. Their model is of the
form

(7.2) 9;¢=9,;¢+85;, t=1,...,T,
(7.3) O = XL, 08+ v; + 1y, i=1,...,m

3

where 8, is the direct estimator for small area i at
time ¢, the e;'s are sampling errors with a known
block diagonal covariance matrix ¥ = block diag
(¥),...,%n), Xi is a vector of covariates and v; 5
N(0,02). Further, the u;’s are assumed to follow
8 first order autoregressive process for each i, i.e.,
Ly = puis 1 +€5, |p| < 1 with e '5 N(0,0?). They ob-
tain the EBLUP and HB estimators and their stan-
dard errors under (7.2) and (7.3).

Models of the form (7.3) have been extensively
used in the econometric literature, ignoring sam-
pling errors (see, e.g., Anderson and Hsiao, 1981;
Judge, 1985, Chapter 13). Choudhry and Rao (1989)
treat the composite error wy; = e; + uy as a first or-
der autforegressive process and obtain the EBLUP
estimator of x73 + v;. A drawback of their method
is that the area by time specific effect u; is ignored
in modelling the 6;'s.

Pfeffermann and Burck (1990) investigate more
general models on the §;'s, but they assume mod-
eling of sampling errors across time. They obtain
EBLUP estimators of small area means using the
Kalman filter. Singh and Mantel (1991) consider
arbitrary covariance structures on sampling errors
and propose recursive composite estimators using
the Kalman filter. These estimators are not opti-
mal but appear to be quite efficient relative to the
corresponding EBLUP estimators.
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Turning to extension of the nested error regres-
sion model (4.6), Fuller and Harter (1987) propose
a multivariate nested error regression model and
obtain EBLUP estimators and associated standard
errors. Stukel (1991) studies two-fold nested error
regression models, and obtains EBLUP estimators

and associated standard errors. Such models are .

appropriate for two-stage sampling within small ar-
eas. Kleffe and Rao (1992) extend meodel (4.6) to
the case of random error variances, ¢?, and obtain
EBLUP estimator and associated standard errors in
the special case of x; = 1.

MacGibbon and Tomberlin (1989) and Malec, Se-
dransk and Tompkins (1991) study logistic regres-
sion models with random area-specific effects. Such
models are appropriate for binary response vari-
ables when element-specific covariates are avail-
able. MacGibbon and Tomberlin (1989) obtain EB
estimators of small area proportions and associated
standard errors, but they ignore the uncertainty
about the prior parameters. Farrell, MacGibbon
and Tomberlin (1992) apply the bootstrap method of
Lzaird and Louis (1987) to account for the underesti-
mation of true posterior variance. Malec, Sedransk
and Tompkins (1991) obtain HB estimators and as-
saciated standard errors using Gibbs sampling and
apply their method to data from the U.S. National
Health Interview Survey to produce estimates of
proportions for individual states.

EB and HB methods have also been used for es-
timating regional mortality and disease rates (see,
e.g., Marshall, 1991). In these applications, the ob-
served small area counts, y;, are assumed to be in-
dependent Poisson with conditional mean Ely;:]9:) =
n;0;, where 68; and n; respectively denote the true
rate and number exposed in the ith area. Further,
the 6;8 are assumed to be random with a specified
distribution (e.g., a gamma distribution with un-
known scale and shape parameters). The EB or HB
estimators are shrinkage estimators in the sense
that the crude rate y;/n; is shrunk towards an over-
all regional rate, ignoring the spatial aspect of the
problem. Marshall (1991) proposes “local” shrink-
age estimators obtained by shrinking the crude rate
towards a local neighbourhood rate. Such estima-
tors are practically appealing and further work on
their statistical properties is desirable.

De Souza (1992) studies joint mortality rates of
two cancer sites over several geographical areas
and obtains asymptotic approximations to posterior
means and variances using the general first order
approximations given by Kass and Steffey (1989).
The bivariate model leads to improved estimators
for each site compared to the estimators based on
univariate models.

8. CONCLUSION

In this article, we have used the term “small area”
to denote any local geographical area that is small or
to describe any small subgroup of a population such

‘as a specific age-sex-race group of people within a

large geographical area, Sample sizes for small ar-
eas are typically small because the overall sample
size in & survey is usually determined to provide de-
sired accuracy at a much higher level of aggregation.
As a result, the usual direct estimators of a small
area mean are unlikely to give acceptable reliabil-
ity; and it becomes necessary to “borrow strength”
from related areas to find more accurate estimators
for a given area or, simultaneously, for several ar-
eas. Considerable attention has been given to such
indirect estimators in recent years.

We have aftempted to provide an appraisal of in-
direct estimation covering both traditional design-
based methods and newer model-based approaches
to small area estimation. Traditional methods cov-
ered here include demographic techniques for lo-
cal estimation of population and other characteris-
tics of interest in post-censal years, and synthetic
and sample size dependent estimation. Model-based
methods studied here include EBLUP, EB and HB
estimation. Two types of basic small area models
that include random area-specific effects are used
to describe these methods. In the first type of mod-
els, only area-specific auxiliary data are available
for the population elements while in the second type
element-specific auxiliary data are available for the
population elements.

We have emphasized the importance of obtaining
accurate measures of uncertainty associated with
the model-based estimators. To this end, an approx-
imately unbiased estimator of MSE of the EBLUP
estimator is given as well as two methods of approx-
imating the true posterior variance, irrespective of
the form of the prior distribution on the model pa-
rameters. The latter approximations may be used
as measures of uncertainty associated with the EB
estimator. In the HB approach, a prior distribution
on the model parameters is specified and the result-
ing posterior variance is used as a measure of uncer-
tainty associated with the HB estimator (posterior
mean). We have also mentioned several applications
of the model-based methods.

We have also considered special problems that
may be encountered in implementing model-based
methods for small area estimation; in particu-
lar, model diagnostics for small area models, con-
strained estimation, “local” shrinkage, spatial mod-
elling and borrowing strength across both small ar-
eas and time. We anticipate quite a bit of future
research on these topics.

Caution should be exercised in using or recom-
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mending indirect estimators since they are based
on implicit or explicit models that connect the small
areas, unlike the direct estimators. As noted by
Schaible (1992): “Indirect estimators should be con-
sidered when better alternatives are not available,
but only with appropriate caution and in conjunc-
tion with substantial research and evaluation ef-
forts, Both producers and users must not forget
that, even after such efforts, indirect estimates may
not be adequate for the intended purpose.” (Also see
Kalton, 1987.)

Finally, we should emphasize the need for devel-
oping an overall program that covers issues relating
to sample design and data evolvement, organization
and dissemination, in addition to those pertaining
to methods of estimation for small areas.

APPENDIX
Variances and Covariance of 42 and &2

Let 52 and 42 be the estimators of o2 and o ob-
tained from the method of fitting constants. Then

V(5% = 27 14

V@3 £ 2072 [ n — p - i) = po*

+Tladh + 20,0702
with
Mo = 3 w2 (1 - w0 XL AT )
+tr(A;1 3 w?_i;,,_.i;‘;)2
and 7

cov (82,62) = —2n vy Hn — p — vydot.

(See Stukel, 1991.)
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cidedly influenced by linear modeling, and we see
that clearly in their paper. There has also been
a tendency to judge the performance of the esti-
mation methods by concentrating on a single, ar-
bitrary small area. In our comment, we shall dis-
cuss what opportunities there might be to expand
the class of statistical models for small area data
and to consider multivariate aspects of small area
estimation.
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MODELING APPROPRIATE SOURCES OF
VARIABILITY

It would appear from the authors’ account that the
full flexibility of hierarchical modeling has not been
applied to small area estimation. Two models in-
corporating random effects, given as equations (4.4)
and (4.5), are presented in their paper. Model (4.4)
is applied when both direct estimators and auxiliary
data are available at the area level while model (4.5)
is partitioned into sampled and unsampled units
within a small area when both response and auxil-
iary data are available for sampling units. In either
case, estimates of the area means or totals are devel-
oped. Rather than focusing on this distinction, we
would like to point out the similarity of these mod-
els in the way that additional response variability
is due to the random nature of model components.
Using y as a vector of response data, both of the
models may be considered hierarchical models of the
general form,

1) [y | pE1=N@,Z) and [u]|B,T1=NXED),

where [y | 6] denotes the probability distribution
of y given the parameter 8; and both £ and I are
positive-definite matrices. Then the marginal distri-
bution of y is immediately (e.g., Lindley and Smith,
1972, Lemma 1)

(2) NXB, X +T),

which also results from writing the models in mixed
linear form (as Ghosh and Rao have chosen to do).
The covariance matrix of the marginal density in-
dicates that these types of models incorporate sam-
pling variability into the distribution of y through
the use of hierarchical structure. (In engineering,
this approach is called state-space modeling.) What
might be considered the systematic model compo-
nent, namely E(y) = X, is generated in the same
way across all areas in model (4.4) or across all sam-
pling units within all areas in model (4.5).

The hierarchical model described by (1) is differ-
ent from the model,

(@) [y |8 Z1=NXB,T) and [8|B,T1=N@®B,D),
for which the marginal density of y becomes

4 NXB, T + XTX7).

Under the hierarchical model (3), variability in the
marginal distribution of y is affected by the values
of the explanatory variables observed.

A third possibility suggests itself in the situation
that unit specific observations are available in each

of several small areas. In this case, one might ap-
ply model (3) to each area using y;, 8;, X; and T; to
denote the dependence on area identification. The
{8} could be taken as independent and identically
distributed random variables with common distribu-
tion across areas; for example, [8; | B,I'] = N(B, ).
Then, with assumed independence (conditional on
{B:, &;}) of the {y;}, the joint marginal of all obser-
vations is available as a product of the marginals
for the m areas. More complex models allowing lack
of independence for either the y; or 4 are conceiv-
able; and, in fact, model (3) is an example of one
such. Under models of this general type, variabil-
ity among observations comes not only from direct
sampling variability but alse from variability in the
{8} that describe the systematic relation between
y and X, That such variability often exists seems a
reasonable suppesition. In the introductory exam-
ple discussed by Ghosh and Rao, of estimating per
capita income (PCI) for local administrative areas
(Fay and Herriot, 1979), a regression of estimated
PCI on county tax returns and housing data is as-
sumed. The systematic relation described by such
a regression may well be different for counties in
different portions of a state or region, as may be
the range and values of the explanatory variables
used. As another example, the small areas where
census undercounts are estimated can each be strat-
ified by race. A separate regression for each race
(Cressie, 1989) results in differences in regression
coefficients. Finally, estimation of the distribution
of regression coefficients may provide valuable infor-
mation to demographers and social scientiste, such
as in the problem of census undercount.

There is a difference in the modeling approach
represented by (1) on the one hand, and (3) and its
extensions on the other, that centers on the sources
of variation in the observed responses. From a
Bayesian viewpoint, this difference involves the or-
der in which prior distributions are placed on model
components. The order in which priors are assigned
is pertinent, particularly in light of the fact that the
data contain less information about parameters as
those parameters move up in the hierarchy (Goel
and DeGroot, 1981). Thus, if we have interest in the
posterior distribution of 8, we are well served by po-
sitioning 4 low in the hierarchy which leads to model
(3} and its extensions rather than to model (1). Un-
der model (1), we do not question the strength of
the linear relation between y and X but are uncer-
tain about the realization that may be observed in
any particular small area, Then, a completely spec-
ified, but often uninformative, prior is placed on g
as much to allow computation of a posterior distri-
bution of 4 as from genuine interest in modeling
either prior or posterior distributions of 4. Under
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model (3) and its extensions, an important source of
uncertainty stems from lack of knowledge about 8 or
{B:}. Ghosii and Rao have not discussed the latter
approach in small area estimation and it would be
interesting &nd useful to see what differences might
result from its application. The extension of model
(3) to area-specific regression equations, in particu-
lar, offers an interesting alternative to the standard
approach in that it raises the possibility of predict-
ing the area-specific regression parameters {5;}.

NONLINEAR MODELS

In an effort to increase the flexibility of small
area models, it is natural to consider ways to extend
the modeling concepts to nonlinear situations. One
approach to nonlinear modeling that encompasses
many situations is that of generalized linear mod-
els (GLMs). Ghosh and Rao mention binary and
Poisson responses in Section 7 of their paper which
fall into this framework. Our earlier discussion of
appropriate sources of variability carries over to the
GLM, and we give several models analogous to the
normal models already presented. While the nota-
tion of GLMs offers flexibility in allowing nonlinear
response functions, there is a concomitant reduc-
tion in flexibility for modeling lack of independence
among responses. Specifically, small area responses
¥i are taken to be univariate random variables, and
conditional independence of these variables (condi-
tional on parameters) is assumed throughout. As-
sume that y; is distributed according to an exponen-
tial family with density (or mass) function,

F(yi | 6;,¢4) = exp{y:6; — b(6:)/al¢;) + c(yi, d0)},

so that E(y;) = b'(6;) = p; and var(y;) = a(¢:)b"(6;) =
a(@:)V{(y;). A GLM is completed by taking a known
function of 4; to be linear in a set of covariates; that
is, gly) = 278 = n; with x; = (i, ..., 2,7, Ona hi-
erarch.lcal extension of this model is to let the nat-
ural parameter 8; be distributed according to some
probability density (or mass) function h(g; | A). The
marginal density (or mass) function of y; then be-
comes

) ply M) = j £5i | 85, dR(6; | N6y,

This is the approach taken by Albert (1988) and
Albert and Pepple (1989) to develop hierarchical
overdispersion models. These authors take h(8; | A)
from a conjugate exponential family for f and then
set up the GLM by linking the expected value of y;
with a linear madel as g(E(y;)) = T 8. This approach
moves the linear model away from y to a pesition
further up in the hierarchy and is analogous to the

approach of model (1) leading exactly to that model
in the case that y is normal with mean 8 = p, and g
the identity mapping.

A different approach, analogous to that used in
model (3), is to start with a fully specified GLM for
the responses and allow 2 to be random. In this
case, we must assign a multivariate distribution for
B. For example, we might take (3 | B,I'] = N(B,I).
The marginal distribution of y; is then

6) plyi|B,T\dy) = [ £(y: | B, 9)h(8 | B, T)dp.

In (6), we use the exponential form for y; and the
systematic specification gl;) = 276, so that 6; =
b~ g~ «T5)] and

f(yi I ﬁ! ¢l)
= exp{[y:b' g~ xTB))

¢ Lot TP |
- blb (g (x; ﬁ))]]/a(¢|)+c(yn ¢l)}

Things simplify substanhally by taking g as the
canonical link function g(-) = '~!(.), giving

flyi | B, )

(8) :
= exp{[yix B — b(x] B)1/aldy) + c(3:, 1)}

Using expression (8), it would be possible, at least
in theory, to complete the integrations in (6). In
practice, the necessary integrations might be best
approached through importance sampling or, in a
Bayesian analysis, the joint posterior distribution
might be calculated directly through Monte Carlo
resampling schemes (e.g., Smith and Roberts, 1993).

As for the analogous normal model (3), the ideas
culminating in equation (8) may be extended di-
rectly to the situation of different regressions among
areas. Unlike the normal situation, however, it
is difficult to conceptualize the way lack of inde-
pendence among responses in different small areas
could be handled.

In all of these hierarchical models, ways to deal
with dispersion parameters and covariance matri-
ces become a major statistical issue. It is always
possible, in theory, to find maximum likelihood esti-
mators. Can small sample properties of maximum
likelihood estimators of dispersion and covariance
parameters be improved, perhaps using some ap-
propriate analogues to REML estimation? Bayesian
modeling of these (nuisance) parameters is another
possibility that is becoming feasible with the recent
developments in Gibbs sampling and Monte Carlo
resampling schemes.
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MULTIVARIATE ASPECTS

Although the problem of small area estimation is
inherently multivariate; there has been a tendency
to look at the performance of estimation procedures
area-by-area. For example, Ghosh and Rao give the
mean-squared error formula (5.5) for the ith small
area. What is actually needed is the m x m mean-
squared error matrix

Q) (mse(i, ) = E{(6 — oX" - )T},

whose diagonal elements are given by (5.5) but
whose off-diagonal elements also have an important
role to play.

Suppose that two small areas i and i’ are com-
bined into a new area that we denote i U i'. Now,
assummg a linear model, GiLir = wo; + w’ﬂp and
8%, =wl + w'fH. Hence, .

mse(i Ui',i Ui') = w? mse(,i) + (w')® mse(, i)
+2ww’ mseli,i’),

which involves both diagonal and off-diagonal ele-
ments of (9). Creasie (1992) develops an approxima-
tion to (9), analogous to the univariate approxima-
tion (5.5).

As another example, a multivariate version of the
Laird and Louis (1987) bootstrap, described by the
authors in Section 5.2, is straightforward to de-
rive. Let & = (fy,...,0n) denote the parameters
of the m small areas. A large number, B, of in-
dependent bootstrap samples {#*() : & = 1,...,B}
are drawn from the estimated marginal distribution
N(XB,$+1); see relation (2). Estimates g*(d), E*(b)
and T"(b) are computed from the bootstrap data
6°(d) for each b. Then the EB bootstrap estimator
and the appropriate estimated posterior variance
matrix are, respectively,

B
0"EB() = (1/B) Y E(8 | 6°(B), B (b), £* (), T (b))

bul

B
=(1/B)) " 6°5B(p),
b=1

B
V* =(1/B) ) "var(d | 8*(b), B°(6), =" (6), " (b))
b=1

B
+(1/(B ~ 1)) "(0*F5(b) — 9°FB(.))
b=l
-(0"FB () — BB ()T,

Given the geographic nature of most small area
estimation problems, the question of how to aggre-
gate is always waiting to be asked; hence, the mul-

tivariate aspects are important. The harder ques-
tion of how to disagregate has been at the core of
much of the debate about the adjustment of census
counts. Cressie (1988) shows that adjustment based
on small area estimation of both the synthetic and
empirical Bayes type offers smaller risk than no ad-
Jjustment even under disaggregation of the small ar-
eas. Crucial to his argument is the appropriateness
of the small area model at the disaggregated level.
Tukey (1983) and Wolter and Causey (1991) reach
similar conclusions to Cressie; however, both arti-
cles make an assumption that when disaggregating
synthetically the true adjustment factor is known at
the level below which disaggregation occurs. There
is no certainty that adjustment will improve counts
at all disaggregated levels; Freedman and Navidi
(1992) give a simple example to demonstrate that
some adjusted counts can be worse than unadjusted
counts.

CONSTRAINED ESTIMATION

In a sense, constrained estimation takes a mul-
tivariate point of view in that interest is focussed
on how well the ensemble of the m small area esti-
mators matches the ensemble of the m estimands.
However, there is an opportunity to make the prob-
lem more explicitly multivariate.

First, we would like to fill in some of the his-
tory of constrained estimation. Tukey (1974, page
143) was aware that the ensemble of estimates
gives poor information about the ensemble proper-
ties of parameters (e.g., one such property might
be the population-weighted proportion of small ar-
eas whose lip-cancer rate is above ,05 per thousand
population years at risk). Louis (1984) addressed
the problem in a normal homoscedastic model by
advocating that optimal (i.e., Bayes) shrinkage esti-
mates be modified so that their ensemble variance
matches the posterior expectation of the parameters’
ensemble variance. Cressie (1986, 1989) coined the
term “constrained Bayes estimation” and general-
ized Louis’ result to heteroscedastic normal models
(for census undercount).

Spjgtvoll and Thomsen (1987) completely ignored
the multivariate aspects of the problem by consid-
ering each area one-at-a-time. Let §; and ; denote
the parameter and an estimator, respectively, for the
ith area. Assume that both parameter and estima-
tor are random, with first two moments finite, and
that E(f; | 6;) = §;. They propose to estimate 6; by

(10) 0 = a;0; + b;,
where a; and b; are solved by specifying that E(f;) =

E() = v and var(f;) = var(g,) = o%. In the discus-
sion to Spjgtvoll and Thomsen’s paper, it is pointed
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out that the solution yields the constrained empiri-
cal Bayes estimates obtained by Cressie (1986), al-
though no Bayes optimality criterion is invoked by
the authors.

The multivariate version of (10) is
(11) G=A8+b,
where A is an m x m matrix and b is an m x 1 vector.
Upon specifying that E(f) = E(§) and var(§) =var(8),
Cressie (1990b, 1992) obtains a multivariate con-
strained estimator. In the notation of (1), § = p,
E®)=Xp, 8=y, E(y | 0) =0, var(y | §) = £, and
var(y) = X +I". Then the multivariate constrained
estimator for model (1), analogous to Spjgtvoll and
Thomsen’s, is given by (11), where

(12) A=TY4ZT ¢ T)"1/2
and
(13) b={I-TY¥Z+ Ty 2)xp.

Notice that § given by (11), (12) and (13) does not
shrink y towards X3 as far as the Bayes estimator
6* does (where A =I(X+I')"! and b = (I - A)X]3).
In an elegant paper, Ghosh (1992) derives a mul-
tivariate constrained Bayes estimator for model (1);

(14) 6% = {a+(1—a)ll’/m}9‘, ’
where

o - 1/2
a = |trace{( - 11'/m)V} (Z(ﬁ; - 9')2) + 1] ,

i=l

6" =E@ |y)={[E+D) }y+I-T(E+ D) 1}xp,

Comment
D. Holt

The paper by Ghosh and Rao is a valuable sum-
mary of recent developments using empirical Bayes
and hierarchical Bayes methods for making small
area estimates. The need for methods which make
provision for local variation while pooling informa-
tion across areas is well established. The review

D. Holt is Professor, Department of Social Statistics,
University of Southampton, Southampton S09 5NH,
United Kingdom.

Vevar(@ |y)=T{I-T(Z + D)~}

The vector 4% has the property that it minimizes
E(EZ,(6; — ;) | y) with respect to ¢ and subject to
conditions that match first and second sample mo-
ments of ¢ with those same moments of 8 conditional
on y. Cressie’s proposal given by (11), (12) and (13)
does not invoke any optimality conditions and so
is likely to be less efficient than Ghosh’s estimator
(14).

Constrained Bayes estimation for more general
models, such as GLMs, is presented by Ghosh
(1992), although from an essentially univariate
point of view. Qur earlier comment, that we do not
have flexible ways to model lack of independence in
nonlinear, nonnormal models, is equally appropriate
here,

Finally, we agree with the authors’ comment
about the importance of small area estimation in
medical geography. A good source for recent re-
search in this area is the May 1993 Supplement
Issue of the journal Medical Care (Proceedings of
the Fourth Biennial Regenstrief Conference, “Meth-
ods for Comparing Patterns of Care,” October 27—
29, 1991). We are working on incorporating spatial
variation and dependence into statistical methods
for these and other small area estimation problems.
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is a thorough appraisal of the methods and their
properties, and the numerical results reinforce ear-
lier results which demonstrate that these methods
are preferable to others such as synthetic estimation
and sample size dependent estimation.

The value of these approaches is not simply in
their ability to provide point estimates for each
small area which, on average, have better precision.
A very important additional factor is that a measure
of precision (MSE) and an estimator of this can be
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developed for each small area separately. This is ex-
tremely important since the precision of each gmall
area estimate will depend upon a number of factors
including the sample size and the distribution of the
area specific covariate values as well as the method
of estimation itself. Indeed, no one method of esti-
mation will be necessarily uniformly superior for all
small areas; and any choice of estimator will result
in a loss of precision for some areas as well as gains
for others.

This point leads to the issue of which measures
of precision are appropriate and how to present nu-
merical results. Ghosh and Rao present a single
point estimate for each small area from a single
sample. It is, in effect, a simulation of size one.
There are advantages to this approach since we can
make direct comparisons between the estimates and
true small area means in each case. I will return to
this point, but first let us consider the numerical
results as presented.

The choice of measures, relative absolute error
and squared error for each small area separately,
are both natural. The first represents a measure
analogous to coefficient of variation and the second
represents MSE. However, it is dangerous to sum-
marize these measures into a single average across
all small areas without paying some attention to the
distribution, In Table 3, for example, one notices
that for all four estimators considered the point es-
timates are less than the true values for 13 of the 16
small areas. Also for each estimator the two mea-
sures are extremely variable across the small areas.
To consider the sample dependent estimator, for ex-
ample, Ghosh and Rao comment that in terms of
average relative error it is similar to EBLUP and
HB but in terms of average squared error it is infe-
rior. However, one may derive from the table that
58% of the ASE for this estimator is derived from
the last small area. For each of the estimators, the
distribution of relative absolute error and squared
error i informative and important.

When one considers the distribution of perfor-
mance measures for each small area, then the
reader cannol separate systematic performance
from random error since the results represent a sim-
ulation of size one. Is it the case, for example, that
in small area 4 the tiny deviations for the ratio syn-
thetic and sample size dependent estimators and the
much larger deviations for EBLUP and HB reflect
a true difference in performance or is this random
fluctuation? Would it not have been better to pro-
duce measures which were based upon a set of re-
peated simulations and which could have included
an average bias, average relative absolute error and
mean squared error for each small area separately?
If this had been done then comparisons could have

been made between estimators for each small area
separately (e.g., comparison of average bias, MSE,
etc.). The distribution of these cemparative mea-
sures and their overall summary could then have
been considered.

This rather simple comment raises a rather fun-
damental issue about the framework for measures of
performance and how numerical simulations should
be designed. The measures of precision (e.g., MSE)
given in Section 5 of Ghosh and Rao’s paper are es-
sentially model based. To some extent assumptions
of normality are required but the authors comment
about the robustness of the methods. However the
properties within the model framework are condi-
tional on the values of the auxiliary variable (x;)
and the sample size achieved in each small area
(n;). Within the predictive framework many ana-
lysts would prefer measures of precision which con-
dition on the achieved sample in this way. Survey
practitioners, on the other hand, and anyone con-
sidering the choice of estimation method in advance
of the survey being analyzed will want to under-
stand the properties of estimators across of range of
circumstances. This creates a dilemma for the theo-
retician who wishes to demonstrate the comparative
properties of alternative estimation methods, using
simulations,

Should Ghosh and Rao:

(a) Fix the sample values of n;, {xy} and a sin-
gle randomly generated value of the small area
effect 1; and carry out repeated simulations to
obtain the properties of each estimator for each
small area?

(b) Fix the sample values of n; and simulate re-
peated sample selections from the population
of each small area?

(¢) Draw repeated random samples from the whole
population without restriction?

The model based MSE given in Section 5 will be
constant under (a) but not under (b) or (c). An ana-
lyst might be more interested in (a) but would want
to be assured that the results did not depend on the
particular choice of the sample configuration. Many
survey practitioners would lean towards (b) or (c).
Perhaps the practical solution is to draw several
samples under (b) or (c); and then for each one se-
lected, carry out repeated simulations under (a). By
presenting the results from one simulation, Ghosh
and Rao effectively avoid all of these issues.

Finally, to turn to a separate issue, the models de-
scribed in Section 4 provide for local differences in
the small srea means by introducing a random ef-
fect, 1;, for each small area. This is a random term
which is the same for all units in the small area
and essentially introduces a random effect for the
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intercept of the linear model. This approach may be
extended and the two model frameworks for equa-
tions (4.1) and (4.2) essentially integrated. Equa-
tion (4.5) may be generalized to allow all (or any)
of the regression coefficients including the intercept
to be random. Furthermore, small area level vari-
ables (z;) may be used to explain some of the be-
tween small area variation:

¥i = x5 +e;,
Bu =z + v

X; is the N; x (p + 1) matrix of unit level covariates
(including an intercept) and z; is the (p+1) xg matrix
of small area level variables. Here v is the vector
of length g of fixed coefficients and y; = (v, ..., ¥p)"
is a vector of length p + 1 of random effects for the
ith small area. In the general form the v; are inde-
pendent between small areas but may have a joint
distribution within each small area with E(y;) = 0
and V(y) = q:

"g ‘:321 Top
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Comment
Wesley L. Schaible and Robert J. Casady

Professors Ghosh and Rao have provided us with
an excellent, comprehensive review of indirect esti-
mation methods which have been suggested for the
preduction of estimates for small areas and other do-
mains, They make a timely contribution by review-
ing and comparing 2 number of new methods which
have recently appeared in the literature as well as
updating previous work on some of the more estab-
lished approaches. Demographic methods, synthetic
and related estimators, empirical Bayes estimators,
hierarchical Bayes estimators and empirical best
linear unbiased prediction methods are theroughly
discussed; evidence that the Bayes and empirical
prediction methods have advantages over the oth-

Wesley L. Schaible is Associate Commissioner and
Robert J. Casady is Senior Mathematical Statis-
tician, Office of I%esearch and Evaluation, Bureau
of Labor Statistics, 2 Massachusetts Avenue N.E.,
Washington, DC 20212.

A special case is when the random effects are un-
correlated so that Q is diagonal.

The use of area level variables, Z;, to help ex-
plain the between area variation should help when
the sample size in a small area is small. Also this
more general model effectively integrates the use
of unit level and area level covariates into a single
model. Holt and Moura (1993) provide point esti-
mates and expressions for MSE following the frame-
work of Prasad and Rao (1990).

The use of extra random effects for the regression
coefficients gives greater flexibility. If the unit level
covariate is a set of dummy variables signifying
group membership, for example, then this approach
will allow a set of correlated and heteroscedastic
random effects for the group means in each small
area rather than a single random effect for all sub-
Jjects.

The introduction of a random effect for the regres-
sion coefficient of a continuous covariate is likely to
have more impact when the individual covariate val-
ues xy; are variable within each small area. Judging
by the values displayed in Table 2 where the values
of x; vary greatly, it is possible that a more general
meodel would provide even greater gains in precision
for the empirical example which Ghosh and Rao con-
sider.

ers is presented. Special problems in the applica-
tion of small area estimation methods are also ad-
dressed. This is an extremely important issue and
additional discussion would have been desirable. In
our comments, we will expand on this subject by
discussing some of the characteristics of indirect es-
timators and some specific practical problems asso-
ciated with their use. In addition, we will attempt
to state in general terms what we believe to be the
fundamental problem associated with the applica-
tion of small area estimation methodology.

Very generally speaking, applications of indirect
estimation methods fall into one of three categories:

L. An indirect estimator is used to estimate a pop-
ulation parameter;

2. an indirect procedure is used to modify a direct
estimator of a population parameter (e.g., a di-
rect estimator that incorporates indirectly es-
timated post-stratification controls or seasonal
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adfustment procedures); and

3. an indirect estimator is used to estimate the
variance of an estimator (e.g, a generalized
variance funetion).

Essentially all of the small area estimation litera-
ture focuses on the first category of applications; the
authors’ review and our comments will do likewise.

The authors refer to the Federal Committee on
Statistical Methodology report, “Indirect Estimators
in Federal Programs.” This report focuses on appli-
cations of indirect estimators and provides an inter-
esting supplement to the paper under discussion.
Some of the characteristics of indirect estimators
and practical problems associated with their appli-
cation, which are summarized in this report, are
mentioned below:

* A domain and time specific model is implicitly
assumed to be true when analyses among do-
mains and over time are conducted. From a
best linear unbiased prediction point of view,
a domain and time specific model leads to a
best linear unbiased direct estimator and also
defines a family of indirect models which al-
low strength to be borrowed from other do-
mains and/or time periods. The direct estima-
tor is unbiased, not only under the domain and
time specific model, but also under each of the
corresponding indirect models. However, the
best linear unbiased indirect estimators associ-
ated with the indirect models are not unbiased
under the original domain end time specific
model. This indirect estimator bias under the
more plausible domain and time specific model
adds to the uneasiness associated with the use
of indirect estimators. It is the primary reason
that indirect estimators are generally consid-
ered only when resources prohibit the use of
direct estimators of adequate reliability.

o The variance of an indirect estimator will be
smaller than that of the corresponding direct
estimator since the indirect estimator not only
incorporates observations of the variable of in-
terest from the domain and time of concern but
also from other domains and/or time periods.

e If the stochastic model underlying an indirect
estimator is a satisfactory representation of re-
ality, then the mean square error of the indi-
rect estimator will likely be smaller than that
of the corresponding direct estimator. However,
many indirect estimators require strong model
assumptions that may not be satisfied in most
applications. If this is the case, then the mean
square error of the indirect estimator may in
fact be larger than the variance of the direct es-
timator. Although estimation of variances and

(more importantly) mean square errors of indi-
rect estimators has received attention, the es-
timation of 8 meaningful measure of error for
a single small area remains a problem.

o Usually the task at hand is to produce esti-
mates for a number of small areas simultane-
ously. There is considerable empirical evidence
suggesting that the size of an error of an in-
direct estimator depends on the relationship of
the area population value and population val-
ues of the other areas from which strength is
borrowed. For example, the error in an indirect
estimate for a small area with a very large pop-
ulation value is likely to be relatively large and
negative, so that the estimate is closer to the
population values of small areas that are not
so large. This characteristic is not displayed to
the same extent by all indirect estimators, and,
as discussed by the authors, constrained esti-
mators have been recently suggested to help
address this problem.

The authors discuss the extremely important
problem of model evaluation and suggest model di-
agnostics to help in the search for models that fit the
data well. Until recently, model diagnostics have
not played a major role in the evaluation of indirect
estimators. Even though this approach is not free
from dangers such as overfitting, especially when
data sets are small, practitioners should make more
use of these tools in estimator evaluation. Most
government survey systems are designed to collect
data and produce estimates periodically, yet the po-
tential for continuing, routine estimator evaluations
has not been fully explored. Problems of overfitting
and small data sets associated with model diagnos-
tics can be at least partially overcome by continuing
evaluations.

We now turn to what we believe to be the gen-
eral fundamental problem associated with the ap-
plication of indirect estimation methods. A truly
plausible model would depend on domain and time
specific parameters, but indirect estimators are as-
sociated with models that contain one or more pa-
rameters that do not vary either over domains, time
or both. In addition, in most practical applications,
the statistician is pragmatically forced to settle for a
stochastic model determined by the ancillary vari-
ables which are available. Models based on such
expediency instill little confidence in either the pro-
ducers or consumers of the estimates, Consequently,
everyone concerned is usually convinced that the es-
timation process produces biased estimates; and, in-
variably, an empirical study is mounted to evaluate
the average mean squared error (or some other ap-
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propriate loss function) across the range of small
areas. Such studies depend on “target values” for
the parameter of interest for each small area, and
generally accepted values of these target values are
rarely, if ever, available (if they were, then there
would be no need for indirect estimates). Thus, eval-
uation studies tend to produce conflicting and am-
biguous results and leave all concerned less than
completely satisfied. A good case in point are the
many problems associated with use of a synthetic es-
timator to adjuste for state population undercounts
in the 1990 census.

Comment
Avinash C. Singh

The review paper of Ghosh and Rao fills a very
important gap by giving a comprehensive and coher-
ent picture of various developments in small area
estimation over the last twenty years. This area is
fascinating for at least three reasons: (1) there is a
great demand for small area statistics by both gov-
ernment and private sectors for purposes of plan-
ning and policy analysis; (2) the small area problem
provides a fertile ground for theoretical and applied
research; and (3) the problem has attracted the at-
tention of both Bayesians and frequentists because
both approaches arise naturally and often seem to
give similar results.

The main theme of my discussion is to compare
and contrast the Bayesian and frequentist solutions
to the problem of small area estimation. Why is
it that for this problem the two approaches to sta-
tistical inference seem to converge in many practi-
cal examples including the one considered by Ghosh
and Rao; that is, they provide similar results for
both point estimates and the corresponding mea-
sures of uncertainty? Can we make some general
statements about the similarity between the two ap-
proaches for small area estimation? How do their
frequentist properties compare? Questions about
the frequentist properties of some empirical Bayes
methods are also raised by Ghosh and Rao in Sec-
tion 5.2. Although the task of making exact compar-

Avinash C. Singh is Senior Methodologist, Methods
Development and Analysis Section, Social Survey
Methods Division, Statistics Canada, Ottawa KI1A
OT6. He is also Adjunct Research Professor, Depart-
ment of Mathematics and Statisties, Carleton Uni-
versity, Ottawa KIS 5B6.

Having emphasized some of the problems asso-
ciated with applications of indirect estimators, we
should also mention the obvious fact that these es-
timation methods provide practitioners with many
useful tools. Challenging research issues concerning
the estifation of meaningful measures of error re-
main; without such measures, we must be cautious
regarding inferences and actions based on these es-
timators. Nevertheless, in many applications, these
methods provide us with an attractive alternative to
the use of high variance direct estimates or, in some
cases, no estimates at all.

isons is a difficult one, it is possible to make asymp-
totic comparisons for large m—the number of small
areas. This will be the focus of my discussion.

1. MODEL REFORMULATION

As discussed in the review paper of Robinson
(1991), understanding of procedures for estimating
fixed and random effects helps to bridge the ap-
parent gulf between the Bayesian and frequentist
schools of thought. The present discussion will also
strengthen this point. First, it will be convenient
for our purposes to reformulate the model with fixed
and random effects for small area estimation. Now,
the general mixed linear model is given by

) y=XB+Zv+e

where y is the n-vector of element-level data; X and
Z are known matrices of orders n x p and n x m, re-
spectively, with rank (X) = p; 8 is a p-vector of fixed
effects; v is a m-vector of small area specific random
effects and € is a n-vector of random errors inde-
pendent of v such that v ~ WS (0,G), e ~ WS (0, R).
The abbreviation “WS” stands for “wide sense”; that
is, the distribution is specified only up to the first
two moments. The covariance matrices G and R
depend on some parameters A called variance com-
ponents. For the reformulation of (1), we will re-
gard the fixed effects 5 as random with mean O
and covariance matrix o3I where 03 — oco. Thus,
the limiting prior distribution of # is uniform (im-
proper) which is commonly assumed in the Bayesian
approach. The reformulation is useful for computa-
tional convenience as well as for making connections
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between the Bayesian and frequentist approaches.
Writing a = (87,»T) and F = (X,2), we have the
reformulated model,

£2) y=Fa+e, a=a+¢,

where o® = 0, ¢ = (B7,vT)" ~ WS(O,I),D) =
diag(c,G) and £ is independent of ¢.

The problem of interest is estimation (or predic-
tion) of LT« for some (p+m)-vector L. In the context
of small areas, the vector L can be chosen appro-
priately to denote the superpopulation mean 6; of
each small area i. Note that if for each small area,
population size is large and the sampling fraction is
negligible, the estimation of finite population means
is essentially equivalent to that of superpopulation
means.

An important feature of the above reformulation
[equation (2)] is that for known variance compo-
nents A, it provides a common model for both fre-
quentist and Bayesian approaches. Not only does it
provide a common starting point, both approaches
yield identical estimates and the corresponding
measures of uncertainty. Since the parameter of in-
terest is inherently random in nature due to finite-
ness of the small area population, it is very appeal-
ing to have a unified formulation which gives identi-
cal results. However, for unknown ), there is some
divergence between the two approaches (see Section
3). First, we will consider the case of known ).

2. CASE OF KNOWN VARIANCE
COMPONENTS (A KNOWN)

In this section, we show that when distributions
are specified only in a wide sense, the Gauss-Markov
theory (in the frequentist case) and the linear Bayes
theory (in the Bayesian case) coincide. Under the
frequentist approach for model (1), the objective is
to find the best linear unbiased predictor (BLUP)
of a = (8T,v7)T; that is, & = ag + Ay is chosen to
minimize

(3) Elag + Ay — alf?

over all vectors ag and matrix A of appropriate di-
mensions. Here 8 is regarded as fixed and the ex-
pectation in (3) is with respect to y and v. On the
other hand, under the Bayesian approach, the objec-
tive is to find the (unbiased) linear Bayes estimate
(LBE) of a as the prior information is specified in
a wide sense only. The fixed effect § is assumed to
have a uniform, improper prior distribution. Thus,
the LBE & = Aa® + B(y — Fa®) is obtained by mini-
mizing

4) E||Ac® + B(y — Fa® — of?

over all matrices A and B of appropriate dimensions.
Note that the chosen form of the linear estimator &
is intuitive and is equivalent to the general form of
a linear estimator under the condition of unbiased-
ness. Also note that the expectation in (4) is with
respect to y, v and also 3. Now, the BLUP & and its
MSE coincide with the LBE & and its Bayes risk,
respectively. This follows from the results of Sallas
and Harville (1981) and Zehnwirth (1988). Sallas
and Harville establish that the BLUP & and its MSE
can be obtained respectively as limits of BLUPs and
MSEs of o defined by the reformulated model (2) as
crg — 0o. Zehnwirth (in the context of Kalman fil-
tering) shows that the BLUP of o under model (2)
is indeed the LBE and that MSE of BLUP equals
the Bayes risk of LBE. Therefore, the LBE & which
is the limit of LBEs as 05 — oo coincides with the
BLUP & and the same is true of their measures of
uncertainty. The corresponding expressions can be
obtained as

(5) 6=a= ”xlim [e® + DYFT(FTYFT + Ry — Fa®)]

AR
and

MSE(&) = Bayes Risk (&)
(6) = lim [7- TFT(FTIFT + R)™'FIT.

-

See Sallas and Harville (1981) for closed form ex-
pressions of the above limits. An expedient way to
get the expressions in (5) and (6) is to think of them
respectively as the posterior mean and variance of
a under normality. Notice that under normality, the
posterior mean is linear and the posterior variance
does not depend on y. Therefore, the usual Bayes
theory under normality also coincides with the lin-
ear Bayes theory when the prior distribution is spec-
ified in a wide sense only.

3. CASE OF UNKNOWN VARIANCE
COMPONENTS (A UNKNOWN)

When A is unknown, it turns out that there is
some divergence between the two approaches. It
is possible to get some understanding of the dif-
ferences under normality. Therefore, we assume
that the errors v and ¢ are normal. Also, the num-
ber of small areas, m, will be assumed to be large
for making asymptotic comparisons. For simplic-
ity, we will illustrate results for the one-fold nested
error regression model given by equation (4.2) of
Ghosh and Rao, except that we will set by = 1.
Here X = (A, A2)7 = (02,6%)T and suppose for il-
lustration that only A, is unknowm. The parame-
ters of interest are small area means §;,i=1,...m
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where 6, = J_(,-Tﬁ + . If A is known and v; denotes
A(dqg + /\znl-_l)", then the BLUP §; and LBE & (or
BUP and BE respectively under normality) are ob-
tained from (5) as

%) Bi=6=X f+w(5 —7TH)

and from (6); we have, after noting that under nor-
mality the Bayes risk is same as the posterior vari-
ance (PV),

MSE(4;) = PV(6;)
= Arden Ay + Agn; )t
+X; — 3@ XV X - i)
8) = g1{A1) + g2(A1), say.

Now, an EBLUP is defined by substituting a consis-
tent estimator ; for ); in §; (denote by 8;(y, A;)) and
an EB estimator is defined by substituting 4, in §;,
to be denoted by 6:(y, A1). For facilitating compari-
son of the two approaches, we will assume that A;
is REML. Clearly, the two estimators so defined are
identical. The “naive” approximations to the corre-
sponding measures of uncertainty obtained from (8)
by substituting A; for A; are also, of course, identi-
cal. The qualifying term “naive” is used to indicate
that the extra variability due to estimation of A, is
not accounted for,

In the expression (8), the terms g1(A;) and g2(A;)
are respectively O(1) and O(n~!). For finding the
order of the extra term due to estimation of A, first
consider the frequentist approach. It can be shown
by the §-method, similar to equation (5.3) of Ghosh
and Rag, that

(9) mse(@,(y, A1) = g1(A1) + g20A1) + g3(Ay) + o(m™Y),

where gg(A;) = ;2220\ +22n 1) V(A) and V(A is
the asymptotic variance of ;. Notice that the term
g3()1) is also O(m~—1). Substituting A, in (9), we get
an estimate of MSE; but the order of bias is O(m™1),
not o(m~!). This is so because the bias in gy(4;)
is OGn~1), although biases in go(};) and gs(},) are
o(m™1). To correct this, the approximation of Prasad
and Rao (1990, PR for short) can be used under the
assumption E(X; — \;) =o(m™1) as

mse(f(y, A1) = [g1(30) + 253 + g2(3)) + g3(3y)

(10) . . R

= g1(A1) +g2(A1) + 2g2(A).
For the Bayesian approach, corrections for under-
estimation of PV(8;) due to estimation of }; can
be made by using results of the asymptotic (as
m — oo) hierarchical Bayes (HB) theory (cf. Kass

_3‘2_

and Steffey, 1989). This technique is justified be-
cause the HB estimator (i.e., the posterior mean of
8;) is asymptotically equivalent to the EB estimator
8:(y, Ap), the order of error in the approximation be-
ing O(m~1). Also, the HB technique is convenient in
practice because, for large m, the posterior distribu-
tion of A; is independent of the choice of prior. Now,
analogous to (5.11) of Ghosh and Rao [note that 3 is
absent in the expectation operator because variabil-
ity due to § is already accounted for in the PV(8;)],
we have the posterior variance

(lla) V(e‘bl) = E,\,[yV(H:‘ b’, Al) + V,\ILVE(BEL‘Y, 1\1)
(11b) = Ejp(g100) + 2200)) + Vi By, M)

It follows from Kass and Steffey (1989) that

(12a)E,, |, (g1(A1) + g2(N)) = 2103 + 2203 + O(m™Y),
Va3, M) = 20V +om ™)

(12b)

= g3(A) +olm™), say,
where d(};) is (8/8A10i(y, M)l .5,- Note that if 3
were known, then g3(3;) simplifies to A2n;%(}; +
don; D43, —xT BYV(},) which is more directly com-
parable to the term gg(1,) of the frequentist approx-
imation (9). Incidentally, for 8 known, i; will be the
usual! ML and not REML.

In the approximation (12a), the neglected term is
O(m~1). The accuracy of this approximation can be
improved by including terms of order O(m~!). By
using the §-method, Singh, Stukel and Pfeffermann
(1993) obtain an improved Bayesian approximation
as

Vibily) = [g1(3) +g220:) +sg3" (3]

(13) X
+g§(,\1)+o(m"1),

where g;‘(;\I) is A%n;z(il +,\2ni_1)'2(f\1 — A —ga(Ay).
The estimator ); denotes an improved (over ;) ap-
proximation to the posterior mean E(\;|y) in the

sense that EQly) = Ay + olm=1) whereas E(\ly) =

A1 +0(m™1). Note that A;, can be obtained from the
results of Tierney, Kass and Kadane (1989). The ex-
pression in (13) is a simplified version of the second
order approximation of Kass and Steffey; denote it
by KS-II*. Their first order (denote by KS-I) does not
include the term g3*(3;). The approximation KS-II*
seems more convenient for term by term comparison
with the PR approximation (10) than the original
second order KS-II (not considered here).

From (7), (8), (10) and (13), one can compare the
Bayesian and frequentist approaches for large m
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when X is unknown. The point estimates are iden-
tical or very similar depending on the choice of i;
for each approach but the associated measures of
uncertainty could be quite different. In addition to
the above modifications which rely on the é-method,
Singh, Stukel and Pfeffermann (1993) also obtain
& modification of the asymptotic Bayes method of
Hamilton (1986) which uses Monte Carlo integra-
tion (MCI) for evaluating the two terms of the pos-
terior variance given by (11) thus avoiding computa-
tion of partial derivatives. The MCI simply entails
generating A;-values from the approximate poste-
rior distribution of A; which is given by N(},, V(3,)).
1t is not difficult to show that the order of the ne-
glected terms in the Hamilton (H) approximation is
O(m™1) and not o(m-1). However, if the _posterior
distribution of ), is approximated by N(};, V(1,)),
then the modified Hamilton (MH) approximation is
of the desired order. Singh, Stukel and Pfeffer-
mann (1993) report results of a Monte Carlo study
on the frequentist properties of various approxima-
tions. Empirically, it is found that the KS-I approx-
imation is biased downward, but KS-II* adds a pos-
itive term (similar to PR) and tends to be conser-
vative. The behaviour of the MH approximation is
quite similar to KS-II*, but H tends to be more bi-
ased downward than KS-I. The performance of the
PR approximation is found to be best overall with
respect to the frequentist properties, although other
approximations provide useful alternatives. In par-
ticular, Bayesian approximations KS-II* and MH
have the distinct advantage of having a dual inter-
pretation in both frequentist and Bayesian contexts.

Comment
Elizabeth A. Stasny

Ghosh and Rao are to be congratulated for their
timely paper reviewing methods for small-area esti-
mation. My main complaint is that a paper such as
this was not available five years ago when I began
working on small-area estimation problems. I par-
ticularly enjoyed the historical perspective offered
in the demographics methods section of the paper;
I was sorry that section was so short since much of
the material described in that section is not readily

Elizabeth A. Stasny is Associate Prafessor, Depari-
ment of Statistics, 1958 Neil Avenue, 148D Cockins
Hall, Ohio State University, Columbus, Ohio 43210.

It may be noted that if m is quite large, then there
will be hardly any difference between various ap-
proximations.

4. REMARKS

It is evident from the paper of Ghosh and Rao
that great advances have been made in the field of
small area estimation by both Bayesians and fre-
quentists. It is also evident from the present dis-
cussion that there may be quite a bit of agreement
between the two approaches. However, these ad-
vanced tools are not in widespread use, especially by
statistical agencies conducting large scale complex
surveys who face probably the greatest demand for
small area statistics. Perhaps, the reason for this is
the practitioner’s skepticism in modelling complex
survey data. Indeed, for complex surveys there is
very little by way of model validation and more so
for element-level modelling because of possible se-
lection bias (see section 4 of Ghosh and Rao and a
recent review by Pfeffermann (1993)). There is no
doubt that the area of model validation for complex
survey data needs more research. This is also rec-
ognized by Ghosh and Rao and I would like to em-
phasize by noting that further work in this direction
will be a very valuable contribution.
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available to statisticians outside of the government
agencies.

As the authors noted, there is a growing demand
for emall-area estimates and a corresponding inter-
est in research on procedures for producing such
estimates. The widely publicized debate on adjust-
ing the U.S. population census for the undercount to
produce adjusted counts for states and large cities
has made many researchers focus on small area es-
timation problems related to the population census.
There are, however, other long-standing small-area
estimation programs. One of these is the USDA’s
program of county-level estimation of crop and live-
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stock production. Because most of my work on
small-area estimation has been on the problem of
producing county-level estimates of crop production,
I would like to add a brief discussion of this program
to Ghosh and Rao’s list of examples. A more detailed
description of the National Agricultural Statistics
Service (NASS) county estimation program is pro-
vided by Iwig (1993).

The USDA’s NASS, in cooperation with state gov-
ernments, has published county crop estimates for
every state in every year since 1917. These esti-
mates include acreage, yield and production data for
many crops, both common (for example, wheat and
corn) and rare (for example, rice and peanuts). For
example, the 1990 Annual Report of the Ohio Agri-
cultural Statistics Service includes county-level esti-
mates of number of farms, acres in farms; acres har-
vested, yield (in bushels per acre), and production
(in bushels) for a number of common crops includ-
ing corn, soybeans, wheat, oats, hay and, for coun-
ties producing them, for less common crops such as
tomatoes and sugar beets; and grain storage capac-
ity.

Funding for extra data collection and the produc-
tion of county-level estimates is provided by individ-
ual states; the USDA’s national Quarterly Agricul-
tural Surveys (QAS) are used to produce estimates
only at the state and national level. Although a
recent effort has been made to standardize county
estimation programs (see the task force report by
Bass et al., 1989), the sampling and estimation pro-
cedures used in county estimation programs differ
from state to state. The task force recommenda-
tions for sampling procedures are that each state
stratify farms by commeodity or group of commodi-
ties and by size of operation, choose samples from
within these strata, combine these samples into a
single sample and delete farms that were already
sampled for the QAS (since information for those
farms is already available). Within this basic sam-
pling plan, however, individual states have a consid-
erable amount of flexibility. States often choose to
sample a high proportion of large farms and of farms
that responded to the survey in the previous year
(possibly 100% in both cases). In addition, since
information on farm operations is required to main-
tain the control data for the sampling frame, states
often sample all farms that have not responded to a
survey within a certain number of years.

Typically, 15,000 to 20,000 farms are sampled
within a state; the response rate is about 30% with
no follow-up of nonrespondents. There is no attempt
to obtain sample-based weights for the responding
cases since they may have been sampled from one or
more commodity lists or from the QAS. Thus, small-
area estimation methods that require known sam-

pling weights cannot be used.

Methods of county estimation of ¢rop production
vary from state to state. A typical procedure in-
volves initially obtaining the direct county estimates
from the data available within each county (Note
that there may be few or no observations within a
county for a certain crop, particularly if the county
is largely urban or if the crop is relatively rare.)
Then one or more experts review the estimates and
adjust them in light of their personal knowledge of
the farms in the sample, weather conditions, pro-
duction in the county in previous years and other
factors. The experts then look at the implications of
the adjustments on the estimated production for the
state. These last two steps may be repeated several
times until the experts are satisfied with the esti-
mates,

The county estimation program provides an exam-
ple of the constrained estimation problem described
in Section 7.2 of Ghosh and Rao’s paper. The QAS
data, along with other information such as historical
data, administrative data (for example, on land set-
aside programs) and weather data, is used by NASS
to set the state-level estimates of crop production.
Because the QAS is a large, probability sample of
farms and the estimates produced using QAS data
are believed to be fairly accurate, county estimates
are typically constrained to agree with NASS’s state
estimates. Stasny, Goel and Rumsey (1991) consider
the problem of how to scale wheat production esti-
mates to agree with the NASS state total. They
consider 1) a constant scaling factor, 2) sealing fac-
tors that minimize the sum of squared differences
between initial and adjusted estimates and 3) scal-
ing factors that minimize the sum of squared rel-
ative differences between initial and adjusted esti-
mates. They found that Method 2) was clearly infe-
tior {o the other methods, but there was not much
difference between estimates scaled using Methods
1) and 3).

While county estimates obtained following a pro-
cedure such as that described above have been used
successfully for many years, there are many prob-
lems with the procedure. The lack of a formal sta-
tistical methodology makes it impossible to repeat
the estimation process, to compare estimates from
different states and to obtain estimates of the uncer-
tainty. On the other hand, the willingness to base
county estimates on expert opinion and on data from
many sources (current surveys, historieal data and
administrative records) makes this an exciting area
for continued research.

One area for research is in using information from
other crops and from neighboring counties or states
to improve the county estimates. Pawel and Fesco
(1988) explored historical estimates of crop yields
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and found that, as expected, there are high positive
correlations between yields in neighboring states
and between agronomically related crops that are
grown in overlapping regions. This research, how-
ever, was conducted at the state rather than county
level; it is still an open question whether similar
relations will be useful at the county level.
Another area for research is in using the histori-
cal data on crop production in current county esti-
mates. A natural way to use this information would
be in a Bayesian setting such as the hierarchical
Bayes estimates described in Section 5.3 of Ghosh
and Rao’s paper. Indeed, it seems surprising that
a noninformative prior would be used in small-area
estimation problems involving census data or data
from continuing surveys; there is certainly a wealth
of information on which to base an informative prior.
Finally, I would like to mention a success story

Comment

ib Thomsen

It takes talent and hard work to provide an
overview and evaluation of a rapidly evolving sub-
ject like small area estimation. In my opinion the
authors have succeeded in doing this, and I want
to congratulate them with a very useful review. In
many statistical offices, substantial methodological
work is being done to find suitable estimators for
small areas. People involved in such work will be
grateful to Ghosh and Rao for their present contri-
bution.

Below I shall communicate some experiences
gained when developing and using small area es-
timates within Statistics Norway. But first a few
comments to the example given in Section 6 of the
paper. In this example a synthetic population is con-
structed by fitting a nested error regression model
to a business population. For this synthetic popu-
lation, the EBLUB (or EB) and the HB estimators
are shown to produce small area estimators which
are superior to the ratio-synthetic and & sample-
size dependent estimator. As pointed out by the
authors, this demonstrates the advantages of us-
ing EBLUB or HB estimators when the model fits
the data well. A question remains concerning the
robustness of these estimators as compared to the

Ib Thomsen is Director of Research, Statistics Nor-
way, and Professor of Statistics, University of Oslo,
F.B. 8131 Dep, 0033 Oslo, Norway.

in research in the production of county estimates,
Ghosh and Rao describe the experimental research
of Battese, Harter and Fuller (1988) on county esti-
mation of crop production using satellite data. This
year, for the first time, Arkansas.is using satellite
data to aid in production of crop acreage estimates
as part of their county estjmates program. Over the
next few years, other states are expected to begin
using such data to aid in the production of their
crop acreage estimates,
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simpler sample-gize dependent estimator. A column
in Table 3 showing the small area means of the real
business population could have thrown some light
on the robustness of the estimators studied in the
paper.

At Statistice Norway, small area estimators have
been used for some years now (Laake, 1978). In
the beginning we concentrated on synthetic estima-
tors, but more recently composite estimators are be-
ing used. In what follows some of our experiences
concerning the feasibility of the EB estimator are
presented.

I shall look at a very simple situation in which
6, (i = 1,...,T) is a small area parameter, and
X;, (i=1,...,T) is a direct estimator such that

EX;|on=6; i=1,...,T.

The parameters 8,6y, ...,8r are considered realiza-
tions of a random variable with unknown distribu-
tion G(-). The mean g and variance ¢? are assumed
to be known or that estimates are available. For
a set of small areas, unbiased estimators X;,.... Xr
are available with conditional distributions equal to
the binomial.

When G(9) is unknown, empirical Bayes esti-
mators generally employ (X,,...,X7) to estimate
E@\X,,...,Xr). However, for many distribution,
E(6|X;,...,X7)cannot be consistently estimated un-
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less other assumptions are made. Therefore, one
often restricts attention to linear estimators, ¢ =
aX +b. Within this class, the estimator which min-
imizes the mean squared error depends only upon
the first two prior moments, both of whieh can of-
ten be estimated with (X,...,X7). The optimal lin-
ear estimator is often the same as the unrestricted
Bayes estimator derived under a conjugate prior
(Rao, 1976). When the conditional distribution of X;
is binomial, the optimal linear estimator is a com-
posite estimator,

=WX;+(1— W,

where

W;=0o2{(1 - 1/n)o? + p(1 - W}t

and n; denotes the number of observations from
small area i (Spjgtvoll and Thomsen, 1987). With
these weights we have that

T T
W E {(1/1‘) > lei- p)z} = oI W < ot

i=1 i=1

It follows that the variation between the small
area estimators can be much smaller than the prior
known variance. I have often observed this phe-
nomenon in practice; a consequence is usually that
the range of the small area estimators is much
smaller than expected. (Expectations are based on
information outside the sample.) In practice the pa-
rameter o? is often of great importance in itself. As

Rejoinder
M. Ghosh and J. N. K. Rao

We thank the discussants for their insightful com-
ments as well as for providing various extensions of
the models and the methods reviewed in our paper.
These expert commentaries have brought out many
diverse issues and concerns related to small area es-
timation, particularly on the model-based methods.

Several discussants emphasised the importance of
model diagnostics in the context of small area esti-
mation. We agree wholeheartedly with the discus-
sants on this issue. As noted in Section 7.1 of our ar-
ticle, the literature on this topic is not extensive, un-
like standard regression diagnostics. We hope that
future research on small area estimation will give

said in the introduction, “Increasing concern with
issues of distribution, equity and disparity (Brack-
stone, 1987)." To me, this means that the disparity
between the small area is important and should be
easily read from a table presenting small-area es-
timators. As mentioned by Ghosh and Rao, there
are composite estimators which have the same ex-
pectation and variance as the prior distribution, one
of which is simply to use {W;}/? instead of W; as
weights in the composite estimator.

When area-specific auxiliary information is avail-
able and a model like (4.1) in the paper is used, I
have often chserved a similar “overshrinkage” as un-
der the simpler model above. An inequality similar
to (1) can be found under model (4.1), but now o2 de-
notes the variance of the residual in equation (4.1).
Again {W;}}/2 can be used to avoid “overshrinkage”.

Due to the often observed “overshrinkage” and the
fact that our models seem too complicated to many
of our users of small-area estimators, I have often
found it very difficult to make them use the optimal
estimators presented in the paper. On the other
hand, a number of sample-size dependent estima-
tors are more easily “sold” to the user and therefore
more used up until now.

In Statistics Norway a number of administrative
registers are available and used to construct small-
area estimators. In many cases it is natural to use
nested error regression models. However, progress
in this area has been slow due to difficulties concern-
ing model diagnotics for linear models involving ran-
dom effects. I therefore find Section 7.1 particularly
interesting and shall use this section intensively in
our further hunt for feasible small area estimates.

greater emphasis to model validation issues.

A second concern expressed by some of the discus-
sants is that the composite estimators typically used
for small area estimation may “overshrink” towards
a synthetic estimator. Thomsen, in his discussion,
suggests that a larger weight should be given to
the direct estimator. We agree with his suggestion
but are hesitant to recommend blanket use of the
weight W‘.U 2, instead of W;, to the direct estimator
(0 < W; < 1). We believe that the weight should
be determined adaptively meeting certain optimal-
ity criteria as in Louis (1984) and Ghosh (1992).
Cressie and Kaiser, in their discussion, address con-
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strained estimation at some length, emphasising
the multivariate aspects of the problem but not in-
voking any optimality conditions.

Cressie and Kaiser as well as Holt suggest possi-
ble extensions of the two basic small area models
(4.4) and (4.6) given in Section 4. Their general
hierarchical modeling ensures that the variability
among observation vectors for the different small ar-
eas is attributable not only to sampling variability
but also to variability among the associated regres-
sion coefficients, §;. Holt's model looks promising
since it allows the j3; to depend on area level aux-
iliary variables, Z;, thus effectively integrating the
use of unit level and area level covariates into a sin-
gle model.

A slightly less general version of Cressie and
Kaiser's hierarchical model (3) appears in Datta and
Ghosh (1991) where a full hierarchical Bayes anal-
ysis is presented. In an earlier version of our paper
{Ghosh and Rao, 1991) we have in fact considered
the general model of Datta and Ghosh but decided
to abandon it in the revision in favour of the sim-
pler, but widely used, models (4.4) and (4.5) in order
to keep the discussion more accessible to a general
readership and the notation simple,

We now turn to some of the specific points raised
by the discussants.

CRESSIE AND KAISER

Cressie and Kaiser stress the importance of non-
linear modelling which is especially needed for bi-
nary and count data. Qur Section 7.3 gives a brief
account of logistic regression and log-linear models
suitable for such data. These can be viewed as spe-
cial cases of generalized linear models (McCullagh
and Nelder, 1989). Zerger and Karim (1991) have
studied generalized linear models with random ef-
fects using a Gibbs sampling approach. Their re-
sults may be applicable to small area estimation.
In a 1993 Ph.D. thesis at the University of Florida,
Kannan Natarajan implemented an extensive hi-
erarchical Bayes analysis under generalized linear
models in the context of two-stage sampling within
small areas. He used the Metropolis within Gibbs
sampling algorithm {cf. Miiller, 1991). His method
is easier to implement than the procedure of Zeger
and Karim (1991) due to logconcavity of certain pas-
terior distributions which permits the use of adap-
tive rejection sampling of Gilks and Wild (1992).

We agree with Cressie and Kaiser regarding the
multivariate aspects of small area estimation. Our
analysis can be extended to produce approximately
unbiased estimators of the off-diagonal elements of
the mean-square error matrix as well as to obtain
exact posterior covariances of small area means. Re-

porting these quantities in tables, however, is usu-
ally cumbersome since there will be () such quan-
tities when the number of small areas is m. Never-
theless, these estimates should be available, as they
are needed in calculating measures of uncertainty at
higher levels of aggregation.

HOLT

The example in Section 6 of our paper, based on
a simple random sample drawn from a synthetic
population, was introduced mainly to illustrate the
proposed methods. We agree with Holt that a sim-
ulation study based on repeated samples from the
population is better for comparing the relative per-
formances of estimators. Such a simulation study
was, in fact, conducted by Choudhry and Rao (1993)
using both real and synthetic populations. Com-
parisons were made under customary repeated sam-
pling (approach (¢) of Holt) as well as under a con-
ditional framework by fixing the values of samples
sizes, n; (approach (b) of Holt).

We also agree with Holt that one should be cau-
tious in comparing relative performances based on
summary measures, obtained by averaging across
all small areas, without paying some attention to
the distribution. Such summary measures, how-
ever, may be quite useful in an overall comparison
of competing estimators, especially when there is no
clear-cut winner when the small areas are judged
individually.

SCHAIBLE AND CASADY

Despite many success stories of model-based in-
direct estimators, there are some practical prob-
lems associated with their use. We are grateful to
Schaible and Casady for providing a comprehensive
list of such problems.

We agree with them that models based on expedi-
ency “instill little confidence in either the producers
or consumers of the estimators.” Model diagnostics
should be an integral part of any model-based pro-
cedure in order to alleviate this problem.

SINGH

We are glad that Singh has investigated under
a simplified model some frequentist properties of
the Kass-Steffey first-order approximation (KS-I) to
the posterior variance and Hamilton's (1986) Monte
Carlo integration method (H) of evaluating the pos-
terior variance. He also suggests modifications, KS-
II* and MH, to improve their accuracy; in particular
his formula (13) which is a simplified version of the
second-order approximation of Kass and Steffey. It
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would be useful to provide similar improved approx-
imations for more complex models and to study their
frequentist properties.

We agree with Singh that the Bayesian approxi-
‘mations KS-1I* and MH have the advantage of dual
interpretation in both frequentist and Bayesian con-
texts, although Prasad Rao's estimator of MSE per-
formed better with respect to frequentist properties.

In the case of known variance components, Singh
has demonstrated that the linear Bayes estimate
(LBE) and its Bayes risk coincide with the BLUP
estimator and its MSE. A similar result appears in
Datta et al. (1992).

STASNY

Stasny provides an excellent account of USDA’s
program of country-level estimation of crop and live-
stock production, She also raises the important is-
sue that the current small area estimation methods
need to be modified in the presence of nonresponse.
In this regard, Stasny’s (1991) important work on
hierarchical models for the probabilities of a survey
classification and nonresponse might be relevant.
We might add that the role of measurement error in
small domain estimation is also important. Eltinge
and Harter (1990) have studied the effect of mea-
surement errors and propose some modified small
area estimators.

We agree with Stasny that in some small area
estimation problems historical data can be used to
construct informative priors and obtain the result-
ing hierarchical Bayes estimates.

We are also delighted to learn about the success
story that Arkansas is currently using satellite data,
in conjunction with USDA survey data, for the pro-
duction of county estimates based on small area
models.

THOMSEN

We agree with Thomsen's observation that many
users find the small area models too complicated
and are bothered by the overshrinkage problem as-
sociated with the optimal estimators. Further work
on model diagnostics and constrained estimation
and the development of suitable packages to imple-
ment both model selection and estimation should
alleviate this problem.

Thomsen also remarks that sample-size depen-
dent estimators, such as those based on the weights
(3.6), are more easily “sold” to the user. Such es-
timators are clearly useful and computationally at-
tractive, but their limitations should also be noted.
As mentioned in Section 3 of our paper, sample-size
dependent estimators can fail to borrow strength

from related domains even when the expected do-
main sample size, E(n;), is not large enough to
make the direct estimators reliable. These esti-
mators were originally designed to handle domains
for which E(n;) is large enough to make the direct
estimators satisfy reliability requirements (Drew,
Singh and Choudhry, 1982). Another disadvan-
tage of sample-size dependent estimators, noted in
Section 3, is that the weights do not take account
of the size of between area variation relative to
within area variation for the characteristic of inter-
est, unlike model-based estimators. Choudhry and
Rao (1993) demonstrate that large efficiency gains
can be achieved by using the EBLUP estimators
when the between area variation is small relative
to within area variation.
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Generalized Linear Models for Small-Area Estimation

Malay GHOSH, Kannan NATARAJAN, T. W. F. STROUD, and Bradiey P. CARLIN

Bayesian methods have been used quite extensively in recent years for solving small-area estimation problems. Particularly effective
in this regard has been the hierarchical or empirical Bayes approach, which is especially suitable for a systematic connection of
local areas through models. However, the development to date has mainly concentrated on continuous-valued variates. Often
the survey data are discrete or categorical, so that hierarchical or empirical Bayes techniques designed for continuous variates
are inappropriate. This article considers hierarchical Bayes gencralized linear models for a unified analysis of both discrete and
continuous data. A general theorem is provided that ensures the propriety of posteriors under diffuse priors. This result is then
extended to the case of spatial generalized lincar models. The hierarchical Bayes procedure is implemented via Markov chain
Monte Carlo integration Lechniques. Two examples (one featuring spatial correlation structure) are given to illustrate the general

method.

KEY WORDS: Hierarchical model; Markov chain Monte Carlo; Posterior propriety; Spatial statistics.

1. INTRODUCTION

Bayesian methods have been used quite extensively in re-
cent years for solving small-area estimation problems. Par-
ticularly effective in this regard have been the hierarchical
Bayes (HB) and empirical Bayes (EB) approaches, which
are especially suitable for a systematic connection of local
areas through the model. For the general theory as well as
specific applications of the HB and EB methods for small-
area estimation, relevant work includes that of Datta and
Ghosh (1991), Fay and Herriot (1979), Ghosh and Lahiri
(1987, 1992), Ghosh and Meeden (1986), Prasad and Rao
(1990), and Stroud (1987, 1991), among others. Ghosh and
Rao (1994) have provided a review of many of these results.

But development to date has concentrated mainly on
continuous-valued variates. Often the survey data are dis-
crete or categorical, for which the HB or EB analysis suit-
able for continuous variates is not appropriate. Recently,
some work has begun to appear on the Bayesian analy-
sis of binary survey data. Dempster and Tomberlin (1980},
Farrell, MacGibbon, and Tomberlin (1997) and MacGib-
bon and Tomberlin {1989) have obtained small area esti-
mates of proportions via EB techniques, whereas Malec,
Sedransk, and Tompkins (1993) found the predictive distri-
butions of a linear combination of binary random variables
using a HB technique. Stroud (1991} also developed a gen-
eral HB methodology for binary data, and Nandram and Se-
dransk (1993) suggested Bayesian predictive inference for
binary data from a two-stage cluster sample. Subsequently,
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Stroud (1994) provided a comprehensive treatment of bi-
nary survey data encompassing simple random, stratified,
cluster, and two-stage sampling, as well as two-stage sam-
pling within strata.

The binary models constitute a subclass of generalized
linear models -that are often used for a unified analysis
of both discrete and continuous data. Section 2 presents
a general account of how HB generalized linear models
(GLMs) can be used for small-area estimation. The section
begins with a general description of HB GLM:s. Sufficient
conditions are provided for the joint posterior distribution
of the parameters of interest to be proper under the pro-
posed hicrarchical models. The Bayes procedure is imple-
mented via Markov chain Monte Carlo (MCMC) integration
techniques—in particular, using the Gibbs sampler. Next,
this section contains a discussion of some general multi-
category models that may be handled indirectly by meth-
ods of this section, even though in their natural multino-
mial formulation they do not fit into the univariate GLM
framework. We also point out that in contrast to the work
of Stroud {1994), who used the Brooks (1984) method for
approximating numerical integrals, we use exact MCMC
integration techniques. We conclude this section by consid-
ering some spatial GLMs and find sufficient conditions that
ensure the propriety of the posterior. We also point out a
common HB model for this situation that actually leads to
an improper posterior.

Section 3 contains the analysis of two real datasets. The
first consists of responses to the question “Have you expe-
rienced any negative impact of exposure to health hazards
in the workplace?” based on a 1991 sample of all persons in
15 geographic regions of Canada (Statistics Canada 1992).
For each region, workers were classified by age (<40 or
>40) and sex {male or female). The responses were classi-
fied into four categories: (1} yes, (2) no, (3) not exposed, and
(4) not applicable or not stated. The objective is to estimate
the proportion of workers in each of the four categories for
every one of the 15 x 2 x 2 = 60 groups cross-classified by
15 geographic regions and the 4 demographic categories.
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Our HB cell probability estimates “borrow strength” from
the other cells, resulting in smaller standard errors. More-
over, shrinkage toward the grand mean is done adaptively,
in that the estimates reported for cells with larger sample
sizes are shrunk less than those based on smalter sample
sizes.

The second dataset relates to cancer mortality rates for
the 115 counties in Missouri during 1972-1981. In each
county, deaths due to lung cancer are broken down inte four
age groups (45-54, 55-64, 65-74, and 75+) and two sex
groups (male and female). The number of deaths in some
of these county subgroups during this period is very small
({occasionally 0), so there is a clear need to borrow strength
across cells. Tsutakawa (1988) and Tsutakawa, Shoop, and
Marienfeld (1985) considered EB estimation of the rates for
the given age groups, and Tsutakawa (1985) compared these
EB rates with approximate Bayes rates, but these works
dealt only with the male population and did not use prior
distributions that could account for spatial similarity of the
underlying rates in neighboring counties. We consider sev-
eral possible models using such a spatial smoothing prior
and including age, sex, and age—sex interaction as covari-
ates. After selecting an appropriate model somewhat in-
formally using a log-likelihood score statistic, we map the
raw and fitted relative risks for a particular age-sex group
as well as the fitted risks obtained in the earlier analysis by
Tsutakawa, allowing the benefits of our spatial model to be
assessed visually. We also investigate the adequacy of our
model using a variety of model checks facilitated by our
MCMC implementation.

2. HIERARCHICAL MODELS

Suppose that there are m strata or local areas. Let Y; de-
note the minimal sufficient statistic (discrete or continuous)
for the kth unit within the ith stratum (k = 1,...,n;:¢ =
1....,m). The Y}, are assumed to be conditionally inde-
pendent with pdf

J(yinlbix, dik) = exploz (winbix — P{0:ik)) + pyix; dix)]
(N

(k=1,...,n;;i = 1,...,m). Such a model is referred to

as a generalized linear model (McCullagh and Nelder 1989,

P- 28). The density (1) is parameterized with respect to the

canonical parameters 6;; and the scale parameters ¢ (>

0). It is assumed that the scale parameters ¢;) are known.
The natural parameters ;;, are first modeled as

R(Oa) = x58 + u; + e (k=1,...,n5i=1,...,m),

(2)

where h is a strictly increasing function, the x;x (p x 1)
are known design vectors, 8 (p x 1) is the unknown regres-
sion coefficient, u; are the random effects, and e, are the
errors. It is assumed that the w; and the e are mutually

independent with ; i N(0,o2) and £y i N(0,a2).

Journal of the American Statistical Assogciation, March 1998

It is possible to represent (1) and (2) in a hierarchical
framework. Let R, = 0% and R = ¢~ 2. Also, let § = (8,,,
so 5 Qs wivalmts s i P )° G0 U = Ty o o dk)T.

Then the hierarchical model is given by the following:

() Conditional on 8,8,u, R, = 7y, and R = r Y. are
independent with densities given in (1).
(I) Conditional on @,u, R, = ry, and R = 7, h(f;) ™3
N(xLB +u;,r1).
(I) Conditional on B,R, = ry, and R = ru; 23
N(0,771).

To complete the hierarchical model, we assign the fol-
lowing prior to 8, R, = ry, and R =r:

(IV) B,R, =y, and R = r are mutually independent with
B ~ uniform(R?),(p < m),R, ~ gamma(ia, 3b),
and R ~ gamma(3c, 1d).

(A random variable Z ~ gamma(a, 8) if Z has pdf f(z) x
exp(—az)2P =115 o) (2).)

We are interested in finding the joint posterior distribu-
tion of the g(8;:)’s, where g is a strictly increasing function,
givcn the data Yy = (yll) s Yings e - Ymilg e e 1ymnm)T-
and in particular in finding the posterior means, variances,
and covariances of these parameters. In typical applications,
9(0ix) = ¥’ (Bik) = E(Yi |0 )-

First, however, one must ensure that the joint posterior
distribution of the 6;c's given y is proper. A theorem is
proved to this effect. In what follows, the support of 6
is the open interval (8;;,8::), where the lower endpoint of
the interval can be —oo, the upper endpoint can be +o0, or
both.

Theorem 1. Assume thata > 0,¢> 0,3, ni—p+d > 0,
and m + b > 0. Then, if

B '
f exp{[Oyix — PO /¢ W (@) dd <00 (3)

—ik

for all g and ¢ (> 0), the joint posterior pdf of the 6;.'s
given y is proper.

The proof of this theorem is deferred 1o the Appendix.

Two special cases are of interest. In the first case,
Yik|6ik ~ bin (n;, exp{fic)/(1 + exp(6:x))). Suppose now
that h is the identity function; that is, the link is canonical.
Also, let g(e,—k) = w’(ﬂgk)/mk = exp(Gik)/{l + exp(e,-k)].
Then, writing p;x = exp(fic)/[1 + exp(fir)], (3) reduces to
fol pf,:"—l(l — pax )" VT dp, < o0, which requires 1 <
Vit < (ng — 1); that is, excludes cases of all failures or all
successes. In the second case, Y;i|6; ~ Poisson(exp(6ix))-
Then, if & is the canonical link, and g{8;) = ¥'(0) =
exp(f:), (3) reduces to [° (%! exp(~Cik) dlix < oo,
which holds for yix = 1,2,... It may be noted, however,
that although our general theorem needs this postivity re-
striction on the y; in the binomial and Poisson examples,
recent work by Maiti (1997) showed that 5°, yix > 0 for
each ¢ is sufficient for posterior propriety.

Direct evaluation of the joint posterior distribution of the
g(8:)’s given y involves high-dimensional numerical inte-
gration and is not computationally feasible. Instead, we use
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the Gibbs sampler (Gelfand and Smith 1990; Geman and
Geman 1984). Its implementation requires generating sam-
ples from certain conditional posterior distributions. Write
h(8) = (h{f11), o h(frny )y - B (B), (Gmnm))
and X = (Xn, cooy Xings ooy Xmls ...,X,nnm)T Assume
that X7X is nonsmguiar The necessary conditional distri-
butions based on (I)<IV) are

(@ B8, w 7, y ~ N(XTX)"{(XTh(6) — ¥, w X,
xix), rH(XTX)1);
(i) w6, B, ru 7. y W N((rns + ru) "t T (h(6s) —

xEB), (rni + 1) 70);

(iii) RIB B, u, ry, y ~ gamma(i(c + ¥, T, (h(0ix) —
x5B - w)?), g(d'f' oy

(iv) R.|6, B, w, 7, y ~ gamma(i(a + T, u?
31 n)); and

(V) gikIB'l U:’”u.",yiﬂf W(Giklﬂ, U, Ty, 7, Y)

3+

o exp [(yikgik — $(0:x)) b3
X8 — ui)?| ' (B).

It is easy to generate samples from the normal and
gamma- distributions given in (iHiv). On the other hand,
as evidenced in (v), the posterior distribution of 8;; given
B,u,r,,r, and y is known only up to 2 multiplicative con-
stant, and accordingly one must use a general accept-reject
algorithm to generate samples from this pdf. In the spe-
cial case where h is the identity function, the task becomes
much simpler due to the following lemma, which estab-
lishes log-concavity of m(6:|83,u,r, 7, ¥). In such cases
one can use the adaptive rejection sampling scheme of Gilks
and Wild (1992).

~ 5 (A(6) -

Lemma 1. When h(z) = z for all 2 logm(8:i|B,u, T,
rv,¥) is a concave functlon of fi.

Proof. Straightforward.

Inference about @ will be based on (i){v). Indeed,
based on (v), one can also find E(8;ly), V(6ix|y), and
cov(Oik, Bk |y) (5, k) # (¢,k") based on Monte Carlo in-
tegration techniques and formulas for iterated conditional
expectations and variances.

The model considered in (I){IV) resembles closely the
ones considered by Breslow and Clayton (1993), MacGib-
bon and Tomberlin (1989), and Zeger and Karim (1991).
However, this model is not strictly contained in the one
considered by Zeger and Karim (1991). Zeger and Karim
considered h(6:x) = x7, 8 + u;, where h(-) is a strictly in-
creasing function, but this formulation does not include pos-
sible error in misspecifying this model. Indeed, according to
our model, the uncertainty in specifying the model is broken
up into two components: the effect of the local area and the
error component. This allows the possibility of accounting
for overdmpcrsmn by introducing an extra variance compo-
nent.

Our method should also be contrasted to that of Al-
bert (1988), which generalizes the approach of Leonard and

Novick (1986) and which was applied to binary survey data
by Stroud (1994). Albert’s method applied to the present
setting first uses independent conjugate priors

T(Biclmu, {) = exp[Clmibie — “(Oix)) + g(min: C)] (4)

for the @y. Next, it assumes that h(m) = x5 3 for some
known monotone function k. Subsequently, it assigns dis-
tributions (possibly diffuse) to the hyperparameters 8 and
¢- In contrast, our approach does not need the conjugacy
of the prior and models monotone functions of 8, instead
of monotone functions of my, = E[y/(6:)]. Moreover, Al-
bert (1988) suggested approximation to the Bayes procedure
by one of the following three methods: Laplace’s method.
quasi-likelihood approaches, or Brooks's (1984) method.
These approximations generally are unnecessary now with
the advent of the sophisticated MCMC integration tech-
niques.

The log-concavity idea is used slightly differently by Del-
laportas and Smith (1993), whose prime objective is infer-
ence about 3 in generalized linear models and model ;. as
functions of A without any error. In addition, their method,
unlike ours, does not introduce any uncertainty in specify-
ing the model.

We now examine how the previous results can be gen-
eralized for the analysis of multicategory data. Consider
m strata labeled 1,...,m. Within each stratum, several
units are selected; suppose that the responses of individ-
uals within each selected unit are independent and can
be classified into J categories. For the kth selected unit
within the ith stratum, let p;;; denote the probability that
an individual's response falls in the jth category (§ =

-Jik =1,...,n;). Then within the kth selected unit
within the ith stratum, Z;;x (7 = 1,...,J)} have a joint
multinomial (£;x; pi1k, .- -, pisx) distribution, where ti; =
ZJ. Ziik. Using the well-known relationship between the
multinomial and Poisson distributions, (Z;;,. - ., Zisx) has
the same distribution as the joint conditional distribution

of (Yuk,...,Y,-Jk) given ):;.;liﬁjk = t;, where the Yj;x
(j = 1,...,J) are independent Poisson((;;x) and pijr =
Cth/Z: =1 Cisk (J =1,...,J).

Let 9.,;; = log sk, and let @ denote the vector whose

elements are the #;;x’s. One can also model 6;;; as
h(gijk) = x?;kﬁ + Uij + Eijk- (5)

Also, it is assumed that u;; and the ¢;;; are mutually inde-
pendent with u,; ~ N(0,02) and g4 ** N(0, 02).

Then the hierarchical model, which is closely related to
(IMIV), is given by the following:

(A) Yik|0,u, B, ry, r are independent with

f(yijklgrurﬁjru)r)
= exp[@gk(vinbisk — ¥(0ix)) + p(wisk; disn))-
(B) h(Bi0)lu, B, 7w, = N(XT, B + uyy,r1).
(©) w8, 7o, r ' N, 7).
(D) B,R,, and R are utually independent with G ~
uniform(RP}, R, ~ gamma(}a, }b), and R ~
gamma( e, 1d).
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We are interested in the posterior means, variances, and
covariances of the pix = exp(fijz)/ Z}-; exp(Biji) (k =
Liggeren ; npt = 1,...,mj = 1,....J). The necessary pos-
terior dlStﬂbuthnS for doing these calculations are given
by

(a} BlO, w, vy, 1, y ~ N((ZUkxukxuk)*l(zi‘,,k Xijk

(A(Bijk) ~ wis))s =M a XiseX5e) 1 )
(b) uij|9,,6.ru,r,y 1._1'51 N((Tni + T'u TZk(h(Hijk) -

xhB). (rme 4 1))
(c) ngsﬁauﬁrusy ~ gamma(}/Z(c o Ei,j.k(h(gijk) -

X5 — ui3)?), 1/2(d + T T, i)
(d) R.|6,8,u, r,y ~ gamma 1/2(a + 2 ud)1/2
(b +mJ)); an
(C) et'jkl.ﬁi W, Ty, Y 1119 W(eijklﬁau:TUirl y) o exp[(yijk
Bijk %(0i5x)) b7k (r/2)(h{fisx) x5 B

—ut-j)zlh’(ﬂ,-_,-k).

Once again posterior inference about g(6;;x)’s is performed
using (e) and iterated formulas for posterior moments.

To conclude this section, we consider spatial HB GLMs
and provide sufficient conditions for the propriety of the
posterior. We begin with the likelihood given in (1) and
model the @;; as in (2), but this time the u; represent vari-
ables that if observed would display spatial structure. More
particularly, we model the u; so that a pair of contiguous
zones would have stronger (positive) correlation than any
arbitrary zones that are noncontiguous.

For u,,..., %y, we consider the prior

Ty
- ? Z Wy (Ui - U1)2

i<d

plug, ... Unp|re) = r’“lzexp

(6)

where the wy; are strictly positive if zones ¢ and [ are con-
tiguous, and wy = 0 otherwise. This prior is a special case
of general pairwise difference priors, considered by, for ex-
ample, Besag, Green, Higdon, and Mengersen (1995). The
marginal priors for 3, R, and R remain as before.

For brevity, write ny = Yo, n; and X = n3' Y0,
Ek 1 Xig. It is assumed that the matrix XT = (x11 —
Ri-eosXin, — %o Xm1 — X, oo, Xing )has rank p.
We then obtain the following thcorcm.

Theorem 2. Assume the conditions of Theorem 1, but
where now ny — p+ d > 1. Then the joint posterior of the
@;x under the spatial prior (6) is proper.

The proof of this theorem is also deferred to the Ap-
pendix. For implementing this Bayes procedure via Gibbs
sampling, one finds conditional distributions similar to (i)-
(v) earlier, with minor modifications to (ii) and (iv).

Remark. Tt should be noted that if instead of (2), one
models the ;. as
h(6:ik) = Bo + X1 + ui + £4x
(k=1,. .,ni1=1,...,m),
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then the posterior of the h(6;, ) fails to be proper. The intro-
duction of the intercept term f; creates a nonidentifiability
in the posterior, which in turn implies that the joint poste-
rior of the g{6;:) is also improper.

3. DATA ANALYSIS
34

The analysis of the multicategory dataset mentioned in
Section 1, where persons in 15 regions of Canada were
asked the question “Have you experlenced any negative
impact of exposure to health hazards in the workplace,”
is reported in Table 1 and Figure 1. Here for the kth se-
lected age-sex category within the ith region, p;;, denotes
the probability that an individual’s response falls in the jth
category (where the categories are 1 = yes, 2 = no, 3 =
not exposed, and 4 = not applicable or not stated). Within
the kth selected age—sex category and the ith region, the
Zijx have a joint multinomial(f:; pik, - .., pise) distribu-
tion, where t;x = 3, Zy;x. Fitting model (5) with the Pois-
son likelihood as described in Section 2, and relabeling &
as {a, s) for clarity, the regression equation is

Exposure to Health Hazards Dataset

xpB=p+1l +70 + 7] + 1A+ 1A 15

where p is the gencral effect, 72 is the main effect due to
thc ath age group, 75 is the main effect due to the sth sex,
77 is the main effect due to the jth category response, 4%
is Lhe interaction effect of the ath age and sth sex, 743 is the
mteractmn effect of the ath age and jth category rcsponse
and 1- 7 is the interaction effect sth sex and jth category
responsc To avoid redundancy, we assume the corner point
restrictions

A _ _8 J AS AS
T =T =71 TTa1 = Tig

— LAd AJ sJ 5J
= Ta1 _TIJ =Ta _T].J‘ =0

for all a, s, and j.

Using the extremely vague (but proper) priors for R,
and R determined by setting a = b = ¢ = d = .002, we
generated 10 parallel Gibbs sampling chains of 2,000 iter-
ations each. Using the 1,000 samples from the latter half
of these chains (iterations 1,001-2,000), Table 1 contains
the HB estimates, the sample proportions, and the asso-
ciated standard errors for all four categories in each of
the cells cross-classified by 2 x 2 = 4 demographic cate-
gories for three regions: the smallest, the median, and the
largest. Figure 1 shows the sample proportions (“Prop”),
traditional logistic regression estimates (“Regr”), and hier-
archical Bayes estimates “HB"™) for all 15 regions for fe-
males age 40 or younger. For regions with larger overall
sample sizes, shrinkage of the estimates toward the logistic
regression estimates within each age—sex category is much
smaller than that observed in the smaller regions. For ex-
ample, Figure 1b shows the HB estimates to be very simi-
lar to the logistic regression estimates in the sparsely pop-
ulated Region 2, whereas Figure lh shows HB estimates
very much like the original sample proportions in popu-
lous Region 8. Also, within the kth age—sex category in
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Table 1. Impact of Exposure to Health Hazards in the Workplace

Sample H. Bayes
Category Response Proportions SD Proportions SD
Region = 2 Total n = 294
M, Age < 40 Yes 400 100 373 042
No .383 101 345 041
Not exposed 150 119 .189 .03t
NA/NS .067 125 .083 .05
F, Age < 40 Yes .257 100 266 035
No .284 .098 279 .035
Not exposed 311 .097 274 .036
NA/NS 148 A07 .181 026
M, Age > 40 Yes A1 A1 .184 028
No .153 109 176 .027
Not exposed 167 108 156 .02¢e
NA/NS 569 077 484 040
F, Age > 40 Yes .159 098 d10 019
No 091 102 103 .018
Not exposed 125 010 134 .022
NA/NS 625 .065 654 .034
Region = 3 Totat n = 740
M, Age < 40 Yes 294 070 311 .029
No 426 063 395 032
Not exposed 203 075 186 .023
NA/NS 077 .080 108 015
F, Age < 40 Yes 246 064 235 .024
No 273 063 .287 026
Not exposed 180 067 204 .023
NA/NS 301 082 274 .026
M, Age > 40 Yes .156 .069 154 .019
No 180 069 .185 020
Not exposed 100 071 A2 .016
NAMNS 594 048 .569 .028
F. Age > 40 Yes 064 .063 071 .010
No 086 063 091 012
Not exposed A11 062 099 013
NA/NS 738 .033 739 021
Region = 8 Total n = 1707
M, Age < 40 Yes 274 047 279 .021
No 360 044 362 023
Not exposed 253 .048 .253 .020
NA/NS 113 052 106 .012
F Age < 40 Yes 199 042 196 016
No .267 .040 275 019
Not exposed .289 040 .295 .018
NA/NS .245 .o .234 .017
M, Age > 40 Yes 113 047 130 013
No .166 046 74 016
Not expased 217 044 195 ;7
NA/NS 504 .035 501 022
F, Age > 40 Yes .087 042 .076 009
No 123 041 RE 011
Not exposed 118 041 A31 012
NA/NS .B71 .025 683 017

the ith region, the shrinkage is again smaller for categories
with larger numbers of responses. For example, of females
over age 40 in Region 3, 15/234 (6.41%) answered “yes,”
compared to 173/234 (73.93%) in the “not applicable/not
stated” category. As seen in Table |, the shrinkage is much
larger for the former case, again revealing the adaptive na-
ture of the HB estimates. Finally, note that the standard
errors associated with the HB estimates are much smaller
than those for the sample proportions.

3.2 Missouri Lung Cancer Dataset

Our second example relates to lung cancer mortality rates
in the 115 counties in Missouri during the period 1972-
1981. Following the original analysis of this data by Tsu-
takawa (1985, 1988), we separatc the city of St. Louis from
the remainder of St. Louis County, which surrounds it. Mor-
tality was classified for each county by sex into four ape
groups: 45-54, 55-64, 65-74, and 75 and older. The popu-
lation size for each cell was taken to be the midperiod pop-
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{a) Region 1; n =171
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(b) Region 2; n=74

{c} Region 3; n = 183

8 2
a =
3 o "
s s 1.
< = ! b= d
L=} o (=]
YNUX YNUX YNUX YNUX YHNUX YNUX YNUX YNUX YNUX
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g a 2 m
] = ! =]
(=] (=] [ =
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Figure 1. Bar Graph of Estimated Proportions by Category by Region for Females Age < 40. Prop = sample proportion, Regr = logistic
regression estimate, HB = hierarchical Bayes estimate. Categories: Y = Yas, N = No, U = Not exposed, X = Not applicabie or not stated.

ulation, obtained from the 1970 and 1980 U.S. censuses by
linear interpolation.

Again relabeling & as (a, s) for clarity, let Y;,, be the
lung cancer death count and n;,, the midperiod popula-
tion in the ith county for the ath age group and sth sex,
t=1,...,118,a = 1,...,4,s = 1,2. At the first stage -of
the model, we assume that Yia.|Cizs ~ Poissen({is;). We
then model the mean structure by assuming that (;,, =
Eios exp(itics), Where E;,, is the number of deaths that
would be expected using some current reference standard

and pg,, is the corresponding log-relative risk in cell ias.
Some spatial analyses (see, ¢.g., Bernardinelli and Monto-
moli 1992) have used an externally available reference table
to compute the F,,; here we adopt the simpler. alternative
of internal standardization, defining E;,, = niqs * 7, Where
T = ) o Yias/ D iu, Tias the statewide lung cancer rate
over all sex and age groups in our dataset.,
The log-relative risks are then modeled linearly as

Higs = xg‘_yﬁ + Ui +Eina, ' (7)
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Table 2. Informal Model Comparison, Missouri Lung Cancer Dala
Number of
fixed Log-tikelihood
Model for x1.8 effects score, | Difference

vsa + ZaY 2 580.0
Ve + ZgY + VsZal 3 587.8 17.8
vea + Ziith 4 v 2Dt 5 614.9 174

+20 4y 7
vea + zi 4y A Dglt) 7 618.7 3.8

+2 MMy M M)
+ZLULY(U] + vszi{,ul.ffw

where 3 is a vector parameter that captures the effect of
sex, ape, and sex—age interaction. The e;,, are assumed iid
N(0, o2}, but the »; account for potential spatial clustering
of the rates via a conditionally autoregressive (CAR) prior
structure (see, e.g., Besag, York, and Mollié 1991; Clayton
and Kaldor 1987). That is, we assume that

ilwgs ~ N(i;, 1/(rmy)),

where #; is the average of the w;y; that are defined to be
“neighbors” of u;, and m; is the number of these neigh-
bors. Here we adopt the most common implementation of
the CAR structure, defining two counties to be neighbors
if and only if they are physically adjacent to each other.
It is easy to show that this prior is of the form given in
(6), where wy = 1 if counties ¢ and ! are adjacent, and 0
otherwise. Note that this CAR prior is defined only up to
additive constant, again explaining the lack of an intercept
term in (7). ;

It thus remains to determine the appropriate structure for
B. Tsutakawa (1988) noted a strong similarity between the
male death rates in the two oldest age groups, perhaps due to
the competing risks of other diseases. Preliminary analysis
of the female rates suggests a similar situation, and as such
we begin by defining the sex and age scores

] 0 ifs=1 (male)
= 1 if s=2 (female)

and
—1 ifa=1 (age45-54)
0 ife=2 (age 55-64)
1 ifa=3 (age 65-74)
1 ifa=4 (age 75+)
and use them in a regression-type model,

T

X3 = vy 4 zg7 + v, 2,6,

‘thus effectively combining the two oldest age groups.
We complete our model specification with flat priors on
the components of the fixed effect vector 3, a vague
gamma(.01, .01) hyperprior on 7, and a moderately infor-
mative gamma(l, 1) hyperprior on R = 1/o2. (This latter
hyperprior ensures a well-identified joint posterior distri-
bution and, as we shall see, is still quite vague relative to
the posterior for the £;,,). We then fit this model via Gibbs
sampling using the BUGS language (Spiegelhalter, Thomas,

Best, and Gilks 1995), aided by the CODA S+ function
(Best, Cowles, and Vines 1995) for assessing convergence
and computing posterior summaries. BUGS uses S-like syn-
tax for specifying fairly complex hierarchical models. The
program converts this syntax into a directed acyclic graph,
the nodes of which correspond to the complete conditional
distributions necessary for the Gibbs algorithm. Our results

Figure 2. Male 55-64 Lung Cancer Relative Risks, Missouri Coun-
lies, 1972-1981. (a) Raw SMRs; (b} Tsutakawa EB smoothed RAs; (¢}
Spatially smoothed ARs.
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Figure 3. Residual Analysis, Five Fixed-Efects Model, Missouri Lung Cancer Data. (a) Hisfogram, with overdispersion lerms; (b) normal q-q
plot, with overdispersion terms; (c) histogram, no overdispersion terms; (d) normal q-q plot, no owerdispersion terms.

indicated moderate spatial correlation in the data (posterior
for.7 centered near 30), a modest need for the extra variabil-
ity terms (posterior for o centered near .2), and significant
sex—age interaction {posterior for £ removed from 0).

To investigate the scope of models that our data could
support, we considered a simpler model that drops the
interaction term € and a more complex analysis of van-
ance (ANOVA)-type model that replaced the age score vec-
tor z = (—1,0,1,1) with separate vectors for the low-
est and highest age groups, namely z(*} = (1,0,0,0)’ and
z{) = (0,0, 1,1)". Table 2 compares the fit of these models
using the posterior log-likelihood score, computed as the
sample average [ = 1/G Zle 149), where

[(9) = Z uggly‘-a, = z Ei.a.s ﬂp(“gzb + C’

ias tas
g=1,...,G.

Here the superscript (g) indexes the Gibbs iterates, and C
is a scaling constant. After a burn-in period of 50 iterations,
we found that retaining G = 500 iterations was sufficient to
produce log-likelihood scores with batched standard errors
near 5. Note that the average score [ for the model with
five fixed effects is larger than that for the model with three,
which in turn is substantially larger than that for the two
fixed-effects model. However, a final extension {o the satu-
rated model that separates the two oldest age groups—that
is, using z{M) = (0,0,1,0) and V) = (0,0,0,1)"—offers
no numerically significant improvement in fit. Although the
usual chi-squared asymptotics for differences in —2{ are not

appropriate in our Bayesian random-effects model setting,
it seems clear from Table 2 that the model with five fixed
effects offers the best fit while preserving parsimony.

Our chosen model produces posterior means and 95%
equal-tail credible sets as follows: for «,—1.46 and
(—1.545,—1.36); for 4(&), —1.064 and (—1.15, —.976); for
~W) 558 and (.503,.630); for £4), 369 and (.227,.503);
and for £(U), ~ 318 and (—.428, —.207). Thus log-relative

-risk is nearly 1.5 units lower for females than for males on

average, with the risk increasing monotonically with age.
(Recall that the two oldest age groups have been combined.)
However, the signs on the interaction terms £(2) and £V}
show that this increase is not as dramatic for females as for
males.

Figure 2 maps the raw standardized mortality ratios for
men age 55—64, SMRigl st Y'i2llEi21! the fitted relative
risks obtained by Tsutakawa (1988) using EB methods
without a spatial smoothing prior, and the fitted relative
risks from our fully Bayesian spatial smoothing analysis,

RRi1 = 1/G E;;:l exp(ul® + €49)), the average of the
G = 500 corresponding postconvergence relative risk es-
timates. Although the comparison between our resulis and
Tsutakawa’s is not completely fair, because the latter were
obtained using data for males only, clearly both of these
methods eliminate much of the noise in the original map
while preserving the high rate in populous St. Louis city.
However, our spatial model clarifies the general increase
in rates from north to south (especially along the eastern
border with Illinois) and also identifies possible clusters of
counties with similar risk, while maintaining a reasonable
amount of fidelity to the original data.
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Finally, we check our model by analyzing the posterior
means of the collection of standardized residuals, ri,s =
E[(Yias — Cias)/V/Ciasly], which are readily computable in
BUGS (Spiegelhalter et al. 1995, pp. 40-46). Figure 3a
shows a histogram of these mean residuals, and Figure 3b
gives their normal Q-Q plot. Both plots reveal a high degree
of normality.

Finally, the rather small fitted standard deviation (.17) for
the extra viability terms £;,, made us wonder whether these
terms were even needed in the model. To check this, we
reran our model without these terms, obtaining the resid-
ual histogram and normal plot shown in Figures 3c and
3d. Although the degree of normality is still acceptable,
the presence of a few large outliers is disturbing. The one
enormous outlier on the high side corresponds to men in
the youngest age group who live in the city of St. Louis;
apparently their very high lung cancer death rate is poorly
fit by the model. Interestingly, two of the three outlying val-
ues on the low side are the youngest and second-youngest
groups of men living in St. Louis County, who are appar-
ently much healthier than the model predicts. Thus we con-
clude that the overdispersion terms &;,, are critical in ob-
taining acceptable fits-in all-urban 8t. Louis city and its only
geographic neighbor, suburban St. Louis County, allowing
differing rates in these two disparate regions despite their
juxtaposition on the map.

4. CONCLUSIONS

In this article we have provided a general approach for
small-area estimation based on hierarchical Bayes gener-
alized linear models, with and without spatial correlation
structure. Sufficient conditions have been given to ensure
the propriety of posteriors under noninformative priors. The
general methodology is applicable to a wide variety of sit-
uations calling for simultaneous estimation of small-area
parameters. Future work looks to continued automation in
the fitting of these models via MCMC methods, especially
in the areas of model choice and model averaging. Promis-
ing tools in this regard include expected predicted deviance
scores, recently introduced by Gelfand and Ghosh (1997)
and illustrated for spatio-temporal models by Waller, Car-
lin, Xia, and Gelfand (1997).

APPENDIX: PROOFS

Proof of Theorem 1
The joint posterior pdf of 8, 3,u, R,, and R given y is

(8,8, u,ru, 7|y}

o H Hexmqb;‘ visBix — $(0u))r' 2
i k

% T ew[- 5 (h(0u) ~ <58~ wa?]
ik

x (Hl:[ hl(eik)) /2 exp (— -’_21 Z uf)

1

x exp(— %) pLiEe=1 exp(u %r—) plfad=t,

Integrating with respect to 3, ry, and 7 in succession, we obtain

®(6,uly) < CHHGXPW.—? (vixBir — ¥(8ix))]
1 k

- —1/2(m= B
5 (a+zus) TII *e.
1 i k

where C (> 0) is a generic constant that does not depend on 8 or
u. Now integrating with respect to u and using the structure of a
multivariate £, it follows that

(8ly) < C [ [ [ explén (winbix — $(6u))H (Ber).

i k

The result now follows from (3).

Proof of Theorem 2

For notational simplicity, without loss of generality h is taken as
the identity function throughout. The joint posterior of 8, 3, u, R,
and R given y is

(0, 8, u, 7w, rly)

x H H exp[gb‘-_kl (yirfx — 1}1(9,-,‘))],-"7'/2
ik
x H]:[exp[--;- (0 ~ 58— 7]
. X r“"'/2 exp |:_ %‘ Z wi(w — u‘)zl

1£i<i€<m
" exp( a;u) rlizs=t exp(— _021) PL/2d-1

With the one-to-one transformation (z1,...,Zm—1,t%m), Where
Zi = Ui — Upm,i = 1,...,m, the posterior transforms to

‘H’(9, B tm, 2, Tu, rlY)

o exp [E 3 ¢a' varbis — -,t:(eik))‘ pnr2
i k
Z (Bix — ik}B -2z — ‘Um)z}

}ji plmo=1)/2
) 1/2d-1

where 2z = 0 and 2 = (21, -..,%m—1). Next, write § =
nr 32y 0u and £ = m~! ). z. Integrating with respect to
U, B, Ty, and r in succession, we have

xexp[

xexp|: 1%{a+ Z wir(zi — z)°

1<iCi<m

X exp(

#(6,z|y) € Cexp [ZE ¢ (yibix — 1.b(9,-1:))]
ik

—(m+b)/2
b [a+ Z wx:(z,—znf} i
1<i<i<m

where C' (> 0) is a generic constant that does not depend on @ or
z.Recall that 2, =0and 3, _, _ ., wa(z:—z) involves only m
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— 1 variables z, ..., zm-1. Thus, integrating with respect to z,
and using the structure of a multivariate ¢ distribution yields

n(Bly) < Cexp| > D" &5 (wsnbus — (b))

The result again follows from (3).

[Received December 1995. Revised June 1997.]
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Estimation of Median Income of Four-Person
Families: A Bayesian Time Series Approach

Malay GHOsSH, Narinder NANGIA, and Dal Ho Kim

This article develops a general methodology for small domain estimation based on data from repeated surveys. The results are
directly applied to the estimation of median income of four-person families for the 50 states and the District of Columbia. These
estimates arc needed by the U.S. Department of Health and Human Services (HHS) to formulate its energy assistance program
for low income families. The U.S. Bureau of the Census, by an informal agreement, has provided such estimates to HHS through
a linear regression methodology since the latter part of the 1970s. The current method is an empirical Bayes method (EB) that
uses the Current Population Survey {CPS) estimates as well as the most recent decennial census estimates updated by the per
capita income estimates of the Bureau of Economic Analysis. However, with the existing methodology, standard errors associated
with these estimates are not easy to obtain. The EB estimates, when used naively, can lead to underestimation of standard errors.
Moreover, because the sample estimates are collected through the CPS every year, there is a very natural time series aspect of the
data that is currently ignored. We have performed a full Bayesian analysis using a hierarchical Bayes (HB) time series model. In
addition to providing the median income estimates as the posterior means, we have provided also the posterior standard deviations.
Included in our model is the information on the median incomes of three- and five-person families as well. In this way a multivariate
HB procedure is used. The Bayesian analysis requires evaluation of high-dimensional integrals. We have overcome this problem by
using the Gibbs sampling technique, which has turned out to be a very convenient tool for Monte Carlo integration. Also, we have
validated our results by comparing them against the 1989 four-person median income figures obtained from the 1990 census. We
used four different criteria for such comparisons. It turns out that the estimates obtained by using a bivariate time-series model are
the best overall. We use a criterion based on deviances for model selection and also provide a sensitivity analysis of the proposed

hierarchical model.

KEY WORDS: Current Population Survey; Empirical Bayes; First-order autoregressive; Hierarchical Bayes; Multivariate; Small

area estimation.

1. INTRODUCTION .

Estimates of median incomes of four-person families at
the national, state, county, and local area levels are often
needed for a variety of governmental decisions. The U.S.
Department of Health and Human Services (HHS) has a
direct need for such data at the state level (the 50 states
and the District of Columbia) for formulating its energy
assistance program to low income families. Such estimates
are provided to the HHS annually by the Bureau of the
Census. _

First, we discuss briefly the current approach of the Bu-
reau of the Census for producing such estimates. (The de-
tails appear in Fay, Nelson, and Litow 1993). This method-
ology relies on three sources of data. The basic source is
the annual demographic supplement to the March sample
of the Current Population Survey (CPS), which provides
annually median income by states for families of different
sizes. Second, once every 10 years, similar figures are ob-
tained from the decennial census for the year proceeding
the census year; for example 1969, 1979, 1989, and so on.
Third, the Bureau of the Census uses also annual estimates

This research was partially supported by National Science Foundation
grants SES-9201210 and SBR-9423996 and a Joint Statistical Agreement
with the Bureau of the Census. The views expressed herein reflect those of
the authors and not of the Bureau of the Census, Malay Ghosh is Profes-
sor, Depariment of Statistics, University of Florida, Gainesville, FL 32611.
Narinder Nangia is Statistical Consultant, Trilogy Corporation, Waukee-
gan, IL 60085. Dal He Kim is Instructor, Department of Statistics, Kyung-
pock National University, Taegu 702-701, Kerea. The authors gratefully
acknowledge Robert Fay of the Bureau of the Census for introducing them
to this problem and for many helpful discussions throughout the course of
this investigation. The article has benefitted much from the constructive
suggestions of William Bell of the Bureau of the Census, the associate
editor, and three referees. Special thanks to Larry Winner for his help in
the preparation of the figures.

of the per capita income (PCI) obtained by the Bureau of
Economic Analysis (BEA) of the U.S. Department of Com-
merce.

Direct use of the CPS estimates is limited due to the
smallness of the sample size, which causes substantial vari-
ability. In contrast, the census estimates based on the long-
form sample (filled in by approximately % of the population)
are believed to have virtually negligible standard errors and
can be used in conjunction with the CPS estimates in pro-
ducing the annual median income estimates. The census es-
timates are also used as the “gold standard” against which
other estimates are tested. Such a comparison, however, is
only possible for those years that immediately precede the
census year. Finally, the PCI estimates, unlike the CPS es-
timates, do not have associated sampling errors, as they are
not obtained using sampling techniques.

The current Bureau of the Census approach uses a bi-
variate regression model as suggested by Fay (1987). This
method includes median incomes of three- and five-person
families along with those for four-person families, although
the primary objective continues to be estimation of median
incomes of four-person families. For each state, based on
the direct CPS estimates, the median incomes for three-,
four-, or five-person families are obtained by linear inter-
polation using tabulated income categorized into intervals
of $2,500. The basic data set for each state is a bivariate
random vector with one component equal to the median
income of four-person families and the other component
equal to a weighted average of median incomes of three-
and five-person families, the weights being .75 and .25.
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In addition to the intercept term, the regression equa-
tion used by the Bureau of the Census uses as independemnt
variables the base year census median {b) and the adjusted
census median (¢) both for four-person families, as well
as the weighted average of three- and five-person families
with the same .75 and .25 weights. Here census median (b)
is a generic symbol for the median income of a family of
particular size in a state from the recently most available de-
cennial census. The adjusted census median (c) is obtained
from the following formula:

Adjusted census median (c)
= [BEA PCI(c)/BEA PCI(b)} x census median (), (1)

where BEA PCl(c) and BEA PCI(b) represent PCI esti-
mates produced by the BEA for the current year c and the
base-year b. As pointed out by Fay (1987), formula (1) at-
tempts to adjust the base year census median by the propor-
tional growth in the BEA PCI to arrive at the current year
adjusted median. The inclusion of the census median (b) as
a second independent variable is believed to adjust for any
possible overstatement of the effect of change in BEA PCI
in estimating the current median incomes.

Finally, weighted averages of the CPS sample estimate of
the current median income and the corresponding regres-
sion estimates are obtained. These weighted estimates are
obtained by using an empirical Bayes (EB) procedure (Fay
1987; Fay et al. 1993) with a somewhat ad hoc estimator of
the prior variance.

In an earlier paper (Datta, Ghosh, Nangia, and Natarajan
1996), the ideas of Fay (1987) were modified, extended, and
implemented. A more appealing EB procedure was given
estimating this variance by its maximum likelihood esti-
mator (MLE), based on the marginal distributions of the
observations. Second, in addition to this EB procedure, full
Bayesian solutions were offered for the same estimation
problem using both univariate and multivariate hierarchical
Bayes (HB) models. Although the univariate procedure uti-
lized only the median income of four-person families, the
different multivariate procedures also utilized the median
incomes of three- and five-person families in various ways.

A comparison of the estimates and the corresponding
census figures for the income year 1979 revealed that both
the HB and the EB procedures improved tremendously over
the CPS medians under both the univariate and the multi-
variate models. We also found that the point estimates ob-
tained by using either the univariate model or some version
of a multivariate model did not substantially differ. How-
ever, the standard errors and the coefficients of variation
were reduced considerably by using a multivariate model in
comparison with the univariate model. Also, we observed
that the EB procedure resulted in underestimation of stan-
dard errors in contrast to a HB procedure. The familiar ex-
planation of this phenomenon is that an EB procedure based
on estimated priors fails to account for the uncertainty in-
volved in the estimation of prior parameters and can often
lead to underestimates of standard errors. A HB method ac-
counts for this uncertainty by assigning distributions (albeit
often diffuse ones) to the prior parameters.

Journal of the American Statistical Association, December 1996

The methodology suggested in this article goes yet one
step further. Because of the repetitive nature of the CPS. it
seems possible to obtain better estimates of statewide medi-
ans by Bayesian time series modeling. We demonstrate this
by finding estimatcs of statewide median incomes of four-
person families for 1989, using 1979 as the base year. We
compare both the time series and non—time series estimates
with the CPS estimates as well as with the EB estimates
of the Bureau of the Census in the light of the decennial
census figures.

Several HB models, both time series and non—time series,
were tried. Half of these used normal regression models,
and the other half used lognormal regression models. The
normal models outperformed the lognormal models in all
circumstances.

For each normal time series or non-time series case, we
considered three separate regression models where the in-
tercept term was always included. Among the three cases,
one included only the adjusted census median (c) as the in-
dependent variable, the second included only the base year
census median (b) as the independent variable, and the third
included both the adjusted census median and the base year
census median as independent variables.

We compared all of these estimates to the 1989 decennial
census estimates. The resuits turned out to be quite inter-
esting, especially in view of what was presented by Fay
(1987). First, it turned out that under all circumstances, a
regression model utilizing only adjusted census medians as
covariates was performing better than those including ei-
ther the base year census median as a covariate or both the
base year and adjusted census medians as covariates. This is
in contrast to Fay's (1987) recommendation to include both
the adjusted and base year census medians as covariates, as
was evidenced from the 1979 figures. Second, it turned out
that the bivariate time series model that included the me-
dian incomes of four- and five-person families performed
the best. This is different from the bivariate model of Fay,
which included the weighted average of median incomes
of three- and five-person families as the second variable.
Finally, though not very surprising, we found that the time
series models always outperformed their non—time series
counterparts.

A simple model selection based on deviances {defined
Sec. 3) along the lines of Malec and Sedransk (1994) lent
further support to the approach of retaining only the ad-
justed census medians as covariates along with the intercept
term. It turned out that the corresponding deviance term
was quite close to the one based on the saturated model
that included both the adjusted and the nonadjusted census
medians as covariates along with the intercept term. On the
other hand, the model that used only the nonadjusted cen-
sus median as a covariate along with the intercept term had
a deviance quite different from the one resulting from the
saturated model.

The outline of the remaining sections is as follows. Sec-
tion 2 introduces a HB multivariate time series model that
can be used not only for the problem at hand, but also for
other similar problems. Gibbs sampling is used for com-
puting the necessary estimates and the standard errors for
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the parameters of interest. Some general remarks are made
about the implementation of the Gibbs sampler. The poste-
rior distributions needed for implementing the Gibbs sam-
pler are given in the Appendix.

Section 3 addresses the specific problem of estimation
of median income of four-person families using univari-
ate, bivariate, and trivariate time series and non—time series
models. Our findings are summarized in three graphs and
several tables. We give the details for the case in which
the adjusted census medians are used as the only auxil-
iary variables along with the intercept terms, and compare
these estimates to the figures obtained from the 1990 cen-
sus according to four criteria introduced in Section 3. As
discussed in the preceding paragraph, our findings indicate
that a bivariate time series model in which one component
variable is the median income of five-person families and
the other is the median income of four-person families per-
forms best under each one of these four criteria. Section
3 also contains some model selection. Section 4 presents a
sensitivity analysis related to departure from the proposed
hierarchical model. Finally, Section 5 provides some con-
cluding remarks.

Before ending this section, we reemphasize that the HB
method enables us to report not only point estimates, but
also the standard errors associated with these estimates.
This is a distinct advantage of the HB methodology over
the EB methodology currently used.

2. THE GENERAL MULTIVARIATE
HIERARCHICAL BAYES MODEL

Suppose, based on a given sample attime j (5 = 1,...,¢),
that Yy = (Yij1, ..., Yis)7 is a s-dimensional column vec-
tor of sample survey estimators of some characteristics
; = (9,','1., e g Gi,-,)T, for the ith small area (i = 1,... , ).
The problem is to estimate some function of the 6y’s. In the
specific problem of estimation of median income of four-
person families at time u, writing 6,;; as the median in-
come of four-person families at time j for the ith local area,
we are interested in estimating (f1u1, - -, 6mu1)7 - Clearly,
there could be other parameters of interest. For example,
we may be interested in estimating (0141 = 8141, - .., Fmur —
fmu1)T, the change in the median income of four-person
families from time u to time v.

The general HB model is as follows:

L Yl ™ N0, Vig) (i =1,...,mij = 1,...,1),
where V;’s are known
IL 8a,bj,; & N(Xya + Zibj, ) (6= 1,....
myj=1,...,t)
HL bjlb;_y, W N(b;_;, W) (i =1,...,¢)
IV. Marginally e, ;,...,%,, and W are mutually inde-
pendent with
a ~ uniform (RP),
¥; ~ inverse Wishart (S;, k;),
W ~ inverse Wishart (Sg, k¢).

and

In I, X;;(s x p) and Z;;(s x q) are known design matrices.
For the particular problem at hand, the assumption of

conditional independence of the Y,; given the 6;; may be
open to question. But, as we see in Section 4, the inde-
pendence model works better than some of the competing
first-order autoregressive models.

It is possible to allow diffuse priors for o, p;, and W
as long as the posterior distribution of #,, given Y, 1 =
1,...,m,j =1,...,t) remains proper. It may be tempting
to combine stages I and II of the model and write

Y"j = X.;ja + Z,‘ij‘ + 1y; +ey;.

where the u;;’s and e;;’s are mutually independent with
u; A N(0,9;) and ey; = N(0,Vi;). This is clearly a
mixed-effect multi-variate analysis of variance (MANOVA)
model. But this rewriting, though helpful for inference
about a and b;, does not help directly for inference
about 6;;.

Part II of our model bears a strong similarity to the ob-
servational equattons in a dynamic linear model (see, e.g.,
Broemeling 1985), although the 6;;’s themselves are not
observables. Part HI of the model corresponds the systems
equations in dynamic linear models. An alternative way of
writing this is b; = b;_y + z;, where z; are iid N(0, W).
This is the so-called random walk model, which has been
used quite extensively by time series analysts (see, e.g., Bell
1984). If the variance matrices t;'s and W were known,
then standard Bayesian analysis for dynamic linear mod-
els could be performed using the Kalman filter updating
algorithm (see, e.g., Meinhold and Singpurwalla 1983 and
West, Harrison, and Migon 1985). However, in the absence
of knowledge of the y;'s and W, the advantage of us-
ing a Kalman filter is lost, and direct Bayesian analysis
must be performed. The objective of this analysis is to
find the posterior distributions of the 8;;'s given the data
yvij i=1,...,m;j=1,...,t). Such distributions are ana-
lytically intractable and require high-dimensional numerical
integration. Instead, we adopt Monte Carlo integration and
use Gibbs sampling.

Gibbs sampling, originally introduced by Geman and Ge-
man (1984} and more recently popularized by Gelfand and
Smith (1990), is a Markovian.updating scheme that re-
quires sampling from full conditional distributions. Densi-
ties (which could be multivariate) are denoted generally by
square brackets so that the joint, conditional, and marginal
densities appear as, for example, [U, V], {U|V], and [V7].
Given a collection of random variables {real or vector val-
ued) Uy, ..., Uy, the joint density {Uh,....Us| is assumed
to be uniquely determined by [U|U,,r #sl.s=1,... . k.
The interest is in finding the marginal distributions [U,]. s =
Liusaqks

For the model given in -1V, the full conditionals deter-
mine the joint pdf of 8;; given y;; uniquely. In implement-
ing the Gibbs sampler, we follow the recommendation of
Gelman and Rubin (1992} and run n(> 2) paraltel chains,
each for 2d iterations with starting points drawn from an
overdispersed distribution. But to diminish the effects of the
starting distributions, the first d iterations of each chain are
discarded. After d iterations, all the subsequent iterates are
retained for finding the desired posterior distributions, pos-
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terior means, and variances, as well as for monitoring the
convergence of the Gibbs sampler. The convergence moni-
toring is discussed in greater detail in Section 3.

To implement the Gibbs sampler, we need to generate
samples from the full conditional distributions of

alyaesbla-“1bta¢1:--'=¢tsw;
bjlyﬂeiaably'-~1bj—1|bj+11"'sbh¢h"-}1/)!)
W (2<igi-1)
b1|Y)8aaab2|-":bhwl,--')l‘phw;

bt'yse)arbls' "1bt—la¢l}---:1|bhw;

tlbjly:Gabl!'-'ibtswv¢19'-'l‘d)j—lad’j-{-la'"3'|[)t;

WlY.G,bl,-v-,bn‘l,bl,---ﬂ.bt;

and

Gijly:bl: iR sbfn 1!’1) ey ‘phwl ekl((ka I) '_té (t,J)),
where y = (v5,...,¥5:). These distributions are given
in the Appendix.

Using the Gibbs sampler, the posterior distribution of 8;
given y is approximated by

n 2d

N@sly) = (d) ™' D Y [Bisly, = am,

k=1I=d+1
W =Wg,b; = b, ¥ =¥ini=1....4 (2
Also, following Gelfand and Smith (1991), “Rao-

Blackwellized” estimates of posterior means and variances
of the 6;; are given by

n 2d
E@yly ~(nd)™' > Y (V5 +¥5a) ™

k=1l=d—1
x [Vilyi + YKo + Zigbu)] ()
and
V(8ily)

n 2d

=(md) D0 Y (VG +Hva)T

k=1l=d+1

n 2d

+(nd)™t > SV +ea)

k=1t=d+1
x (V5 yy + i (Xyaw + Zisbin))
x (Vv + ¥ (Xijam + Zi;bi )T
x (V' + 950!

n 2d
_ ()2 {z S (Vi)

k=1l=d+1
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x (Vv + Y50 (Xax + Z:ijk[))}

i 2d
x {Z > vy wEn T

k=1l=d+1
T
x (V5'ye + %Ko + ZIJbJH))} .4

We use these results in the next section for finding the pos-
terior means and variances of the 8,;'s (i = 1....,m;j =
1,...,t:g=1,...,s) for special choices of X; and Z;;.

3. ESTIMATION OF MEDIAN INCOME OF
FOUR-PERSON FAMILIES

The basic data consist of three component vectors Y;; =
(Yij1, Yija, Yij3)7 and the associated variance—covariance
matrices Vi; (i = 1,...,51; J = 1,...,10). Here Yy,
Yi;2, and Yi;3 are the sample median incomes of four-,
three-, and five-person families in state ¢ for year j. The
corresponding adjusted census median incomes are denoted
by Zij1,Tij2, and zia. The true median corresponding to
Y.;u is denoted by 8, (u = 1,2,3). The years 1,...,10
correspond to 1980, ...,1989.

First, consider the trivariate case. Let 85 = (fij1, 052,
0i53)T. We also write Y = (¥ e ¥Ty00)T and 8 =

(8%,...,8% 10)7. The known design matrices X; are
given by
1 Tij1 0 0 0 0
X.‘j = 0 0 1 Iis2 0 0 E:
0 0 0 0 1 T3
i=1,...,51, j=1,...,10. (5)

Also, the vector of regression coefficients is denoted by a =
(al,...,as)T, and the vector of random components for
year j is denoted by bj = (bjl,bjz,bjg)T (j = Ly 10)
We justify this covariate selection at the end of this section.

We use the HB model of the previous section with
Z,‘j = I3,SJ‘ = .000051; (j =0,1,..., 10) and kj =7 (_j‘ =
0,1,...,10). The choice of the §;’s and k;'s is to ensure
that the posterior distributions are proper, although other
choices are clearly possible. Moreover, neither the S;’s nor
the k;'s need to be the same for all j. The main idea behind
our choice is to keep the distributions of the hyperparam-
eters nearly diffitse without violating the propriety of the
posteriors. Our limited amount of sensitivity analysis of the
HB procedure suggests that the choice of hyperpriors does
not matter too much when the final goal is to produce pos-
terior means, variances, and covariances of the 8;;’s, the
median incomes of four-person families.

A comment about the assumption of known Vi;'s also
seems in order. Clearly, these are estimates, and ideally, it
seems desirable to assign some distributions to the Vy;'s of
the assumed HB model. However, given the current state of
the art, such a task seems near impossible. For instance, if
one wanted to assign inverse Wishart priors to the Vi;'s,
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Table 1. A Comparison of Estimates Under Four Different Criteria

Average Average Average Average

refative squared absolute squared

Estimate bias relative bias bias deviation
CPS 0735 .0084 2,928.82 13,811,122.39
Bureau .0296 .0013 1,183.90 2,151,350.18
HB' 0338 0018 1,351.67 3,095,736.14
HB? 0363 0021 1,457.47 3,468,496.61
HB3 0295 0013 1171.71 2,194,553.67
HB* 0323 0016 1,287.78 2,610,249.94
HB® 0230 0009 932.51 1,618,025.33
HB? 0295 0013 1,179.94 2,216,738.06
HB? 0287 0043 1,150.24 2,116,692.71
HB® 0324 0015 1,297.12 2,530,938.06
HB? 02714 0011 1,089.24 1,927,153.24
HB0 0308 0014 1,233.59 2,315,875.39

then a formidable task would seem to be the choice of
meaningful degrees of freedom. One may add, however,
that the V;;'s used are not the raw estimates associated
with the Y;'s, but rather are smoothed versions of the di-
rect CPS estimates and as such are more stable. This esti-
mation procedure, described in detail by Fay et al. (1993,
sec. 9.3.2), uses Woodruff's (1952) general approach with
appropriate modifications. Even if one does not accept the
V;'s as known, our estimation procedure can genuinely be
described as a hierarchical-empirical Bayes approach. The
current EB approach of the Bureau of the Census also as-
sumes the V; as known and also ignores the time series
nature of the data.

To implement and monitor the convergence of the Gibbs
sampler, we follow the basic approach of Gelman and Rubin
(1992). We consider 10 independent sequences each with a
sample of size 5,000, and with a burn-in sample of another
5,000

The implementation requires generation of samples from
the full conditionals as given in the Appendix, with one
exception. We sample the 8,;'s initially from multivariate
t distributions with 2 df having the same location vectors
and scale matrices as the corresponding multivariate nor-
mal conditionals given in (A.1)-{A.5) of the Appendix. This
is based on the Gelman-Rubin idea of initializing certain
samples from overdispersed distributions. However, once
initialized, the subsequent 6;;'s are sampled from regular
multivariate normal conditionals.

To monitor the convergence of the Gibbs sampler,
for each 6,5, (i = 1,...,51), the ultimate parameters
of interest, we follow Gelman and Rubin (1992). Com-
pute By5:/5,000 = the variance between the 10 se-
quence means 8,5 each based on 5,000 values; that i,
Bi15:1/5,000 = 251,11(591'161 — 8151)%/(10 — 1), where
Bipr = E;?__l 8,:161/10. Also, let W;,5, denote the aver-
age of the 10 within-sequence variance, 53;'161 each based
gnd(s,ooo — 1) df; that is Wyi5 = 3,2, §%,5,/10. Then

i

.2 _ 50001 1

din) = 5000 1101 + m Baa

Table 2. Percentage Improvemenis of HB Estimates Over the
CPS Estimates Under Four Different Criteria

Average Average Average

Average squared absolute squared

Estimate refative: bias relative bias bias daviation
HB' 54.00% 78.18% 53.85% 77.59%
HB2 50.61% 75.32% 50.24% 74.85%
HB? 59.91% 84.08% 59.99% B4.11%
HB* 56.09% 80.98% 56.03% 81.10%
HBS® 68.66% 89.21% 68.16% BB.28%
HB® 59.84% 84.44% 59.71% 83.95%
HB’ 60.90% 85.02% 60.73% B4.67%
HB8 55.95% 81.80% 55.71% 81.67%
HB? 63.11% 86.42% 62.81% 86.05%
HB'® 58.13% 83.33% 57.88% 83.23%

and

Veng‘n = 635 + ((10)(5,000)) ™" By

Finally, find Rusi = Vaa/Wan (G = 1,...,51). If
Rus (i = 1,...,51) are near I for all of the scalar es-
timands 8,5, (t=1,...,51) of interest, then this suggests
that the desired convergence is achieved in the Gibbs sam-
pler.

We denote these HB estimates in the trivariate case by
HB?. The corresponding estimates based on a non—time se-
ries model utilizes only the census median income figures
for 1979, the CPS median income estimates for 1989, and
the PCIs for the years 1979 and 1989. In this case, also, we
utilize the data available for three-, four-, and five-person
families. We denote these estimates by HB®.

Next, we consider several bivariate models, where the
basic data for the ith local area is a two-component vec-
tor in which the first component is equal to ¥j;; and the
sccond component is equal to either ¥3;» or ¥;;3 or .75Y;
+.25Y};3. Corresponding changes are made in the 8;; vec-
tors, which are now two-component vectors, and the X;;
matrices, which are now 2 x 4 matrices. The resulting HB
estimators of the median incomes of four-person families
for 1989 are now given by HB®, HB®, and HB'. The cor-
responding estimates without using a time series model are
denoted by HB*, HB®, and HB®.

Finally, in the univariate case only ¥3;1 (i =1,...,51;5 =
1,...,10) are considered as basic data for estimating

Table 3. Pgrcentage Improvements of HB Estimates Over the Bureau o
the Census Estimates Under Four Different Criteria

Average Average Averagé Average

relative squared absolute squared

Estimate bias relative bias bias deviatior.
HB! —14.19% —40.48% —14.17% ~43.90%
HB2 —22.60% ~58.94% —-23.11% —61.22%
HB? —.48% —2.52% 1.03% —2.01%
HB* - 8.99% —22.45% —B.77% —21.33%
HBs 22.19% 30.52% 21.23% 24.79%
HB® 31% —.18% 33% —3.04%
HB? 2.94% 3.56% 2.84% 1.61%
HBe -9.36% —17.18% —9.56% ~17.64%
HBE? B.42% 12.59% 8.00% 10.42%
HB'? ~3.93% —731% —4.20% —7.65%
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PERCENT DEVIATION OF CPS ESTIMATES

3 5
9 11

Figure 1. Statewise Deviations (in Parceniage) of CPS Median In-
come Estimates for Four-Person Families From the Camresponding Cen-
sus Estimales for 1989. The numbers on the right denote midpoinis of
intervals of length 2; for example, 1 means 0—2%, and so on.

(61,10,1,- - - ,851,10,1)7 . The X,; matrices now become two-

component row vectors. The resulting HB estimates are de-

noted by HB!. For the corresponding model not involving

a time series, the HB estimate is denoted by HBZ.
Because all of these estimates are compared to the corre-

sponding census figures, we use the following four criteria

to compare the different estimates. Let ¢; denote the cen-

sus estimate for the ith local area (i = 1,...,51). For any

estimate e = (eq,...,e51)7, we compute the following:

1

» average squared relative bias = (51)~! 01, |e; —
eil?/ct

* average absolute bias = (51)! Zfil le; — el

» average squared deviation = (51)~' T2 (¢ — ;)2

+ average relative bias = (51)~!

PERCENT DEVIATION OF BUREAU ESTIMATES

PCT2

= ==

Figure 2. Statewise Deviations (in Percentage) of Census Bureau
(EB) Median Income Eslimates for Four-Person Families From the Cor-
responding Census Estimates for 1989. The numbers on the righ! denote

midpoints of intervals of length 2; for example, 1 means 0—2%, and so
on.

Journal of the American Stalistical Association, December 1996

These four comparison criteria were recommended by the
panel on small area estimates of population and income set
up by the committee on National Statistics in July 1978,
and is available in their July 1980 report (see p. 75).

Table 1 reports these figures for the different estimates.
Table 2 gives the percentage improvements over the CPS
estimates for 1989. Table 3 presents the corresponding per-
centage improvements over the estimates prepared by the
Bureau of the Census. It is clear from Table 2 that all the
HB estimates improve substantially over the CPS estimates
according to each one of the four criteria. Moreover HB®
(i.e., the estimates under the bivariate time series model in-
cluding the median incomes of four- and five-person fami-
lies only) seems to work better than the remaining HB es-
timates. This is much more pronounced in Table 3, where
HB? improves substantially over the estimates produced by
the Bureau of the Census, whereas the remaining HB es-
timates are either dominated by the Bureau of the Census
estimates or improve only moderately over those estimates.
To be specific, with the exception of HB® (the bivariate
non-time serics estimates using median incomes of four-
and five-person families only), all non-time series estimates
perform much worse than the Bureau of the Census esti-
mates, whereas HBS is essentially on par with them. With
the exceptions of HB! and HB® (to a certain extent), other
time series estimates all improve on the Bureau of the Cen-
sus estimates, but the best performance comes from HB®.
Indeed, including median income of three-person families
seems only to worsen the situation. Thus the trivariate time
series estimate HB® performs worse than HB®. The per-
formance declines with HB”, which includes the weighted
average of median incomes of three- and five-person fami-
lies as the second component variable, with 75% weight at-
tached to the median income of three-person families, and
further worsens with HB®, which includes only the median
income of three-person families as the second component
variable.

PERCENT DEVIATION OF HB ESTIMATES

3 G i

Figure 3. Statewise Devialions (in Percentage) of Optimal BH Me-
dian Income Eslimates for Four-Person Families From the Correspond-
ing Census Estimales for 1989. The numbers on the right denote mid-
points of intervals of length 2; for example, 1 means 0-2%, and so on.
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Table 4. A Breakup of the Posterior Variances (V=Vi+ Vs)
of H8® for Selected States

State v Vi Vs
MA 2,205,225 554,000 1,651,225
Ri 3,013,696 583,215 2,430,481
CH 1,909,024 680,043 1,229,881
ND 2,295 225 757,625 1,537,600
NE 2,427,364 661,123 1,766,241
™ 2,442,969 606,544 1,836,025
T 1,633,284 543,348 1,089,936
wy 3,143,529 1,069,929 2,073,600
NV 2,893,401 1,095,120 1,798,281
AK 2,762,244 524,228 2,238,016

Figures 1-3 show statewide percentage deviations of the
CPS estimates, Bureau of the Census estimates, and HB® es-
timates from the corresponding estimates as obtained from
the 1990 census. Clearly, the CPS estimates have the worst
performance. The HB® estimates usually perform as well
or better than the Bureau of the Census estimates. The per-
formance is particularly better in southern states, including
Texas and Florida.

Table 4 provides the posterior variances (V;) associated
with HB® for 10 states and gives a breakup of V; as V =
Vi + Va;, where

Vli — V[E(Gilﬁlla,w: bh ey blCh l'1"’1:: ey ¢10:Y)IY]
and
Vai = E[V(8i1a1le, W, by, ..., bio, 1, ... ., 310, Y)| Y]

This table illustrates that although Vi;’s are smaller than
Vai's, ignoring V4;'s in computing the V;’s can lead to under-
estimation of posterior standard deviations. Thus applying a
naive EB method for this problem can often lead inadeguate
approximations for posterior standard deviations.

Table 5 reports the standard errors SE’s associated with
the CPS estimates, as well as the different HB estimates
once again for 10 states (not the same as those in Table 4).
The selection of the states is partially motivated to indicate
our findings that although HB® and HB® have typically the
smallest SE’s, occasionally other estimates can have sim-
ilar features. This is evidenced, for example, in the states
of Arizona and New York. The Bureau of the Census does
not report any SE’s associated with their EB estimates. The
SE’s associated with the HB estimates are always much
smaller than the corresponding CPS SE’s. Also, the time

series estimates usually outperform their non—time series
counterparts, the only exception being HB® against HBS.
because there does not seem to be a clear-cut winner. How-
ever, it is strongly suggested that inclusion of five-person
families only along with four-person families leads to a bet-
ter performance than others,

Finally, Table 6 reports the coefficients of variation as-
sociated with the CPS and the different HB estimates. We
do not have SE’s associated with the estimates produced by
the Census Bureau, so coefficient of variation calculation is
impossible there.

All the HB methods are far superior to the CPS under
this criterion, Once again HB® emerges very strong, having
34 coefficients of variation in the 2%—4% range and 17 in
the 4%~6% range, but surprisingly, HB®, the corresponding
non-time series estimate, seems to perform even slightly
better. At this point, we do not seem to have a very clear
explanation of this phenormenon.

Samples from multivariate normal distributions were
generated using GASDEYV, and the Wishart variables were
generated using Bartlett’s decomposition. The computations
were carried out on a Sun Sparc 10 workstation using For-
tran software. The computing time needed to produce all
of the tables and graphs was about 8 hours.

The inclusion of only the adjusted census median in-
comes as covariates in addition to the intercept terms in
stage II of the hierarchical model can be justified on two
grounds. First, the median income estimates for the 50
states and Washington, D.C., under these models came clos-
est on average to the corresponding census estimates, as
compared to models that included only the unadjusted cen-
sus medians or the saturated models that included both
the unadjusted and adjusted census medians. The close-
ness was decided on the basis of each one of four cri-
teria described earlier. Second, and possibly more impor-
tant, is a simple model selection device along the lines
of Malec and Sedransk (1994). Consider a simple fixed-
effects model Y;; = X} + e}j, Where e7; are inde-
pendent N(0,V;;). We have different possible choices of
X};- Under a specific choice, let ?‘-,- denote the fitted
value of Y;;. Then, one computes the deviance D? =
Z?:12§=1(Ys‘j - Aij)Tv‘-;I(Y"j — Y;;), which in the
present case turns out to be the weighted sum of squared
residuals. Suppose now that My, My, My, and M; stand as
generic symbols for a saturated model, a model with only
the intercept terms, a model with the intercepts and the ad-

Tabie 5. Estimated Standard Errors for Some Selected States of the Different HB Estimates

States HB! HB? He? HB* HE® HEB® HB” HB® HB? HB'™°
ME 2,073 2,016 1,572 1,555 1,525 1,465 1,632 1,602 1,590 1,579
NH 2,328 2,336 1,772 1,881 1,599 1,643 1,779 1,850 1,721 1,790
VT 1,972 1,924 1,565 1,563 1,515 1,473 1,614 1,593 1,580 1.562
NY 1,327 1,310 1,124 1,134 1,060 1,052 1,077 1,008 1,051 1,066
NJ 1,591 1,624 1,293 1,444 1,285 1,409 1,288 1,444 1,256 1,393
IL 1,469 1,448 1,174 1,176 1,136 1,115 1,161 1,164 1,127 1.127
M| 1,369 1,356 1,158 1,172 1,102 1,136 1,150 1,157 1,106 1,115
NM 1,955 1,952 1,452 1,585 1,417 1,459 1,443 1,548 1.417 1,543
AZ 2,405 2322 . 1,470 1,714 1,556 1,510 1,752 1,721 1,663 1,652
NV 2,086 2,058 1,659 1,652 1,701 1,702 1.654 1,647 1.611 1,604
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Table 6. Coefficient of Variations of Different Estimates

Coefficient of variation

Estimate 2-4% 4—-6% >6%
cPs 6 7 38
HB! 10 az 4
HR2 10 38 3
HB? 24 27 0
HB4 23 28 0
Ha® 34 17 ¢}
HB¢ 35 16 0
HB" 24 27 0
Hpd 22 29 0
HB? 27 24 0
HB* 26 25 0

" 6—8% 15; >8% 22.

Justed census medians, and a model with intercepts and un-
adjusted census medians. The corresponding deviances are
denoted by Df, D}, DZ, and D3. Clearly, D? > D} > D?
and D} > D? > DZ. One now computes the ratios (as in
Malec and Sedransk 1994)

R} = (D} - D3)/(D? - D2)
and
R} = (D} - D})/(D? - DY). (6)

The ratios RZ and R? indicate the proportion of the de-
viation differences between the two extreme models: the
saturated model and the intercept model that is captured by
the intermediate models.

For the 10 models (identified in the order in which the
HB estimates are labeled), we denote the ratios by RZ
and R}, (i = 1,...,10). Clearly, R?(z;‘-n = Rf(zi.),j =
2,3;i=1,...,5, because these computations are based only
on stages I and II of the hierarchical model of Section 2.
Table 7 gives the values of these ratios.

It is clear from Table 7 that the model AL, which in-
corporates only the adjusted census medians is the most
appropriate model in all the ten cases.

4. SENSITIVITY ANALYSIS

For the particular problem at hand, the assumption of in-
dependence of the Yi,..., Y given 6, W+ ++ 0 as made in
stage I of the hierarchical model can be legitimately ques-
tioned. In the CPS literature, there are strong indications
of nontrivial correlation of sampling errors across time. A
referee has pointed out that this may be due to primary sam-
pling units common to several surveys. The associate editor
suggests that comments of Tiller (1992, p- 152) provide an
alternate explanation that the household replacement pol-
icy may also be very important and may induce nontrivial
correlation patterns that cover several years.

In view of these comments, it seems ideal to have direct
empirical assessment of sampling error autocovariances and
to include these in stage I of the hierarchical model. Un-
fortunately, this seems impossible at the moment in the ab-
sence of relevent fine-level data, due to confidentiality re-
strictions. Hence, following the suggestion of the associate
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7able 7. Values of the Ratios RZ and R2

i 12 a4 58, 7.8 8. 10
RZ, 994 993 990 992 391
RZ, 332 332 370 348 356

editor, we analyze in this section the same data set under
alternate models that induce autocorrelations among the
Yi1,..., Y. Specifically, we consider several first-order
autoregressive models,

Under a first-order autoregressive model, in stage I of the
hierarchical model,

Yij —9,'1' =P(Yi(_;|‘-—1) —9,-(_..;_1))-{-&,-_.,; (J = 2_....,!)‘

(7)

where e,; are independent N(0, (1 - P?)Vi;). The factor
1 — p* is needed to keep V(Y;) equal to V;;. Subsequent
stages of the HB model are left as before. Then the for-
mulas for the full conditionals given in (A.I}HA.4) of the
Appendix remain unaltered, but (A.5) changes as follows;

. Gilly,a,b[,...,bt,‘tf)l,...,'l,bg,W,eiz,....G,-t 129 N
[(Vai + 02V5 + Y)Y Vitva + PPVE v +
2B — yi)) + Y7 (Xie + Zab)}. (V' +
PPV + 9.

" Ouly,cibi, b, W0 Oy B
NI(VE' + 7)™V (e + PBie—1) — Yige—1)) +
Ve (Xiea + Zyby)), (Vi +w7)-1. '

* For 2 S] <t- 1, 91'3'!}’, [a 8 bl, ...,bg, 1})1, ...,¢¢,
W, Gy ..., B0y, Bitia1ys -, 0y s N[(V,-__,-I +

i T + 7V i+ 0(8i5 1 —Y¥ig-1) +
PPV ey + 07 0541y — Yigg+1))) + 5 (X5
+ Zib)} (V' + 22V + ).

We tried the autoregressive models only in the bivari-
ate case that took into account the median income of four-
and five-person families only. We considered three differ-
ent choices of p:p = .20,.35, and .50. The resulting HB
estimates are denoted by HB.‘;(,R(”, I{Bﬁ?m, and HBﬁg“(” !
We compared these estimates to the HB® estimates.
The results under the alternate models turn out 1o be quite
different from what we obtained under the independence
model. Also, a comparison with the census estimates reveals
that in the present case, the independence assumption pro-
vides better estimates on an average than the corresponding

Table 8. Comparison of HBS and HBARM)

Average Average Average Average

relative squared absolute squared
Estimate bias relative bias bias deviation
Hgs 023c .0009 932.51 1,618,025.33
g 0291 0013 113345  2,051,716.67
HB*RM 0279 0013 1.088.63  1,956,516.51
HBAh 0274 0012 1.079.73  1,905,051.53
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first-order autoregressive assumption. This is documented
in Table 8.

Needless to say, we could have considered other autore-
gressive models in which the HB estimates could have
performed better. The objective of this section is only to
demonstrate that estimates can be different under different
first-stage assumptions.

5. CONCLUDING REMARKS

This article has presented hierarchical Bayes times series
modeling for estimating the median income of four-person
families in the 50 states and the District of Columbia. A
comparison of these estimates with those obtained from the
1990 decennial census reveals that a bivariate time series
model utilizing the median incomes of four- and five-person
families performs the best and is clearly an attractive alter-
native to the existing methodology of the Bureau of the
Census. Second, the HB approach has the additional ad-
vantage of providing standard errors along with the point
estimates. The authors have software available for imple-
menting the proposed methodology. The data and the For-
tran codes are given in STATLIB.

APPENDIX: FORMULAS FOR THE
FULL CONDITIONALS

*aly, 8 by, by, Yy, 9, W N[ z;=1x§;
"b:'_lx"-f)_l :n=1 Z;'=1 x1?1"¢:-'_1(9"f - ngj)v (221 E§=1
X597 X507

(A.1}

. FOl'j = 2. e, t—1, bjly, 0, o, bl, ,bj-l, bJ‘_l, ...,bg,
Y1, e W No[(OOT ) ZT07 Zs + 2W Y)Y (20
Z5w; (655 — Xyjar) + W (bjoy + bjes)), (o, 25wt
Z,'J' +2‘V_1)‘1].

. (A.23)

* Forj=1,bily, 8 0, ba,....b; ¢y, ... 00, W~ N3,
ZHYT Za + W) N T 2Ny (6 —Xaa)+W'by),
(Cm ZEwT Za + W)Y,

(A.2b)

* For § = ¢, bt|y, 8, a, by, ... ,bi_y, i, oo, th, W o~
Ne [, Z0  Zae + W) TN 20677 (B — Kicc)
+ Wolbe), (20, 239 Zae + W)Y

=1

(A.2¢)
-1 ind " ™m
- V’j |y. 8, o, b, oo by, W o~ Wlshart{S_,- + Z¢=1(911 —
qu.' tr Zijl}j)(gij — X;‘J‘(I A Z.;jbj)r, kj + m]
(A.3)

« Wly, 8,a,by,... by by, ... %, ~ Wishart[So+37"_ (b,
= bj._))(bj = bj_‘l)T, ko + t]. where by = (1
- (A.4)
" Ouly,onbr b, WO (VI 4 gty
(Vi ¥ + 07 (Ko + Zisb,)), (V5 + 07171
(A.5)
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Estimates of Income for Small Places:

An Application of James-Stein Procedures

ROBERT E. FAY Il and ROGER A. HERRIOT*

to Census Data

An adaptation of the James-Stein estimator is applied to sample
estimates of income for amall places {i.e., population less than 1,000)
from the 1970 Census of Population and Housing, The adaptation
incorporates linear regression in the context of unequal variances.
Evidence is presented that the resulting estimates have smaller
average error than either the sample estimates or an alternate pro-
cedure of using county averages. The new estimates for these small
places now form the basis for the Census Bureau’s updated estimates
of per capita income for the General Revenue Sharing Program,

KEY WORDS: Biased estimation; Small-area statistica; James-
Stein ; Income; Revenue sharing,

1. INTRODUCTION

The State and Local Fiscal Assistance Act of 1972
specifies the distribution of funds to states and units of
general-purpose local government for operational or
capital éxpenditures. The resulting General Revenue
Sharing Program, administered by the Treasury Depart-
ment, allocates monies to state and local governments on
the basis of interdependent formulas: Funds are dis-
tributed to approximately 39,000 units of local govern-
ment by dividing state allocations. Statistics on popula-
tion, per capita income (PCI}, and adjusted taxes are
used to determine the allocations within states.

The Census Bureau provides the Treasury Department

with current estimates of these statistics for the states

and local jurisdictions receiving funds under the General
Revenue Sharing Program. Separate methodologies are
used to update the population counts and the income
figures from the 1970 Census of Population and Housing.
Data from the Internal Revenue Service (IRS) and the
Bureau of Economic Analysis form the basis for updating

the census estimates of income. In general, the 1970 -

census values of PCIL in 1969 are multiplied by ratios of
an administrative estimate of PCI in the current year
and & similarly derived estimate for 1969, Herriot (1977)
described this methodology in greater detail.

The 1970 census thus constitutes the foundation for

* Robert E. Fay IIT is a Staff Assistant, Statistical Methods
Division, and Roger A. Herriot is Assistant Chief for Socio-economic
Programa, Population Division, both at the US. Bureau of the
Census, Washington, DC 20233. The authors wish to thank staff
members, particularly Emmet Spiers, for their help on the project
and to acknowledge the support of Daniel B. Levine, Associate
Director for Demographic Fields, and of Harold Nisselson, Associate
Director for Statistical Standards and Methodology: The authors
also wish to thank Carl Morris for helpful comments on the research
and to expréss sppreciation to an sssociate editor and » refsree for
their suggestions on the exposition of this material.

the current estimates of PCI, but s significant problem
arises in this regard. Of the estimates required, more than
one-third, or approximately 15,000, are for places with
population of fewer than 500 persons in 1970. Because
income was collected on the basis of a 20 percent sample
in the 1970 census, the sampling error for the estimates
for such small places is an important consideration. For
a place of 500 persons, the coefficient of variation (rela-
tive standard error} for the 1970 census estimate of PCI
is about 13 percent ; for a place of 100 persons, 30 percent.
The magnitude of these sampling errors initially led the
Census Bureau and the Treasury Department to agree
to set aside the census figures for these places and to
substitute the respective county average figures instead.
This substitution of the county figures for the census
estimates for places with fewer than 500 persons would
seem to be based on the following statistical reasoning:
For larger places the sampling errors of the census
sample estimates are sufficiently small s0 that they might
be chosen as the best estimates, but for smaller places
substituting biased estimates with negligible sampling
error (the county wvalues) for estimates with large
sampling error is preferable. This sort of reasoning is of
course present, formally or informally, in a great deal of
statistical practice. Aspects of this particular problem
suggested, however, that this initial solution might be
improved considerably : The dividing line of 500 persons
was essentially an arbitrary choice; the census estimates
for a significant number of small places were many
standard errors removed from the county values that had
been substituted, thus suggesting & failure of the county
values to represent adequately the true values for these
places; and auxiliary data related to PCI from the IRS
and the 1970 census had not been incorporated in the
estimation. In this article we shall describe the applica-
tion of procedures adapted from the original James-Stein
estimator to the problem of estimating 1969 PCI for
these small places by addressing each of the deficiencies
of the original choice. The revised estimator consisted of
the following elements:
1. Fitting & regression equation to the census sample
estimates, using as independent variables the

© Journal of the American Statistical Assoclation
June 1979, Volume 74, Numbaer 366
Applications Section

_61_



county values, tax-return data for 1969, and data
on housing from the 1970 census;
Measuring the goodness of fit between the regres-
sion equation and the sample data, taking into
consideration the cxpected contribution of sam-
pling error to the observed differences, and deriv-
ing an estimated measure of average lack of fit be-
tween the regression estimates and the underlying
true values for the places;

. Forming a weighted average of the sample and
the regression estimate for each place, adjusting
the weights to refiect the relative magnitudes of
the average lack of fit of the regression and the
variance of the sample estimate; and

. Constraining each such weighted average to be
within one standard error of the sample estimate,
thus preventing severe disagreement between the
sample and final estimate.

Because of the mathematical and logical consistency
of the revised procedures, and on the basis of independent.
empirical evidence, the Census Bureau has used this
methodology in forming the estimates for 1974 and sub-
sequent years. To our knowledge, the Census Bureau’s
use is the largest application of James-Stein procedures
in a federal statistical program.

2 THE JAMES-STEIN ESTIMATOR AND
ITS DESCENDANTS

In order to describe the nature of the estimator that
we developed for this problem, we will briefly review some
of its predecessors. Other authors, for example, Efron
and Morris (1973a, 1975), have given a more compre-
hensive presentation of much of the material summarized
in this section.

‘Suppose that we have a single observation Y
= (¥, ..., Y)T from a k-dimensional multivariate
normal distribution with mean 0 = (6, ..., )T and
covariance matrix DI, where D is a known scalar con-
stant. Equivalently, the Y,'s are assumed to be inde-
pendent and identically distributed according to normal
distributions with means #; and variance D, that is,
Vi ~iaa N(#; D). The maximum likelihood estimator of
0 is Y; each Y. is the obvious estimate of its respective
8;. Stein (1955) showed that for k > 3, Y is not admissible
under the usual loss function defined for an estimator
8% = (0[*, 255 ek*)’" by

R(6, 8*) = EL(e, 0%) = Z_ En(6: — 8% . (2.1)

We have, of course, R(8, Y) = kD. Fork > 3, James and

Stein (1961) exhibited the estimator 8 = (&, ..., §)T
defined by
5= (11— ({k—2)D/S))Y.: , (2.2)
where
(2.3)

S=37rs

with risk R(8, &) < kD for all 8. Consequently, &'
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dominates the maximum likelihood estimator Y with
respect to the loss function (2.1).

The result is far from obvious: The ¥.'s estimate the
respective 8,'s, which in turn need to have no specifie
relationship to each other; yet by combining information
from apparently unrelated estimation problems, the
expected total loss (2.1) may be redueed. To do this, 3’ in
effect shrinks Y towards 0; that is, each component of
Y is proportionally reduced by the same factor. The
amount of shrinkage depends on the relative closeness of
Y to 0; for Y near 0, the shrinkage is substantial, while
for ¥ far from 0, &' becomes essentially Y. Roughly
speaking, to the extent that 8 lies close to 0, Y is also in a
sense an estimate of 0, and &' incorporates this informa-
tion in estimating 0.

James and Stein noted that (2.2) could be uniformly
improved for all 8 by restricting (k — 2)D/S to [0, 1],
replacing this term by 1 in cases in which it was greater.
This restriction prevents Y from being partially reflected
through the origin and is routinely incorporated in ap-
plications of (2.2).

The estimator 3 has inspired a number of important
variations. The link between 8 and many of the subse-
quent adaptations can be traced most easily through the
correspondence between (2.2) and a classical Bayes
estimator. Suppose that we assume that @ has a prior
distribution 8; ~i.a N (0, A), that is, normal with vari-
ance A. Then the Bayes estimator 85* of 8 is given by

05" = (1 - (D/(4 + DY . (2.4)

Thus, the Bayes estimator in this situation also shrinks
Y towards 0.

The James-Stein estimator (2.2) mimics the Bayes
estimator in the following manner: Under the given prior
distribution 8 ~;.a N(0, 4), the expectation of
(k — 2)D/8S, taken over the joint distribution of 8 and Y,
is D/(D 4+ A), showing the correspondence between
(2.2) and (2.4). In the Bayesian context, regardless of
the value of 4, (2.2) approximates the Bayes estimator
(2.4) by in effect estimating A on the basis of Y. This
principle forms the basis from which the other estimators
discussed here are derived. In each instance, an estimate
A* of A is obtained, providing both a notion of the
average variation of §; about some prior estimate and an
indication of how much weight should be given to the
prior and sample estimates in order to estimate 6,.

An immediate generalization of (2.2) follows in the
case in which a p-dimensional row vector X; is available
for each 8, representing auxiliary information about 4..
For Vi ~ina N@;, D) and 8; ~1ne N(X.-g, A), with &
uniform (improper) prior distribution on g, the regression
estimate (for X7X of full rank p),

Y*= X.-(X"X)“X’_'Y (2.5)

mey be combined with the sample estimate ¥; to form
the Bayes estimator .

85 = Y+ (1 — (D/(D + A)N(Y:i— ¥ (2.6)
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in & form similar to (2.4). Equivalently,
82 = (D/(D + A)Y* + (A/(D + A)Y: ~(2.7)

expresses the estimator as a weighted average of ¥.* and
Y,. The James-Stein analogue of (2.6) and (2.7) for
p<k—2is

=Y+ (01— (k—p—2)D/S))(Y:— ¥ (2.8)
=k —p—2)D/S)Y*
+ Q= ((k—p—2)D/S)Y; (2.9)
where

8 = Z (Y, - Y{*): . (210)
A special case of (2.5) and (2.8) through (2.10) is for
p=1, X:= 1:(2.5) makes each Y.* the mean of all of
the Y.'s, and (2.9) averages each ¥; with the mean. (The
estimator (2.5) and (2.8) through (2.10) in the general
case in fact follows directly from (2.2) and (2.3) without
requiring a Bayesian formulation, but the intent of the
estimator is more clearly illustrated in the Bayesian
context.)

Efron and Morris (1971, 1972) remarked that both
Bayes estimators such as (2.4) and empirical Bayes
estimators such as (2.2) may perform well overall but
poorly on individual components. In these instances the
shrinkage of (2.2) or (2.4), which benefits most com-
ponents of Y, is singularly inappropriate for the particular
8:. For the Bayes case (2.4), 6; may be unusual relative
to the prior distribution, while for the empirical Bayes
case (2.2), 8; may lie much further from 0 than the other
components of 8. Efron and Morris suggested a straight-
forward compromise, which consists of restricting the
amount by which 8, differs from ¥; by some muitiple
of the standard error of ¥,. With this restriction, (2.2)
becomes

8 =&/ if Vi—e<8/<VY:+¢ (2.11)
=Yi—c¢ if & < Yi—c¢ (2.12)
=Yi+e i 8/ >Y:i4e¢ (2.13)

The estimator (2.11) through (2.13) compromises be-
tween limiting the maximum possible risk to any com-
ponent and preserving the average gains of . The
choice ¢ = D}, for example, ensures that B — 6
< 2D, while retaining more than 80 percent of the
average gain of 5’ over Y.

For Y: ~iaa N(6:, D;), the possible strategies for ex-
tending the James-Stein estimator are numerous but
more theoretically difficult if the D,'s are known but not
all equal. The most simple extension of (2.2) may be
derived by assuming & Bayes prior 8; ~ia N (0, AD)).
This problem may be solved by transforming Y, applying
(2.2) to the vector of elements Y:/D, which have the
common variance D = 1. The resulting & from (2.2)
may be transformed back to the original scale by com-
puting $/D1. Even outside the Bayesian formulation,
this estimator dominates the maximum likelihood estima-

tor Y with respect to the loss function

R(6,8) = T E\.(6; — 6,)/D, (2.14)
for all 8. (A similar upproach may be used to extend
(2.8).) This estimator will be most effective against a
Bayes prior in which the variance of the prior distribution
is proportional to the sampling variance. The resulting
estimator applies an equal amount of shrinkage to each
component of Y.

In many applications, however, the linkage between
the sampling variance of Y; about 6; and the Bayes
variance of #; about 0 is less direct. An alternate approach
is to develop an estimator that more closely parallels the
Bayes estimator for the prior distribution 8; ~ .a N (0, A),
that is, with constant prior variance regardless of D;.
Efron and Morris (1973a) first proposed an extension of
(2.2) under this second assumption. The estimator that
we used in this application, however, more closely re-
sembled one suggested by Carter and Rolph (1974). In
considering the situation Y; ~ N(0;, D, and @,
~ind N (», A), with known D; but unknown » and 6,, they
observed for the weighted sample mean

v =L Y/(A4+DI/Z1/(A+D) (215)
that ' (¥s— '

for the joint expectation over both Y and 8, when 4 is a
known constant. They suggested estimating A as the
unique solution A* > 0 such that (2.15) and (2.16) are
simultaneously satisfied when the expectation operator
is omitted from (2.16),
P T ]
sie— R .
¢ A* 4D
They set A* = 0 if no positive joint solution of (2.15)
and (2.17) exists, Each 6: is estimated by a weighted
average of Y, and »*,

&' = (A*/(A* + D) Y: + (D/(A* + D))v* . (2.18)

The estimator that we applied to the 1970 census
estimates of PCI is an extension of (2.15), (2.17), and
(2.18) to the linear regression case. We considered
Y.' ~iad N(ﬂ", D.) and 9_.' ~ind N(X.@, A) for a p-dimen-
sional row vector X, and regression coefficients § with an
(improper) uniform prior distribution. The row veetors
X; and sampling variances D; were known, but gand A
were both to be estimated from the data.

To derive the estimator, we first considered relation-
ships when A was known. Over the joint distribution of
Y and @ in this case, the weighted regression estimates

Y# = X,(XTV-IK)-ETVY (2.19)

where V is a diagonal matrix with Vi = D; + A give
the minimum variance unbiased estimates of X3, the
prior means of §;. (These estimates are also the posterior
means of X,8.) Over this same joint distribution with

(2.17)

_63ﬁ



knawn 4,

(Y — Y.
Lt DU 2.20
E(Z A+D‘-) b= A0

Equation (2.20) is a standard result in weighted least
squares under the preceding assumptions and may be
found in texts by Rao (1965, pp. 187-188) and by Draper
and Smith (1966, pp. 77-81).

Following the program of Carter and Rolph, we esti-
mated A from the data by removing the expectation
operator from (2.20)

2.21

¢ A*4+ D; ( ‘
and found the unique A* > 0 solving both (2.21) and
{2.19), using A* = 0 when no positive solution could be
found. The estimator was then

8/ = (A*/(A* + D))Y: + (D/(A*+ D)Y.:* .

This weighted average of the sample and regression
estimate would be the classieal Bayes estimator in the
case that A were known. The restrictions {2.11) through
(2.13) were then imposed on each component §; with
¢ = D{. The actual numerical operations used to solve
equations (2.19) and (2.21) simultaneously are described
in the Appendix. (We also discuss there an alternate
estimator for this problem based on a maximum likeli-
hood approach to fitting the model 8; ~ .4 N (X8, AD;*),
where' 8, A, and « may be jointly estimated from the
data.} ‘

We have traced the development of this estimator here
through its relation to general results for the James-Stein
estimator; yet parallel research in estimation for local
areas also precedes these results. Ericksen's work (1973,
1974) explored use of sample data to determine regression
estimates for small areas, and Madow (see Madow and
Hansen 1975) first remarked on the merit of forming a
weighted average of the sample and regression estimates.
The estimator presented here represents a further de-
velopment of these basic ideas.

(2.22)

3. APPLICATION TO ESTIMATION OF INCOME
FOR SMALL PLACES

This section will deseribe the steps used to apply the
preceding theory to the estimation of PCI in 1969. The
elements of the approach consisted of

1. A division of the total problem into a set of

separate estimation problems;

Logarithmic transformation of the census values

to a scale in which the sampling variances could

be considered known ;

3. Identification and similar transformation of aux-
iliary variables available for each place:

4. Derivation of a regression estimate for each place,
which was combined with the sample estimate by
using (2.19), (2.21) and (2.22), and (2.11)

.through (2.13);

-2,
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5. Retransformation of the resulting estimates back
to the original scale; and

6. A final proportional readjustment of the resulting
estimates to sum to sample estimates of total
income at the state and county level.

The following discussion treats each of these points in
detail.

Although the initial substitution of the county values
of PCI had been carried out only for places of population
less than 500 before this investigation, we extended the
problem to all places with 20 percent sample estimates of
population less than 1,000. (The 20 percent sample
count, which is approximately proportional to the number
of sample persons in the place, is often in minor dis-
agreement with the complete count for places of this size.)
We divided the overall problem into 100 separate estima-
tion problems along two dimensions: a division between
places with 20 percent sample estimates of population
less than 500 and those between 500 and 999, and an
independent consideration of each state. An average of
200 to 300 places with population less than 500 in a given
state were thus treated as a joint estimation problem,
although there was considerable variation in the size of
this group. In some states only 10 or 20 cases were in-

volved. (In addition, some states required estimates for

two kinds of geography, places and townships. For
simplicity we will discuss the problem for places only,
although parallel procedures were applied separately to
obtain estimates for the townships.)

For almost all places, a sample estimate Z; and a
weighted 20 percent sample count N; were available. As
part of the processing of the 1970 census, variance com-
putations were performed in eight states and the findings
generalized to the rest of the country (U.S. Bureau of the
Census 1976, pp. 11-8-11-9). An unpublished finding of
this generalization was the approximation of the coeffi-
cient of variation of Z; as 3.0/N :!. Because the coefficient
of variation does not depend on the expected value, the
standard deviation increases in direct proportion to the
expected value. Hence, the log transformation stabilizes
this variance, and the variance of Y: = In (Z,), the
natural logarithm of Z;, is approximately 9.0/N; and
does not depend on the expected value of Z,. This pro-
cedure of stabilizing the variances has appeared in some
other applications of the James-Stein estimator (e.g.,
Carter and Rolph 1974),

Each place, without exception, has an associated
county value of PCI from the 1970 census. (With a
handful of exceptions, places do not cross county lines.)
We computed the natural logarithms of these county
figures for use as an independent variable in the regres-
sion model. ‘Because of the considerably larger county
populations, this variable has typ:ca.]]y neghglble sam-
pling error.

Two other important sources of data are available for
these places: the value of owner-occupied housing from.
the 1970 census, and the average adjusted gross income
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per exemption from the 1969 IRS returns for 1969. Both
variables are free from sampling error, but each has other
limitations. The value of owner-occupied housing was
collected in the 1970 census only for nonfarm dwellings;
we consequently chose to omit this variable from the
analysis for places with a substantial proportion of farm
residences. The IRS data, on the other hand, are affected
by errors in coding tax returns to Census Bureau geog-
raphy on the basis of mailing address. Some places more
than others are affected by substantial ambiguity be-
tween the mailing addresses and place boundaries. Places
thus affected were identified on the basis of unusual ratios
between the number of exemptions coded to the place and
the 100 percent population count, and in such cases the
IRS results were omitted from the analysis. The IRS
results were also dropped for places with significant
boundary changes since 1970.

After editing the IRS and housing data in the preceding
fashion, the natural logarithms of each of these variables
were taken, whenever the case met the criteria for in-
clusion, and matched to logarithms of the respective
county values for these variables. Four separate regres-
sions were possible:

1. A constant term and the logarithm of PCI for
the county (with p = 2 in the notation of the
preceding section) ;

2. A constant term, the logarithm of PCI for the
county, and logarithms of the value of housing
for both the place and the county (p = 4);

3. A constant term, the logarithm of PCI for the
county, and logarithms of IRS-adjusted gross
income per exemption for both the place and the
county (p = 4); and

4. A constant term, the logarithm of PCI for the
county, the logarithms of the value of housing for
both the place and the county, and the logarithms
of IRS-adjusted gross income per exemption for
both the place and the county (p = 6).

Inclusion of both the logarithms of the county and place
values for either the housing or tax data is mathematically
equivalent to inclusion of both the logarithm of the place
value and the logarithm of the ratio of the place to
county values. Thus, the regression was able to use the
data for the places on an absolute scale, across the entire
state, and in relation to the county values.

Our strategy consisted of computing each of the four
regressions for those ¥;’s with the necessary independent
variables for the particular regression by solving (2.19)
and (2.21). Using the regression egquation corresponding
to all the available variables for each place, we computed
(2.22) subject to a constraint of the form (2.11) through
(2.13). For states with only & few small places, the num-
ber of regressions fitted was restricted by insufficient
data. Places without any census sample estimate were
estimated directly from the regression (2.19).

The preceding estimates developed on the logarithmic
scale were transformed back to the original seale. A final

two-dimensional iterative proportiornal adjustment
(raking) was applied to all places in eachstate, including
those with population more than 1,000, to force two con-
straints: the addition of total estimated income (PCI
times population) for places belonging to the classes of
places with less than 500, 500 to 999, and more than 1,000,
to the sample estimates of these totals at the state level;
and the addition of the estimates for all places, disregard-
ing size, within & county to the sample estimate of the
total for all places in the county. These adjustments, on
the order of 1 or 2 percent, were quite small relative to the
other aspects of this estimation problem, but they im-
posed a logical consistency on the outcome and ensured
that the analysis of the data on the logarithmic scale did
not induce systematic bias across all small places.

The values of A* provide a measure of the average fit
of the regression models to the sample data, after allow-
ance is made for sampling error in Y. Table 1 shows the
values of A* obtained for the states with the largest
number of places of size less than 500. In a sense, a value
for A* of .045 indicates an average level of accuracy
equivalent to the accuracy of a sample estimate for a
place of size 200 (8.0/200 = .045, from the formula for
the approximate coefficient of variation noted earlier),
because (2.22) weights the sample and regression esti-
mates equally in this case. (The value .045 for A* may
be thought to correspond to an average—in the sense of
root mean square—error of prediction by the regression
of the true value of PCI of approximately 21 percent,
because .045 = 0.21%) In turn, the expected improve-

1. Estimated A* for Places With 20 Percent Sample
Estimates of Population Less Than 500

Regression Equation

County County,

County and Tax, and

States County and Tax Housing Housing

States With Mare Than 500 Places in Class
lilinois .036 032 .me 017
lowa 029 011 07 000
Kansas 064 048 016 020
Minnesota 063 055 014 019
Missouri 061 033 034 017
Nebraska .065 041 .019 .000
North Dakota .072 081 .020 004
South Dakota .138 138 014 —
Wisconsin .042 025 .025 004
States With 200 to 500 Places in Class

Arkansas 074 036 .039 018
Georgia 056 081 067 114
Indiana 040 012 .003 000
Maine 052 Q18 — =
Michigan .040 .032 .028 023
Ohilo 034 015 004 004
Oklahoma 063 027 049 .036
Pennsylvania .020 .18 016 .011
Texas 092 048 056 .040

NOTE: A dash (—} indicates that the regression was not fitted bacsuse of oo few
observations.
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2. Estimated A" for Places With 20 Percent Sample
Estimates of Population 500 to 999

Regression Equation

County County,

County and Tax, and

States County and Tax Housing Housing

States With More Than 250 Places in Class
llinois 032 023 .012 .008
Indiana 017 014 .007 009
Michigan 019 014 .005 .008
Minnesota .56 040 021 .007
New York .052 .015 .028 .006
Chio 024 010 005 .000
Pennsylvania 035 025 015 026
Wisconsin .039 030 014 -
States With 100 to 250 Places in Class

lowa 017 005 016 004
Kansas 025 010 014 008
Maine .022 .01 — —_—
Missourt .042 019 011 013
Nebraska 027 007 .008 .00
Texas .050 017 .013 012

NOTE: A dash {—) indicates that the regression was not flitted because of too lew
observations.

ment of an equal weighting of two estimates with equi-
valent estimates of error would be to reduce the variance
by one-half, or to give, on the average, the combined
estimate an accuracy that would be achieved by a sample
estimate alone for a place of 400 persons, that is, a
relative error of about 15 percent.

In fact, for the regression equation based on county
values alone, more than half the states in Table 1 have
values for A* greater than .045, suggesting that the
county value is often not so good a prediction of the true
value as the sample estimate for places with more than
200. Parenthetically, this finding suggests that the
original decision that had preceded this investigation,
namely, to replace the sample estimates with the county
values for places of size less than 500, actually exag-
gerated the ability of the county values alone to serve
as a good prediction for these places. If no James-Stein
estimation was to have been done, it would have been
better as a rule to use sample estimates down to a
population of approximately 200, instead of 500. The
James-Stein procedures here, however, allow a combina-
tion of the two estimates to achieve an improvement in
the average accuracy of prediction.

Table 1 also shows that regressions, involving either
IRS or housing data, but especially those including both,
are significantly more effective in estimating the true
values than the regression on the county values alone.
The fit for these other regressions is particularly good
among states in the North Central Region. (One large
value of A* for Georgia is based on a relatively small
number of cases.)

Before processing the entire set of estimates, we experi-
mented with alternative forms for the regression equa-

Journa! of the American Statistical Association, June 1979

tions, using the value of A* as the criterion. Surprisingly,
we did not find any appreciable improvement through
further transformation of the independent variables.

Table 2 displays values of A* obtained for places be-
tween 500 and 999. The values in the table tend to be
somewhat less than those in the first table, indicating
slightly better it for larger places. The differences be-
tween Tables 1 and 2, however, are less than the difference
between the average sampling errors of these two groups
of places. Roughly speaking, places with less than 500
would have an average size of 250, while places between
500 and 999 would have an average size of about 750.
Thus, the average sampling variances might differ by
a factor of up to 3 between the two groups, while the
ratios between the average estimated A™s are about 1.5.
Thus, the assumption that the prior variance A* is in-
dependent of D; seems to hold reasonably, although not
perfectly. Furthermore, possible inadequacies in the ap-
proximation used to give the sampling variances may
affect the estimates in Table 1. In general, overestimates
of the sampling variances will lead to underestlmates
of A*.

For cases in which there may be some linkage between
the sampling variance D; and the variation of the
true values about the predicted values, we include
in the Appendix a procedure to fit the assumption
8 ~ina N(X:8, AD:%). Use of the procedure would be
encouraged, however, only if many cases, perhaps on the
order of hundreds, were available and the true values of
D; were known to almost complete accuracy.

4. EYALUATION OF THE ESTIMATOR

The values of A* indicated that the revised estimator
would be superior to the county values. In some applica-
tions, these statistics may constitute the only available
assessment of the improvement achieved by the James-
Stein estimator, where small values of A* relative to the
sampling variances D, point to substantial overall gains.
For this problem, however, we devised two additional
demonstrations of characteristics of the revised estima-
tor: one based on a limited number of special censuses
taken in 1973, and the other derived from the 1970 data
used in the estimation.

As a general verification of the methodology to update
the 1970 census estimates of population and income on

" the basis of changes in administrative data, the Census
Bureau conducted complete censuses of a random sample
of places and townships in 1973, collecting income for
1972 on a 100 percent basis. (The difference in years here
is the same as for the 1970 census collecting income for
1969; in general, Census Bureau income questions are
asked for income during the preceding calendar year.) Of
these special censuses, 17 were for places of size less than
500 in 1970, and 7 fell into the interval 500 to 999. In
general, the methodology to update the esiimates pro-
duced for each place a factor f; used to multiply a base
figure for 1969. By keeping this updating factor f; con-
stant, three separate estimates of PCI for 1972 were
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3. Comparison of Selected 1972 PCI Estimates With 1973 Special Census Values of 1972 PCI

1972 PCI Estimates and Parcentage Difference From Special Census PCI

Using 1970 Using Revised Base
1973 Sample Base {James-Stein) Using County Base
Special ~
Census 1972 Percentage 1972 Percentage 1972 Percentage
Special Census Areas 1972 PCI Estimate Difference Estimate Difference Estimate Difference

1970 Census Weighted Sample Population Less Than 500
Newington, Ga. $2.019 $2,225 10.2 $2,302 14.0 $2,279 12.9
Foosland Village, Il 2.899 2,771 4.4 3,199 10.3 3,796 30.9
Bonaparte, lowa 2,331 3,126 341 2,942 26.2 2,542 9.1
McNary, La. 2.333 2,303 1.3 2,527 8.3 2,908 24.6
Freeborn Village, Minn. 274 3,693 347 3,338 218 2,922 6.6
Spruce Valley Twp., Minn. 2,430 1,894 221 1,949 198 2,076 14.6
Jacksonville, Mo. 2,723 2,338 14.1 2,611 4.1 3,233 18.7
Thayer, Nebr. 2,742 2,245 18.1 2,870 47 3,452 25.9
Benton Town, N.H. 1,768 2,874 860.7 3.284 78.7 3,570 99.7
Nora Twp., N.Dak. 1,780 2,629 47.7 2.754 54.7 3,476 95.3
Riga Twp.. N.Dak. 1,454 2,749 8s.1 2,411 65.8 2,711 86.5
Deer Creek, Okla.: 2,451 2,493 1.7 2,673 9.1 2,762 12.7
Dudley Borough, Pa. 2,446 2,168 114 2,411 1.4 2,608 6.6
Brookings Twp., S.Dak. 3,132 3,400 8.6 3,309 5.7 2,395 23.5
Valley Twp., S.Dak. 1,574 1,945 23.6 1972 25.3 2114 343
Bryant Twp., S.Dak. 2,412 1,120 53.6 2,158 10.5 2,695 11.7
Parrish Town, Wis. 3,567 5399 514 4,079 14.4 2,721 237

Average Percenlage Difference - —_ 28.6 — 220 — 31.6
1970 Census Weighted Sample Population Between 500 and 899
Caswell Plantation, Maine $1,948 ' $2,656 36.5 $2,490 28.0 '$2,646 36.0
Sugar Creek Twp., Mo. 2,224 2,035 8.5 2,315 4.1 2,018 93
Jeromesville, Ohio 3,329 3,081 7.4 3418 27 3,072 7.7
Rush Twp., Ohio 2.241 2,545 13.6 2,619 169 2,546 13.6
Dennison Twp., Pa. 3,521 4411 253 4,085 163 4,430 25.8
Manor, Tex. . 2,062 2,746 33.2 2,765 341 2,740 329
Derby Center, Vi. - 2,968 2,694 9.2 2,754 7.2 2,675 9.9
Average Percentage Difference —_ — 19.1 - 15.6 - 19.3

possible : multiplying the census sample estimate by f;;
maultiplying the revised James-Stein estimate for 1969 by
fi; or multiplying the county values by f;. The last, of
course, was the original choice for the 1972 Revenue
Sharing estimates. Comparison of the three sets of 1972
estimates with the special census results provides an
indirect assessment of three sets of estimates for 1969,
because each set is affected by errors both in the bases
and in the updating factors f.. Table 3 presents the
results. The revised James-Stein estimator shows smaller
average errors and, to a lesser extent, & lower incidence
of extreme error than either the sample estimates or the
county values. (The reader may note, however, that the
estimates, particularly for the revised James-Stein base,
run consistently higher than the special census values.
The explanation lies with the special censuses themselves.
Approximately 60 additional special censuses not in-
cluded in this table were taken at the same time for
places with population greater than 1,000, where the
1970 census sample estimates are used as base figures.
There too, the estimates fall slightly above the special
census results. One factor possibly involved is that missing
income was not imputed in the processing of the special
censuses, while it was in the 1970 census. The special

censuses estimates, which are based on only complete
cases, may be subject to & downward bias for this reason.)

A second test illustrates the manner in which the
revised estimates, far more than the county values,

4. Relation of 1969 Revised Estimates and 1969
County Averages to 1970 Census Sample
Estimates for Groups of 10

1969 Revised 1969 County
Estimates Averages
Relation to 1969 Num-  Per- Num- Per-
Sample Estimates ber centage ber centage

Total Groups 212 100.0 212 100.0

Within 10% of Sample PCI i72 B1.1 111 ' 52.4

Qutside 10% of Sample PCI 40 18.9 101 476

Within One Standard Error 149 70.3 61 28.8
Between One and Two

Standard Errors 28 13.2 60 283
Qutside Two Standard

Errors as 16.5 91 42.9

Closer to Sample PCI 154 72.6 58 27.4

NOTE: For places with the ratio of 1969 IRS exemptions to 1970 census population be-
tween .0 and 1.1.
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preserve much of the underlying dispersion of the true
values for PCI among places. The logic of the test was
simple : Although the estimates for places with population
less than 500 have large sampling errors in the 1970
census, if they were pooled into a suitably large group,
the sampling error of the resulting estimated sum would
be relatively less. We selected a sample of places with
valid IRS estimates of adjusted gross income per exemp-
tion and assembled them into groups of 10 after sorting
them by the IRS values. (This grouping is legitimate in
the sense that the groups are defined independently of
the sample selection in the census.) Table 4 shows that
the sum of the revised James-Stein estimates for 1969
more often falls closer to the sum of the census estimates
than does the sum of the county values. This demonstra-
tion illustrates how the James-Stein estimates capture
more of the true differences in income among these places
than does the substitution of county values.

5. DISCUSSION

The General Revenue Sharing Program is one of a
number of important federal programs that allocates
funds according to formulas using statistical counts or
estimates. A general study of critical considerations in the
design and administration of these programs has recently
appeared, Statistical Policy Working Paper 1: Report on
Stalistics for Allocalion of Funds (U.S. Department of
Commerce 1978). Although this study principally con-
cerns policy issues beyond the scope of this article, the
report reaffirms the need for accurate and timely data in
these allocation programs.

The use of & James-Stein estimator in this instance
does not form the precedent for its wholesale application
by the Census Bureau to all other estimation problems
involving small-area data, and we should emphasize the
special circumstances in this application. Planning for the
1970 Census of Population and Housing did not anticipate
the requirements of the State and Local Fiscal Assistance
Act of 1972, which mandated the General Revenue
Bharing Program. Consequently, the legislation forced a
provisicnal program of estimation falling short of the
ideal in this case, a 100 percent census for small places.
The requirements of the act are in consideration in the
planning of the 1980 census. In the mesntime, however,
the lack of sample estimates with acceptable statistical
reliability forces a choice among alternatives, and in this
instance James-Stein procedures provide an attractive
solution.

Future applications may be required under certain
conditions. For example, if the 1980 census is conducted
with a 50 percent sample in small places, the sampling
reliability of the estimates will be much greater than in
1970. Nonetheless, the sampling errors for places of size
200 or less may suggest a repetition of the same metho-
dology. Parallel situations may arise in which the sam-
pling errors of census or survey estimates may require the
consideration of alternate estimators. In these instances,
the James-Stein procedures may be viewed as a way to
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maximize the use of the data rather than as a means to
replace them.

Although the theory is now sufficient to form the basis
for many applications of the James-Stein estimator to
practical problems, this article illustrates directions for
further research. The general problem of unequal vari-
ances will require more investigation to produce estima-
tors with good properties for practical applications. The
question of how independent estimation problems may
be grouped for joint consideration was partially addressed
by Efron and Morris (1973b), but we conjecture that
unequal variances introduce further complications in this
question and that larger groupings than Efron and Morris
suggested may have merit. (In retrospect, we would now
contemplate further dividing the estimation problem
along the dimension of population size in states with
large numbers of small places, but we hesitated doing
this initially in an effort to keep the procedures as uni-
form across states as possible.) The use of prior distribu-
tions other than the normal to motivate an empirical

“Bayes estimator may produce somewhat better results

for practical problems in which only & few of the observa-
tions lie far from the general tendencies. Full solution of
these problems may encourage further application of
these techniques to practical problems.

APPENDIX
Al. Iterative Solution of (2.19) and {2.21)

Equation (2.19) for any specific value of A is, of course,
simply weighted linear regression. To denote the de-
pendence of (2.21) on the value of A, we will write ¥ *(4).
Using the functions

(¥i = Y& (d4.))?

f(4.) = Z 1.+ D, (A.1)
(Yi — Y*(A.))?
A = ~ — :
e = = L Dy A

we started with A, =0 and defined A., = Aa
+ (k — p — J(AL)/g(A), constraining A.4; > 0. The
function g is an approximation to the derivative of f.
Convergence is rapid, generally requiring less than 10
steps.

A2. Alternate Estimators

Carl Morris suggested to us & maximum likelihood
approach to estimating A4, which requires the simul-
taneous solution of (2.19) and

— YAt
5 (Y:i— Y™ -5 1 .
¢ {4+ D ¢ A+ Dy
Equations (A.3) and (2.21) weight the significance of
the deviations (Y:— Y,)* differently: (A.3) places
relatively more importance on the observations with
small D; than does (2.21). The maximum likelihood ap-
proach improves the efficiency of the estimation of A in
the full Bayes setting. We preferred in this application,

(A.3)
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however, to balance out the estimation of 4 over the
sample to ensure that A was representative of all places
in the class less than 500 rather than of just the larger
places.

A more complex mode]l may be fitted for cases in which
both the assumed Bayes variance of the population and
the sampling variance are related to a measure of size.
Insuch cases, Y. “~ind N(G.—, D‘) and 8 ‘\'im;kN(X,'g, AD,‘")
may be a reasonable model. Maximum likelihood tech-
niques may be used to estimate @, 4, and « jointly, re-
quiring solution of (2.19) and

g e TS e B (A4)
7 (Di+ AD=)t T D.+ AD:= '
(Y" == Y{*)‘!D{d In D.‘ D‘_c In D.‘
= (A.5)

T (D:i + ADy T (Di+ AD)?
We would conjecture, however, that the sampling error
of a is too large to make this estimator preferable to
simpler versions unless many, possibly several hundred,
observations were involved,

A3. Details of the Implementation

For each place, the data were edited according to the
following rules:

1. The census sample estimates were considered to
be missing if the sample estimate of the number
of persons was zero, or if the estimated PCI was
less than $200. The latter situation can arise from
losses, particularly on farm income, but the
difficulty of assigning a reasonable standard error
to the estimate in this instance led us to exclude
such cases.

2. The housing data were considered missing if
more than 20 percent of the owner-occupied units
were farm dwellings, or if the data were otherwise
unavailable.

3. The IRS data (originally prepared according to
1972 geography) were considered missing if the
boundary changes between 1969 and 1972 had
involved more than s 10 percent change in
population, or if the number of exemptions was
less than 70 percent or more than 100 percent of
the 100 percent census count.

The equations incorperating county, tax, and housing
values were calculated only for states with 16 or more
complete cases. Similarly, regressions with either tax or
housing data only were fitted for 12 or more valid cases
and the county-nnly regressions required at least 8.

[ Received December 1977, Revised December 1978.]
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On Robust Small Area Estimation Using a Simple
Random Effects Model

N.G.N. PRASAD and J.N.K. RAQ!

ABSTRACT

Robust small area estimation is studied under a simple random effects model consisting of a basic (or fixed effects) model
and a linking model that treats the fixed effects as realizations of a random variable. Under this model a model-assisted
estimator of a small area mean is obtained. This estimator depends on the survey weights and remains design-consistent.
A model-based estimator of its mean squared error (MSE) is also obtained. Simulation results suggest that the proposed
estimator and Kott's (1989) model-assisted estimator are equally efficient, and that the proposed MSE estimator is often
much more stable than Kott’s MSE estimator, even under moderate deviations of the linking model. The method is also

extended to nested error regression models.

KEY WORDS: Design consistent; Linking model; Mean squared error; Survey weights.

1. INTRODUCTION

Unit-level random effects models are often used in small
area estimation to obtain efficient model-based estimators
of small area means. Such estimators typically do not make
use of the survey weights (e.g., Ghosh and Meeden 1986;
Battese, Harter and Fuller 1988; Prasad and Rao 1990). As
aresult, the estimators are not design consistent unless the
sampling design is self-weighting within areas. We refer the
reader to Ghosh and Rao (1994) for an appraisal of small
area estimation methods.

Kott (1989) advocated the use of design—consistent
model-based estimators (i.e., model assisted estimators)
because such estimators provide protection against model
failure as the small area sample size increases. He derived
a design-consistent estimator of a small area mean under a
simple random effects model. This model has two compo-
nents: the basic (or fixed effects) model and the linking
model. The basic model is given by

y,.j=6,.+eij,j=1,2, o NGE=1,2,0.,m (1)

where the ¥; are the population values and the e; are
uncorrelated random errors with mean zero and variance o;
for each small area i(=1,2,..,m). For simplicity, we
take 0, as the small areamean ¥, = Y.y _/ N,, where N, is
the number of population units in the i-th area. Note that
Y, =6, +E and E =Y e./N, =0 if N, is large.

The linking model assumes that 9, is a realization of a
random variable satisfying the model

8=y, @

where the v, are uncorrelated random variables with mean
zero and variance o,. Further, {v,} and {‘-’.'j} are assumed
to be uncorrelated.

Statistics, Carfeton University, Ottawa, Ontario, K15 SB6.

Assuming that the model (1) also holds for the sample
{yij.j =1,2,.,n;i=1,2,..,m} and combining the sample
model with the linking model, Kott (1989) obtained the
familiar unit-level random effects model

Yp=H+vire =12 n;i=12..,m, 3)

also called the components-of-variance model. It is custom-
ary to assume equal variances o, = ¢?, although the case of
random error variances has also been studied (Kleffe and
Rao 1992; Arora and Lahiri 1997).

Assuming o =o?, Kott (1989) derived an efficient
estimator é.-x of 8, which is both model-unbiased under (3)
and design-consistent. He also proposed an estimator of its
mean squared error (MSE) which is model unbiased under
the basic model (1) as well as design-consistent. But this
MSE estimator can be quite unstable and can even take
negative values, as noted by Kott (1989) in his empirical
example. Kott (1989) used his MSE estimators mainly to
compare the overall reduction in MSE from using 8 & 1IN
place of a direct design-based estimator y s Blven by (4)
below. He remarked that more stable MSE estimators are
needed.

The main purpose of this paper is to obtain a pseudo
empirical best linear unbiased prediction (EBLUP) estimator
of 6, which depends on the survey weights and is design-
consistent (section 2). A stable model-based MSE estimator
is also obtained (section 3). Results of a simulation study in
section 4 show that the proposed MSE estimator is often
much more stable than the MSE estimator of Kott, as
measured by their coefficient of variation, even under
moderate deviations of the linking mode] (2). Results under
the simple model (3) are also extended to a nested error
regression model (section 3).

N.G.N. Prasad, Department of Mathematical Sciences, University of Alberta, Edmonton, Alberta, T6G 2G1: J.N.K_ Rao, Department of Mathematics and
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2. PSEUDO EBLUP ESTIMATOR

Suppose w . denotes the basic design weight attached to
the j-th sample unit (j=1,2,...n) in the i-th area
(i=1,2,...,m). A direct design-based estimator of 9. is
then given by the ratio estimator s

Jj,'w = Zj ﬁ:'.'jy.j/ Zf ‘T’rj = Ej wijyaf )

where w, = _/ Z,a“‘:’,;- The direct estimator ¥, is design-
consistent but fails to borrow strength from the other areas.

To get a more efficient estimator, we consider the
following reduced model obtained from the combined
model (3) with 0,.2 = g%

yrw-_‘zj wq(“ +vr'+er)')
ST ()

where the e, are uncorrelated random variables with mean
zero and variance 6, = Gzz.w;. The reduced model (5) is
an area-level model similar to the well-known Fay-Herriot
model (Fay and Herriot 1979). It now follows from the
standard best linear unbiased prediction (BLUP) theory
(e.g., Prasad and Rao 1990) that the BLUP estimator of
8, = + v, for the reduced model (5) is given by

§.=f +¥. (6)

where

Vi =‘Y,'w(y,'w - “w)

with §_=Y v, 7, /Yy, and y,, =c’/(c’ +8). Note
that 8, is different from the BLUP estimator under the full
model (3). We therefore denote 6, as a pseudo-BLUP esti-
mator. The estimator (6} may also be written as a convex
combination of the direct estimator y ,_ and Ji :

ei=.Yiw;|'w+(] Ayiw)ﬁw' (7)
The estimator 8, depends on the parameters o> and o>
which ar% generally unknown in practice. We therefore
replace o, and o in (7) by model-consistent estimators 629

and 67 under the criginal unit-level model (3) to obtain the
estimator

ei:?my,‘w"'(l*?gw)pwv &)

where

and

The estimator éf will be referred to as pseudo-EBLUP
estimator. We use standard estimators of o2 and a?, based
on the within-area sums of squares

Qw =Z Z ()’,—; ‘;,‘)2
4 J
and the between-area sums of squares

Q,=Y n(y, -5

I

where ¥ = Y .n,y,/ ¥ n, isthe overall sample mean. We have
62=Qw/[z n,.-m)
i
and 62‘, = max(g % () where
& =(Q, - (m-1)&Yn"

with

n'=Eni—anlzni.

It may be noted that 03 and o are either not estimable or
poorly estimated from the reduced model (5) due to identi-
fiability problems. Following Kackar and Harville (1984),
it can be shown that the pseudo-EBLUP estimator 6, is
model-unbiased for 0, under the original model (3) for
symmetrically distributed errors {v,} and { e‘.j}, not neces-
sarily normal. It is also design consistent, assuming that
n jzjw; is bounded as n;, increases, because ¥, converges
in probability to 1 as n;-= regardless of the validity of the
model (3), assuming_ 6> and 6% converge in probability to
some values, say, 6:2 and o2

Kott’s (1989) model-based estimator of 6; is obtained by
taking a weighted combination of y, and ch;’)i,, that
is,

i = ) =
fila, ey = (1 -a)y,, *GEEC: Y
f=i

and then minimizing the model mean squared error (MSE)
of fi(a,, ¢) with respect to o, and ¢} subject to model-
unbiasedness condition: },, .cf” = 1. This leads to

B, =£,(d,,&9) &)
with

;lwf / {Z,: wiey &0/ n!.-+[ 1+ 3 a-‘,”z](ai/al)}]

Il I+

and

& = [(c‘si/&z) . n,_l]/z [(6%/62) + nh"].
hei
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The estimator 8 . 18 also model-unbiased and design-
consistent. In a previous version of this paper, we proposed
an estimator similar to (9). It uses the best estimators of
under the unit-level model, based on the unweighted means ¥
rather than [i_, the best estimator of p under the reduced
model (4), based on the survey-weighted means y .

3. ESTIMATORS OF MSE

It is straightforward to derive the MSE of the pseudo-
BLUP estimator 6 ; under the unit level model (3). We
have

MSE® ) ~E(E -0, =8,(e%, ) 15( ) (10)
with
2 2
g,,-(ov, 02) =(1 _Y;w)cv
and

2050 =21 -1, [ T, 1,

The leading term, Su (a7, c?) is of order O(1) , while the
second term, g, (o2 Gz) due to estimation of p is of order
O(m™) for Iargem
. A naive MSE estimator of the pseudo-EBLUP estimator
8, is obtained by estimating MSE(B ) given by (10):

msey (8,) = £,,(6%. &) + g,,(6%, 6%). (11)
But (11) could lead to significant underestimation of

MSE( 6. ) because it ignores the uncertainty associated with
02 and 6% Note that

MSE(6,) = MSE(8,) + E®, - 8,)? (12)
under normality of the errors {v;} and {e;] so that
MSE(B ) is always smaller than MSE(G ); see Kackar and
Harville (1984)

To get a “correct” estimator of MSE(B ), we first
approximate the second order term E (9 -9 )2 in (12) for
large m, assuming that {v,} and {e;} are normally distri-
buted. Following Prasad and Rao (1990), we have

E(éi”és)zzgsi(ﬁf’oz) (13)
where the neglected terms are of lower order than m !, and
£,(, ) =7,,(1 -7, Y5}
{(V(62)-2(c2/0?)Cov(g?, 6%y +
(aZ/o?) Var(6%)); (14)

see Appendix 1. The variances and covariances of & c and
a? are also given m the Appendix 1. it can be shown that
gh(cs,, G%) + g3,(cv. 6%) is approximately unbiased for
81,(°v- o°) in the sense that its bias is of lower order than
2(see Appendix 2). Similarly, L (ov, S )2 and
g3t( G,,0 %) are approximately unbiased for 8,; (o, o)
and g,.( olv,ol) respectively. It now follows that an approxi-
mately model-unbiased estimator of MSE(G } is given by
mse(8,) = £,,(6, 6%) + ,,(6},6%) + 2g,,(62, &%). (15)
For the estimator 8 ix Biven by (9), Kott (1989) proposed an
estimator of MSE as

Iei

mse(8,,)=(1-26)v (7, ) +a> ( -y c,‘”y,] , (16)
where v*(y,,) is both a design-consistent estimator of the
design-MSE of ¥, and a model-unbiased estimator of the
model-variance of ¥ . under the basic model (1). Since u
converges in probablhty to zero as n -, it follows from
(16) that mse(B ) is also both de&gn-conSlstcnt and model
unbiased assurrung only the basic model (1). However.
mse (6 x) is unstable and can even take negative values
when @, exceeds 0.5, as noted by Kott (1989).

Note Lhat our MSE estimator, mse(8,) is based on the full
model (3) obtained by combining the basic mode! (1) with
the linking model (2). However, our sirmulation results in
section 4 show that it may perform well even under moderate
deviations from the linking model.

4. SIMULATION STUDY

We conducted a limited simulation study to evaluate the
performances of the proposed estimator 8, given by (8), and
its estimator of MSE, given by (15), relative to Kott’s
estimator 8 & Biven by (9), and its estimator of MSE, given
by (16). We studied the performances under two different
approaches: (i) For each simulation run, a finite population
of m = 30 small areas with N, = 200 population units in each
area is generated from the assumed unit-level model and then
a PPS (probability proportional to size) sample within each
small area is drawn independently, using n, = 20. (ii) A
fixed finite population is first generated from the assurned
unit-level model and then for each simulation run a PPS
sample within each small area is drawn independently,
employing the fixed finite population. Approach (i) refers
to both the design and the linking model whereas approach
(i) is design-based in the sense that it refers only to the
design. The errors (v} and {e;} are assumed to be
normally dlst.nbuted in generating "the finite populations
{y.i= 2307 =1,2,..,200}. We considered two
cases: (1) The linking model (2) is true with p = 50. (2) The
linking model is violated by letting p vary across areas:
K;=50,i=1,2,..,10; p,=55,i=11,12,..,20; p,= 60,
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i=21,22,..,30. To implement PPS sampling within
each area, size measures zt.j(z' =1,2,..,30;7=1,2,...,200)
were generated from an exponential distribution with mean
200. Using these z-values, we computed selection
probabilities p; = z;/ ): z; for each area i and then used
them to select PPS with replacement samples of sizes
n, = n, by taking n =20, and the associated sample values
{ y;; } were observed.

’f‘hc basic desngn welghts are given by w =n" pu SO
that W= pu i ): p; - Using these welghts and the asso-
ciated sample valies y,, we computed estimates B' and 9
and associated estimates of MSE, and also the ratio estlmate
¥ ;.. for each simulation run; the formula for v *(y ) under
PPS sampling is given in Appendix 3. This process was
repeated R = 10,000 times to get from each run
r{=1,2,...R) 8, ;(r) and f « (7) and associated MSE esti-
mates mse, (9 (r)) and mse,(0,,(r)) and also the direct
estimate y (r) Using 1hese values, empirical relative
efﬁcmnmes (RE) of 6‘ and B over y , were computed as

RE(B,.) = MSE_(_?E.W)IMSE,(BI.)
and

RE(@®,,) = MSE_(¥,,)/MSE (§,.),

where MSE. denotqs the MSI;‘. over R = 10,000 runs. For
example, MSE (8,)=Y [0,(r)-Y (r))*/R, where
Y, (r) is the i-th area population mean for the r-th run.
Note that Y .(r) remains the same over the runs r under the
design-based approach because the finite population is
fixed over the simulation runs.

Similarly, the relative biases of the MSE estimators were
computed as

RB[mse(é,.)] =[MSE, (8,) - E.mse(é'.)]/MSE_(é,.)
and
RB[mse (8 )] =[MSE, (8, - E.mse(8,,)]/

MSE_(8,,).

where E, denotes the expectation over R = 10,000 runs.
Forexample E msc(B )=Y, mse(G (r))/R. Finally, the
empirical coefficient of variation (CV) of the MSE
estimators were computed as

CV[mse(d,)] =[MSE, {mse(8,))]'"?/MSE, (6,)
and

CV[mse(d,,)] = [MSE, {mse (8 i) 1|2 MSE (8,0).

Notethat MSE,(mse (6,)] =T, [mse (6,(r)) ~-MSE (6,)]/R
and a similar expression for MSE [mse(e sl

Table 1 reports summary measures of the values of
percent RE, IRB| and CV for cases (1) and (2) under
approach {i). Summary measures under approach (ii) are
reported in Table 2. Summary measures considered are the

mean and the median (med) over the small areas
i=1,2,..730

Table 1
Relative Efficiency (RE) of Estimators, Absolute Relative Bias
(IRBL) and Coefficient of Variation (CV) of MSE
estimators (g =5.0, n=20): Approach (i)

o, RE% IRBI% CV%
é.—x éi msc(ém) msc(éi) msc(ér.,() msc(é,.)
Case 1
I Mean 190177 15.3 35 148 25
Med 150182 148 2.6 148 25
2 Mean 126123 5.1 3.2 48 8
Med 127 124 56 29 48 8
3 Mean 113111 35 2.7 35 6
Med 112 111 3.2 3.0 35 6
Case 2
1 Mean 108103 10.4 1.9 39 6
Med 108 104 11.1 1.9 38 5
2 Mean 108104 133 8.9 39 6
Med 108 104 13.6 79 37 6
3 Mean 104103 115 12 37 5
Med 105105 13.1 8.0 36 6
Case 1: p,=50, i=1,2,...,30; Case 2: P;=50, i=12,...,10;
H,=55,i=11,12,...,20; p,=60, i=21,22,...,30.

It is clear from Tables I and 2 that é.‘x and é,. perform
similarly with respect to RE which decreases as o /o
increases. Under approach (ii), RE is large for both cases 1
and 2 when o,/ ¢ <0.4, whereas it decreases significantly
under approach (i) if the linking model is violated (case 2);
the direct estimator y . is quite unstable under approach (ii).

Tuming to the performance of MSE estimators under
approach (i), Table 1 shows that IRBl of mse(6,) is neglig-
ible {(<4%) when the linking model holds (Case 1) and that
it is small (<10%) even when the linking model is violated,
although it increases. The estimator mse (8 ) has a larger
IRB! but it is less than 15%. The CV of mse(B .} is much
smaller than the CV of mse (8 ) for both Cases 1 and 2. For
example, when the model holds (Case 1) the median CV is
25% for mse(e ) compared to 148% for mse(d &) when
o = 1; the medmn CcvV decreases to 8% for mse (9 )
compared to 48% for mse(d &) When o, =2. This panem
is retained when the model is violated (Case 2). It may be
noted that the probability of mse(e ) taking a negative
value is quite large (>0.3) when o, /0 < 0.4.

Under approach (ii), Table 2 shows that IRB| of mse (6 )
1s larger than the value under approach (i) and ranges from
15% to 25%. On the other hand, IRBl of mse(e i) 1s smaller
and ranges from 4% to 15%. The CV of mse(0 &), how-
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ever, is much larger than under approach (i). For example,
the median CV for Case ! is 295% compared to 38% for
mse(8,) when o, =1 which decreases to 122% compared
to 23% when o =2. A similar pattern holds for case 2
where the fixed finite population is generated from the
model with varying means.

Table 2
Relative Efficiency (RE) of Estimators, Absolute Relative Bias
(RBI) and Cocfficient of Variation {CV) of MSE
estimators (6=53.0, n=20): Approach (ii)

o] RE% IRBI% CV%

ém é.- mse(é,.k) mse(él.) msc(ém) msc(él.)

Case 1
I Mean 283281 14.2 25.4 289 39
Med 275279 15.0 24.7 295 38
2 Mean 180182 7.3 19.2 115 24
Med 177181 6.9 18.7 122 23
3 Mean 129129 4.8 14.8 68 24
Med 129128 4.2 13.9 65 24
Case 2
1 Mean 278276 157 26.8 291 4]
Med 271 275 16.6 26.2 297 40
2 Mean 175177 8.8 20.7 117 26
Med 173177 8.5 20.3 124 25
3 Mean 124124 6.3 16.2 70 25
Med 125124 6.8 15.5 67 26

Case 1: =50, i=1,2,...,30; Case 2: 1,=50, i=1.2,...,10
H=55,i=11,12,....20; p, =60, i=21,22,....,30.

To reduce IRB! of mse (é‘;) under approach (ii), one
could combine it with mse(f &) by taking a weighted
average, but it appears difficult to chose the appropriate
weights. The weighted average will be more stable than
mse (8, ).

5. NESTED ERROR REGRESSION MODEL

The results in sections 2 and 3 can be extended to nested
error regression models

Yy =x;j[3 v teg, J =l,2,...,n..;i =1,2,...m

(17)

using the resuits of Prasad and Rao (1990), where X isa
p-vector of auxiliary variables with known population mean
X, and related to y_, and B is the p-vector of regression
coefficients, The reduced model is given by

Yo =% Brvire, (18)
with X =¥ w,x.. Model-consistent estimates éi and &*
are obtained from the unit-level model (17), employing
either the method of fitting constants (Prasad and Rao
1990) or REML (restricted maximum likelihood) estimation
(Datta and Lahiri 1997).

The pseudo-EBLUP of 8, = X/ B + v, is given by

éi =?r'w;iw * (] _‘?iw)f; ﬁ‘”' (19)

where )
Gw = (E; f:‘wfiwffrw)-l (Z, ?.‘wffw)_",'w)-

An approximate model-unbiased estimator of MSE (é‘.) is
given by (15) with

£, (6:.6%) =(1-7,)8"
as before,
g)_f(&i- &2) =
6?'()?: _?rwfm)'(E; "r‘lw'fnvfl:v)_l (}?z _?Mxmf,w)

and g_u(éz,, %), obtained from (14), involves the estimated
variances and covariances of G2 and 62. The latter can be
obtained from Prasad and Rao (1990) for the method of
fitting constants and from Datta and Lahir (1997) for
REML..

6. CONCLUSION

We have proposed a model-assisted estimator of a small
area mean under a simple unit-level random effects model.
This estimator depends on the survey weights and is design-
consistent. We have also obtained a model-based MSE
estimator. Results of our simulation study have shown that
the proposed MSE estimator performs well, even under
moderate deviations of the linking model. The proposed
approach is also extended to a nested error regression model.
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APPENDIX 1
Proof of (13):

From general results (Prasad and Rao 1990) we have

E(él. - é'l,)z e rr[A,.(cf, cl)B,.(uf, 02)],

where B,(c’, 6?) is the 2 x 2 covariance matrix of &2 and
6% and A (c?, 6?) is the 2 x 2 covariance matrix of

30 ; 89‘.'

do? 3% |
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Now, noting that

agi - aYiw _ Trw(l _.th) =
aof acf " 03 "
B Mo _ M1
80'2 802 Iw 02 iw?
and V(¥,) = cf +0, = cf/yiw, we get
1 -a’/g?
2 2 3 2 v
A0, 0%} =1, (1 -7, ) @ :
: T —cr‘z,/cs2 (crfz’(r)2

and hence the result (14).
Covariance matrix of ¢ :: and ¢*:
Under normality, we have

V(%) :204/(25 n, —m),

vig2y=2n

[c“(m - 1)(2 - 1)(2 n, —m)" +2n.0%0. + n”cr:]
and

Cov(6%,62) = ~(m - 1)n. ' V(6?),
where

=Xnt-2Yn} [ ¥n (X nlf /(X nfs

see Searle, Casella and McCulloch (1992, p. 428).

APPENDIX 2

Proof of Elg,,(6},6%) +£,(5%,6%)] = g, (¢, o?):

By a Taylor expansion of gh(o G%) around ((52 o?) to
second order and noting that E (6°-0%) =0 and
E (0 - q, 5y =0, we get

Elg.(62. 6 - g, (%, 0%)]
. ltr[Di(of,oz)Bi(oi,oz) :

where D, (crv . 02) is the 2 x 2 matrix of second order deriv-
atives of 81 (cv, o?) with respect to o> and o> It is easy
to verify that

%:r[pl.(of, 62)B, (0%, 0%)] = g, (0%, o%).

Now, noting that E[g3,.(61, 6%)] = 33;(03’ a?) we get the
desired result.

APPENDIX 3

The design-based estimator of variance of y
sampling is given by

V(y,w) - Z 1; (-yq m

_under PPS

Kott (1989} model-assisted variance estimator is
vy = {V(?,-W)/EV(if.,.)}V(i,-w)
(E W'JZ) X wi (-5
- i

A
E w;( 1- 2“’;‘,' + z w;)
i

/

where E and V denote expectation and variance with respect
to the basic model (1).
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Small Area Estimation Using Multilevel Models

FERNANDO A.S. MOURA and DAVID HOLT!

ABSTRACT

In this paper a general multilevel model framework is used to provide estimates for small areas using survey data. This class
of models allows for variation between areas because of: (i) differences in the distributions of unit level variables between
areas, (ii) differences in the distribution of area level variables between areas and (iii} area specific components of variance
which make provision for additional local variation which cannot be explained by unit-level or area-level covariates. Small
area estimators are derived for this multilevel model formulation and an approximation to the mean square error (MSE) of
each small area estimate for this general class of mixed models is provided together with an estimator of this MSE. Both
the approximations to the MSE and the estimator of MSE take into account three sources of variation: (i) the prediction
MSE assuming that both the fixed and components of variance terms in the multilevel model are known, (ii) the additional
component due to the fact that the fixed coefficients must be estimated, and (iii) the further component due to the fact that
the components of variance in the model must be estimated. The proposed methods are estimated using a large data set as
2 basis for numerical investigation, The results confirm that the extra components of variance contained in multilevel models
as well as small area covariates can improve small area estimates and that the MSE approximation and estimator are

satisfactory.

KEY WORDS: Small area estimation; Mixed models; Multilevel models; EBLUE.

1. INTRODUCTION

The need for small area (and small domain) estimates
from survey data has long been recognized. The difficulty
with the production of such estimates is that for most, if not
all, small areas, the sample size achieved by a survey
designed for national purposes is too small for direct esti-
mates to be made with acceptable precision. Early attempts
to tackle this problem using methods such as synthetic
estimation {Gonzalez 1973) involved the use of auxiliary
information and the pooling of information across small
areas. An excellent review and bibliography are given by
Ghosh and Rao (1994).

Empirical studies show that such methods made too little
provision for local variation and consequently the resulting
small area estimates were shrunk too far towards a pre-
dicted mean. More recent approaches (e.g., Battese and
Fuller 1981 and Battese, Harter and Fuller 1988) use some
components of variance model, or equivalent, to provide for
local variation. Empirical studies show the superiority of
this approach (e.g., Prasad and Rao 1990).

This paper proposes a general multilevel model frame-
work for small area estimation. This involves the potential
to use auxiliary information at both the unit and small area
level. In addition any of the regression parameters, rather
than just the intercept as proposed by Battese and Fuller
(1981), may be treated as varying randomly between small
areas. The local variation is provided for by using diffe-
rences between the means of unit level auxiliary variables,
the small area level variables, and the various components
of variance which allow variation between areas.

For this general model, the small area predictor is
obtained. In addition, an approximation to the mean square
error (MSE) of each separate small area prediction and an
estimator of this MSE are developed.

The numerical study, based on a large data set from
Brazil shows that such models may be useful for predicting
small area estimates. The robustness of the approach to mis-
specification of the variance-covariance matrix of the small
area random effects and misspecification of small area
covariates are also investigated. Further numerical results
demonstrate the success of the MSE approximation and its
estimator.

2. THE MULTILEVEL MODEL FRAMEWORK

2.1 Introduction

We consider the following multilevel model for
predicting the small area means:

Yi=X.B; +e

ﬂi=Z,.7+v'. i=1,..,m (2.1)

where Y, is the vector of length n, for the characteristic of
interest for the sample units in the i-th small area,
i=1,...,mX, is the matrix of explanatory variables at
sample unit level; Z, is the design matrix of small area
variables; y is the vector of length g of fixed coefficients
and v, =(vm,...,v[.p)T is the vector of length (p + 1) of
random effects for the i-th small area. We assume the

! Femnando AS. Moura, Instituto de Matematica, UFRJ, Rio de Janeiro, Brazil, CP: 68530, CEP: 21941-590, e-mail: fmoura@dme.ufij.br; David Holt, Office
for National Statistics, 1 Drummend Gate, London, SW1P 2QQ, e-mail: tholt@ons go.uk.
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following about the distribution of the random vectors: (a)
the v, are independent between small areas and have a joint
distribution within each small area with E(v) =0 and (b)
Viv) = Q (b) The g.5 and v.s5 are mdependent and
V(e) =gl

For the whole population (2.1) applies with n, replaced
by N, the small area population sizes.

The set of m equations in (2.1) can be concisely written
by stacking them as

Y=XZ +Xv+e. (2.2)

It is worth noting that the random intercept model (see
section 2.3) can be regarded as a special case of the model
(2.1) where Z, is equal to the identity matrix for each small
area and £2 has all terms constrained to be zero except the
one comresponding to the variance of the intercept term.
Other intermediate models exist, for instance, when  is
diagonal so that the small area regression coefficients are
random but uncorrelated between covariates.

Holt (in Ghosh 1994, page 82) observes that the advan-
tage of the model (2.1) over other competitors is that it
effectively integrates the use of unit level and area level
covariates into a single model. Besides the use of extra
random effects for the regression coefficients gives greater
flexibility in situations where it is not appropriate to assume
the same slope coefficients apply for all small areas.

2.2 Fixed and Component of Variance Parameter
Estimates

The fixed and components of variance parameters in the
model (2.1) are y and 8 = ([Vech(Q)], 6?)7 respectively.
Various methods for estimating these model parameters in
the case of a general mixed linear model are available. Most
of thern, based on iterative algorithms, lead to the maximum
likelihood estimator (MLE) or the restricted maximum like-
lihood estimator (RMLE) under certain regularity conditions.

Goldstein (1986) shows how consistent estimators can
be obtained by applying iterative generalised least squares
procedures (IGLS). He also proved its equivalence to the
maximum likelihood estimator under normality. Later
Goldstein (1989) proposed 2 slight modification of his algo-
rithm (namely, restricted iterative generalised least squares
(RIGLS)) which is equivalent to RMLE under normality.
Unlike the IGLS estimates, the RIGLS estimation proce-
dures provide unbiased estimates of the component of
variance parameters by taking into account the loss in
degrees of freedom resulting from estimating the fixed
parameters.

This work is confined to the RIGLS approach as in
Goldstein (1989). The RIGLS procedure is described in
details in Appendix A.

2.3 The Estimator of the Small Area Mean

Assuming the model (2.1) and considering that the
Population size N, in the i-th small area is large, we can
write the mean for the i-th small area as

w=RTZy X @3

where .fl. isthe (@ + 1) population mean vector for the i-th
small area.

An estimator of . may be obtained by plugging the
RIGLS estimators of y and 0 in the respective terms of
equation (2.3), where the predxctor of the i- th small area
random effect v, is given by ¢ QX V (Y X.Z. 'r)
where \7,." =6711-67%, QG 'X"  and GJ. =
(r+672X7x. .

This estimator of ., is known as Empirical Best Linear
Unbiased Estimator (EBLLUE)

=X]Z3+XI0. (2.4)

Battese et al., (1981, 1988) propose and apply a random
intercept model to provide small area estimates. In this
case, the Empirical Best Linear Unbiased Estimator is

T‘
l(RI) i ﬁ

We use the label (RI) to imply a random intercept model
since only the intercept of each small area is random while
the other components of  remain fixed.

24 Approximation to the Mean Square Error
(MSE)

Kackar and Harville (1984) show that, if 8 is a trans-
lation invariant estimator of 8 and the random terms are
normally distributed, the mean square error of a predictor of
a linear combination of a fixed and random effect can be
decomposed into two terms. The first one is due to the
variability in estimating the fixed parameters when the
components of variance are known, the second term comes
from estimating the components of variance.

Since under normality the RIGLS estimator is equivalent
to the RMLE estimator and the RMLE is translation-
invariant, Kackar and Harville’s (1984) results can be
applied to the small area means estimators {1, i=1, ..., m

MSE(ﬁ,) = E[ﬁ, - 11,-]2 = E[ﬂ, - Pf]z + E[ﬁ, - l-j,'lz (25)

where [i, is the BLUE of y_.
The first term of (2.5), that is MSE[fi ], can be obtained
by direct calculation as

MSE() =X1(G, )T QX +
-1

zZ'G'X, (2.6)

X, Gz, [E z/G'xxz,
i=1

where G, =1+0*X,” X,Q. Kackar and Harville (1984)
point out that the second term of {2.6) is not tractable,
except for special cases, and propose an approximation to
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it. Prasad and Rao (1990) propose an approximation to this
second term and work out the details of their approximation
for three particular cases: the random intercept model,
random regression coefficient model and the Fay-Herriot
model. They also give some regularity conditions for their
approximation to be of the second order, and prove that
their MSE approximation for the Fay-Herriot model is of
the second order. Nevertheless, it seems to be more difficult
to give general conditions for more complex models such as
model (2.1).

Applying Prasad and Rao’s approach, an approximation
to the second term of (2.5) is developed in Appendix B.

It is worth noting that the MSE approximation of (f)
can be decomposed into three terms:

MSE@) =T + T, + T, 2.7
where T, and T, are respectively the first and the second
term of equation (2.6) and T, is described in Appendix B.

The term T is the variability of |i ; when all parameters
are known, the second term T, is due to estimating the
fixed effects and the third term T, comes from estimating
the components of variance.

When sampling fractions are not negligible, estimators
of the small area means can be built in the spirit of the finite
population approach by predicting specifically for the non-
sampled units:

80 =15+ K ~[7 )7 +5) G
where the superscript F indicates that a correction for the
finite population sampling fraction f; was used; x, is the
(p + 1) vector of sample means.

The MSE(ﬁif) can be obtained by noting that

i 7= -p) (XS e v+ 0, v, 50
~f,%) and €° is the mean of &

where X[ = (1-£)"'(X, - f.%, : 2
for the non-sampled units in the i-th small area. Therefore

MSE(@]) - (1 - £ MSE @) « N0 -1 | (29

\&_rlz_ere MSE "({i,) is the equation (2.7) with X ; replaced by

2.5 Estimation of Mean Square Error

It is common practice to estimate the MSE of a linear
combination of the fixed and random effects in a mixed
model as in (2.1) by replacing estimates of the components
of variance respectively in the expression of MSE. This
estimator ignores the contribution to MSE due to estimating
the cormponents of variance parameters. Several studies (see
for example Singh, Stukel and Pfeffermann 1998 or

Harville and Jeske 1992) argue that this procedure tends to
underestimate the MSE. Prasad and Rao (1990) reported a
simulation study which showed that the use of this “najve”
estimator leads to severe downwards bias. They also
showed for the Fay-Herriot model (a special case of the
model (2.1)), using “truncated Henderson™ estimates for the
variance components, that

E(Tl) =T, -T, +o(m b, E(Tz) =T, + o(m 1y
E(T3) =T, +o(m™).

Harville and Jeske (1992) establish some conditions for
the unbiasedness of Prasad and Rao’s mean square error
estimator. However, considering the more general model
(2.1}, again it seems more difficult to give general
conditions for which the order of bias of Prasad and Rao’s
estimator is o(m '), especially if iterative procedures as
RIGLS are used to obtain the parameter estimates.

Nevertheless, motivated by the simulation study summa-
rised in Section 3.4 and an extensive simulation study
described in Moura (1994), we propose to use an estimator
similar to Prasad and Rao's for MSE({ &

MSE= T + T,+ 27, (2.10)
Where T are obtained from (2.5) by replacing o? and £ by
their respective RIGLS estimators.

From equation (2.9) we can also obtain an estimator for
MSE(;‘if) as follows:

MSE@) = (1 - £ MSE @) + N, (1 -£)7'6Y) @.11)

where MSE "(d) is the equation (2.10) with X , replaced by
X

it

3. AMODEL-BASED NUMERICAL
INVESTIGATION

3.1 Comparison of the Estimators

In order to investigate the properties of alternative
estimators, data was used from 38,740 households in the
enumeration districts in one county in Brazil. The Head of
Household’s income was treated as the dependent variable.
Two unit level independent variables were identified as the
educational attainment of the Head of Household (ordinal
scale of 0-5) and the number of rooms in the household
(1-11+).

The assumed model is

Fo= [3'.0+[3‘.lxw+|3‘.2xw+eij =1 amig=1..N,
B =Too * Vs By =Yao * Virs By = Y20 * V2 (3.1)

where x; and x, respectively represent the number of
rooms and the educational attainment of the head of the
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household (centred about their respective population
means).

The parameter values for the fit model and their
respective standard errors are

o= 8:456(0.108) y,,= 1.223(0.046) v,,=2.596(0.086)
0= 1.385(0.194) o, = 0.354(0.66) 6,,=0.492(0.117)
o,, =0.333(0.054) o,, =0.234(0.35) 0,,=0.926(0.124)
o? =47.74(0.345)

To camry out numerical investigations within the
model-based framework a simulation was camried out
keeping the enumeration district identifiers and the values
of the two explanatory variables (X} fixed. Initially the area
population means X . and X, were calculated for the
whole data set and a randomly selected subsample of 10%
of records from each small area was identified. This same
subset was retained throughout the simulations (the
Simulation subset).

The data generation for the simulations was carried out
in two stages using a data generation model which was the
General Model (G), the Diagonal Model (D), the Random
Intercept Model (RI} as appropriate. In the first case the
parameter values were taken from the estimates mentioned
earlier. In the second case the off-diagonal terms were set
to zero, in the third case only o, = 1.385 was non-zero.

The first stage of the data simulation process was to
generate the level 2 random terms (that is, the non-zero
elements of v, and v, and v,,) depending on the choice of
the data generation model. These random terms were
Normmally distributed (jointly Normal in the case of the
General Data Generation Model and the Diagonal Data
Generation Model). At this stage the expected value of the
mean for the i-th area conditional on the area level random
effects generated by the model m, = G, D, RI in the r-th
simulation could be obtained:

{r) (f) (') N+
um, - B 1: * Py er

At the second stage of the data simulation process, unit
values (Y,.f.) were created for each of the data generation
models. Having generated the data for the simulation subset
under one of the data generation models, all three of the
estimation models (G, D and RI) could be fitted to the
simulated data to obtain parameter estimates and predictors
for the small area means.

For each data generation model m, =G, D, RI the whole
simulation process was repeated R= 5000 times to yield a
set of small area means p,. “) " and predicted means
I"!lm,m’ =1, ..., R foreach small area, i, i=1,...,m and for
the three eslimatlon models: m, = G, D, RI. For each small
area and for data generated under model m; = G, D, RI, the
Mean Square Error (MSE) of the prediction process for
each estimation model m, may be defined as

R
‘R"E(ufﬂ A

and the absolue relative error (ARE) by

MSEL#,, ,,]

(f) (r)

~(r)
ARE[f ‘Zlu.m ST} Thi

lmm]_

For comparative purposes we contrast the properties of
each estimator with those of the estimator which is the same
as the data generation model. Hence we define the Ratio of
Mean Square Error (RMSE):

R.MSEmz =

{i MSE[ﬁfmIMI]} / {i‘ MSE[p,.MI]}xloo
i=1 i=1

and the Ratio of Absolute Relative Error (RARE):

RARE

my ml

[z ARE[fl,, ] } {E ARE[;“:,.,"IJ“I]}XIOO.
i=l i=]

It will be seen that when the data are generated from a
simpler model (e.g., RI) the more complex estimation
procedures do not suffer any appreciable worsening of effi-
ciency or bias. On the other hand when the data are gene-
rated from a more complex model the simpler estimators
have inferior properties. However the difference between
the Diagonal and General estimators is much less than
between these and the Random Intercept Estimator. From
Table | one would conclude that it is worth introducing
additional random coefficients of some kind, beyond the
simple Random Intercept model assumptions, but not
necessarily the full General Model.

Table 1
Ratios of Mean Square Errors and Ratios
of Absolute Relative Errors (in parentheses} for the three
Estimators and Three Data Generation Models

Data Generation Model

Estimator
G D RI

General (G) 100.0 101.8 101.2
(100.0) (100.9) {100.6)

Diagonal (D) 108.8 100.0 100.2
(82.6) (100-0) (100.1)

R. Intercept (R1) 131.9 109.1 100.0
(176.9) (105.6) (100.0)

The summary measures in Tabie 1 are average properties
over all small areas. A careful analysis of the MSE perfor-
mangce of the estimators for each small area shows that there
is a modest increase in the MSE for the Diagonal Estimator
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compared to the General Estimator for all areas, whereas
for the Random Intercept estimator a relatively small
number of areas exhibit a substantial increase in MSE. A
similar pattern occurs between the Diagonal and Random
Intercept estimator when the Diagonal Data Generation
Model is used.

3.2 Introducing a Small-Area Level Covariate

In this section an attempt is made to investigate the
impact on small area estimates of introducing an area cova-
riate Z. Unfortunately for the data set used, it was not
possible to identify a single contextual are# level covariate
which had a substantial effect on the multilevel models.
Nevertheless, the number of cars per household in each
small area was a useful covariate for the random coeffi-
cients for the individual level random slopes coefficients for
“Room” and “Edu”, but not for the random intercept term.
This was observed after some preliminary model fit analysis
on the real data. Although the “numbers of cars” was the
best small area level covariate found to explain between
area variation, it was not as powerful at the individual level
as “Room” and “Edu”, the individual level covariates
chosen.

The model above with the small area covariate Z can be
written as

Y,.j = Bt “x“j+[3,.2x2‘j+eij i=1,.,mj=1,.,N,

Po=Yoo* Vo' B =Vio*T11Zi*Vis B =Yoo ™21 & (3.2)

The small area random effects were assumed uncorre-
lated in order to avoid convergence failure in the simulation
study.

Table 2 reports the parameter estimates and their respec-
tive standard errors obtained by fitting the Diagonal Model
with the Z covariate (3.2) and without the Z covariate (2.1).
It is worth noting the significant reduction of all the
components of variance estimates, except &,, and &7, after
introducing the explanatory area covariate Z.

In order to investigate the effect of misspecification of
the Z variable, the model based simulation procedure
described in section 3.1 was applied to the two models
above, where the data generation was done according to the
parameters presented in Table 2. Table 3 summarises the
simulation results.

It is worth noting that in both cases there is a significant
loss of efficiency by using an unsuitable estimator. It can
also be seen from an individual analysis of MSE for each
small area that a considerable gain in efficiency is achieved
with the introduction of a small area covariate Z over the
diagonal model. For many small areas the MSE of the
Diagonal with Z is significantly less than the MSE of the
corresponding estimator without Z. Even for those few
areas in which the MSE of the Diagonal with Z is
unchanged or even slightly increased by the introduction of
Z, the difference is not appreciable.

Table 2
Parameter Estimates and Standard Errors for General Model
with Area Level Covariate: Demographic Data

Parameter Diagonal Diagonal Model

Model with Z

Yoo 8.442(0.112) £.688(0.136)

Y10 0.451(0.179) 1.321(0.085)

a0 0.744(0.272) 2.636(0.134)

i 3.779(0.507)

' 1.659(0.323)

%o 0.745(0.308) 0.637(0.303)

o, 0.237(0.083) 0.471(0.116)

oy, 0.7000.197) 1.472(0.295)

o 44.00(1.05) 44.01(1.05)

Table 3

Ratios of Mean Square Errors and Ratios of Absolute Relative
Errors (in parentheses) for the Diagonal and the Diagonal with Z
Estimators Under the Two Respective Data Generation Models

Data Generation Model

Estimator
Diagonal Diagonal with Z
Diagonal 100.0 110.3
(100.0) (125.4)
Diagonal with Z 126.2 100.0
(107.5) (100.0)

33 Comparisons with Regression Estimator

One essential advantage of the multilevel models over
regression models is to recognize that groups (here the
small areas) share common features; they are not comple-
tely independent as could be assumed, for example by using
separate linear regression model for each small area.
Nevertheless, the relatively small intraclass correlation
observed for the data set used plus the fact that each small
area has on average 28 units, could make one think that in
this case the use of the muitilevel model would not result in
great improvement in the small area estimators. However,
it ts gratifying to know that even in these circumstances the
multilevel model small area estimator performs on average
better than the synthetic separate regression estimator,
under either the multilevel model or even under the
regression model. Table 4 illustrates this finding.

The multilevel data generation model used was the
General one with the parameters given in section 3.1. The
parameters used in the data generation regression model
were obtained by fitting a separate regression for each small
area.

It can be seen from Table 4 that the Separate Regression
estimator which does not explore the difference of small
areas through small area random effects shows substantial
loss of efficiency when compared with the General estimator,
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Table 4
Ratios of Mean Square Errors and Ratios of Absolute Relative
Errors (in parentheses) for the General and the Separate Regression
Estimators Under the Two Respective Data Gencration Models

Data Generation Model

Estimator
General Separate Regression
General 100.0 88.1
(100.0) (83.1)
Separated 247.6 100.0
Regression {154.7) (100.0)

Figure 1 illustrates this fact by showing a plot of the ratio
of mean square error between the General estimator and the
Separate Regression estimator for each small area. To
demonstrate the effect of the small area sample size on the
efficiency, the ratio of the MSEs is plotted against the
sample size for each small area. It is clear from Figure 1
that the gain in efficiency tends to decrease as the sample
size increases.
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Figure 1. Model-based cfﬁéicncies of the general estimator

compared with the separate regression estimator for each
small area

3.4 An Evaluation of the MSE Approximation and
the MSE Estimator

From the simulation results we may investigate the
properties of the MSE approximation (2.7). If we consider
the General estimator when the General Data Generation
model is used the MSE approximation appears to be very
good. The average underestimation of the MSE approxi-
mation was 0.31% of the MSE value with a range from the
largest underestimate of 5.4% of the MSE value through to
a largest overestimate of 4.8% of the MSE value. For the
situation considered here T, contributed on average 94.6%
of the total variation and T, a further 4.3%. Given the large
component of variance due to o, these results are not
unexpected. For individual areas the component T, varied
between 87.4% to 99.1% of the total and T, varied between

0.7% and 10.5% of the total. The component T, never
contributed more than 2.2% of the total MSE for any area.

We also investigated the performance of the MSE
estimator represented by equation (2.10) against the “naive”
estimator of the MSE, which does not consider the last term
of (2.10). The average Root Mean Squared Error of the
proposed MSE estimator is 17.5% ranging from 4.7% to
32.3%, while for the naive estimator the average is 20.9%
ranging from 5.2% to 47.5%. The MSE estimator is on
average unbiased while the naive MSE estimator
underestimates the MSE on average by 9.1%, its relative
bias ranging from -23.5% to -0.9%. Our resuits agree with
others, see Singh, Stukel and Pfeffermann (1998) and
Prasad and Rao (1990), which show that the naive estimator
can exhibit severe bias.

4. DISCUSSION

Prasad and Rao (1990) and Battese er al., (1981, 1988)
have demonstrated that models which include small area
specific components of variance can provide greatly
improved small area estimators. Some of the numerical
results in this paper show that within the model-based
simulation framework even better estimators can be
obtained by allowing the small area slopes as well as the
intercept to be random.

The overall conclusions from this investigation for this
set of parameter values are that: a component of variance
model more complex than the Random Intercept estimator
is beneficial; cverspecification of the model (e.g., using the
General estimator with data generated under the Random
Intercept Model) does not lead to serious loss of efficiency;
the use of small area covariates can also improve the small
arez estimates; and the use of multilevel models should be
preferred rather than the Separate Regression Model, The
simulation study confirms that the MSE approximation
appears to be precise and the MSE estimation is approxi-
mately unbiased, reflecting the variation in MSE between
areas, but further theoretical investigation about the exact
order of the approximation should be done.

Clearly model fitting and diagnostics are crucial. If we
apply a general mixed model in circumstances where it is
only a poor fit to the data, then the results may be
disappointing. Considerably more investigation is needed
to understand what characteristics of specific small areas
are likely to provide efficiency gains if general mixed
models are used rather than simpler models,
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APPENDIX A: RESTRICTED ITERATIVE
GENERALIZED PROCEDURE

The generalized least squares estimator of y in the model
(2.1) is given by

Y=@'X'VIxzy' @ XTv-yy=

m -1
(E ZJTXr'T Vi_l sz.‘]

i=1

3 z7x v Y!.] (A1)

i=1

where V =Diag (V,,..,V ) and V. =] + X TQX is the
covariance matrix of Y,i=1,.,m

However, V is assumed to be a function of unknown
parameters, thus y cannot be estimated using (A.1). On the
other hand, if v is known then

Y* = vech [(Y - XZy) (Y - X2y)"] (A.2)

is an unbiased estimator of vech(V). Furthermore vech(V)
i$ a linear function of 8. Then we can consider the
following linear model:

Y'=F0+¢&, (A.3)

Where F = dvech(V)/39 and & is a random variable with
mean O = (0,...,0) and the covariance of & is given by
V'= = ZQ"(VQV)Q):. The matrix ¢, is any linear transforma-
tion of vec(A) into vech(A), and A is any nxn matrix such
that vech(4) = ¢, vec(A), see Fuller(1987) for further
details. Then, assuming that F has full rank and V, is
known and non-singular, it may be shown that the
Generalized Least Square Estimator of 8 is given by

u & T iy
4] 0= cov (e a) [ .M).] [ _1_ V‘1®V-l) VEC(YYT) (A4)

oit) 2
where
. T -
-y ={[ ) (lvﬁlev-lJ[M)
ob 2 of
and
Y=Y- XZy.

Note that 8  depends on 8 and ¥, so both may be
iteratively estimated. The IGLS procedure starts with an
initial estimate of V (that is, setting initial values of 6)
which produces an estimate of y. Hence replacing the initial
estimate of V together with the estimate of v in (A.1)
provides an improved estimate of 6. In most cases
convergence is achieved after a few iterations between
equations (A.l) and (A.4), although it is not always
guaranteed.

The RIGLS approach is based on the fact that if y is
estimated by using generalised least squares with V known
then

E[(Y-XZ0)(Y -XZ§Y]=V-XZ@Z TX TV ' X2) "2 X T,

The equation above suggests that we use
(Y-XZ)(Y-XZ)T+XZ@ZTXTVIXZ)ZTXT (45

instead of (¥ - XZy)(Y - XZy)” at each iteration cycle
described "above in order to obtain an approximately
unbiased estimator of V and consequently of 8.

As pointed out by Goldstein (1986, 1989), if we start
with a consistent estimate of vy, say the ordinary least
squares estimator, then the final estimates will be consistent
providing finite fourth moments exist.

It is worth noting that it is possible for the above
procedure to yield negative estimates of variances. This
problem can be avoided by imposing constraints at each
iteration. For further details on this issue see Goldstein
(1986).

APPENDIX B: AN APPROXIMATION
TO Ef, - i1

Prasad and Rao (1990), based on Kachar and Harville
(1984), developed a second order approximation to the
second term of (2.5) under some regularity conditions:

E[IJ, - l:i,']z = T; =

2420001 o,

where, for the model (2.1), d,=X]K.(le Q)X TV,
K;=[0,...1,...0], is the (p + 1) x(p + 1)m matrix with the
identity matrix / of order p +1 in the i-th position and 0 as
the null matrix of order p+1, and 8 is any translation-
invariant estirator of @ = @,,....6 ,) where 8, =g? and
0,:& = 1,...,s -1 are the distinct elements of Q. Goldstein
(1989) proves that under normality of the random terms of
model (2.1), the RIGLS estimator of 8 is equivalent to the
Restricted Maximum Likelihood Estimator (RMLE), which
1s translation invariant,

Let us approximate E[(ﬁ -9)(0 - B)T} to the asymptotic
covariance matrix of the RMLE estimator (B). The jk-th
element of B! is given by(see Harville (1977))

. - p OV, 3V
bjk=Tr{EP.—P ]

- ‘o8, ‘a0,

for j and k=1,.,5 where P = ‘Vi'l -y X, Z
Q::'n:: Z,'TX:'T Viil X; Z)) szXiTVi_l- Let bj,k be jk-th
element of B. After some matrix algebra, it can be shown
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that

5-1 -1t
T,:xf(c,“)T[ bjkajct.af]c,")?‘.—

J7 k=i

£-1
2X] (G{‘)T[Zb,.,a

J
=l

Rr_Q)Z’f_+b”)?iTQS'.Q)E£_ (B.2)

where C.=0 Gi-lX,.TX'.; R =0 Gi‘zX,-TX;.;
S,=6G; X,"X,; and

A =22 sm1
3

k

is the s-1 square derivative matrix with respect to
Bk = Ly =1
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A Synthetic, Robust and Efficient Method of Making
Small Area Population Estimates in France

GEORGES DECAUDIN and JEAN-CLAUDE LABAT!

ABSTRACT

Since France has no population registers, population censuses are the basis for its socio-demographic information system.
However, between two censuses, some data must be updated, in particular at a high level of geographic detail, especially
since censuses are tending, for various reasons, to be less frequent. In 1993, the Institut National de la Statistique et des
Etudes Economiques (INSEE) set up a team whose objective was to propose a system to substantially improve the existing
mechanism for making small area population estimates. Its task was twofold: to prepare an efficient and robust synthesis
of the information available from different administrative sources, and to assemble a sufficient number of “good” sources.
The “multi-source™ system that it designed, which is reported on here, is flexible and reliable, without being overly complex.

KEY WORDS: Population estimates; Administrative files; Robust estimation.

1. INTRODUCTION

In France, as in all countries that do not have population
registers, censuses of the population are the cornerstone of
the socio-demographic information system. However,
censuses are quite massive operations that cannot at present
be carried out more often than once every seven or eight
years. In the interval between censuses, it is therefore
necessary to update some information, especially at a high
level of geographic detail, particularly since for various

. reasons, censuses are tending to be less frequent. Thus,
small area population estimates are a major challenge for
the Institut National de la Statistique et des
Economiques (INSEE).

Despite the progress achieved in this field, the situation
in 1993 still seemed fairly unsatisfactory. When figures
from the 1990 population census were compared to the
population estimates made on the basis of the previous
census (1982) for the metropolitan departments, the
differences noted were sometimes sizable.

INSEE therefore created a methodology team whose
mission was to propose a system that would substantiaily
improve the existing mechanism. Initially, the next census
Wwas to take place in 1997. It therefore seemed reasonable to
have the new system operate on an experimental basis until
!he census, so as to see how well it worked before using it
in actual production. When the census was postponed to
1999, it became more necessary to bring the project to a
Successful conclusion quickly, so as to be able to use the
New system in 1996.

Tp achieve its objective, the team devoted itself, with
Mmaximum pragmatism, to a twofold task: to develop an
efficient and robust synthesis of the information available
from different admistrative sources, and to assemble a
sufficient number of “good” sources. The “multi-source”
System that it designed, which is described here, is not
overly complex and seems effective. A more detailed
description of it is provided in Decaudin and Labat (1996).
--_‘—-—-—

tudes .

2. MAIN CONCLUSIONS

The team’s main conclusions are as follows:

I) It is impossible to improve total population estimates
using sample surveys, unless the survey is conducted
on such a scale that it would be similar to a census.

2) No single administrative source adequately reflects
changes in the population. At the local level, all
sources can exhibit drift, breaks, jolts, efc., which are
not always easy to detect. Furthermore, even at the
local level, it is often quite difficult if not impossible to
get the agency responsible to provide explanatory
details, much less corrections in the case of errors. In
any event, it is unwise to rely on a single administrative
source, however good it may be, since its permanency
is never guaranteed.

3) On the other hand, total population estimates can be
improved substantially by simultaneously using several
sources. A “multi-source™ system, similar to the one
presented here but more rudimentary, was tested
retrospectively over the intercensal period 1982-1990,
for the 96 metropolitan departments. The mean ermror
(mean deviation as an absolute value from the results of
the March 1990 census) fell below 0.9%, whereas the
mean error registered at the time, with the estimation
system then in place, was 1.4%.

3. SIMULTANEOUS USE OF SEVERAL
SOURCES

For using several sources jointly, different methods are
possible,

A method that is universal — and easy to implement — is
multiple regression. In simplified form, this amounts to
using, for any area z, the following relationship:

P(n+1,2)/P(n,z) =c + Y (k No(n + 1,2)/Ny(n, 2)),
S

i 5
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where P(n, z} is the population of area z on January 1 of
year n, the values Ng(n,z) are the numbers from each
source S on the same date and k¢ are coefficients, which are
estimated by multiple regression over a past period. Here ¢
is a constant term that is used only in the regression, with
calibration on the national population serving to correct any
drift.

This method is used in various countries, including
Canada and the United States (for example, see Statistics
Canada 1987 and Long 1993). Nevertheless, it was not
adopted because it has numerous drawbacks:

— it must be possible to estimate the coefficients, which
requires data from each source extending back over a
fairly long period;

— the coefficients can change over time, without it being
possible to control this change;

— as noted above, the administrative sources are, for
various reasons (changes in regulations, abrupt shifts in
management, errors, efc.), subject to what might be
called “anomalies”. For each source S, the scope of
these anomalies is reflected in part in the coefficient k.,
to an extent that depends on how great their medium-
term effect has been over the calibration period [la
période d’étalonnage]; but anomalies nevertheless occur
in estimates with the same weight as the “good” data
from the same source. The estimates are then highly
distorted.

Another method is known as the “composite” method.
Each source is used to estimate the population in one or
more age classes: age class X, which is well-covered by the
source, but also sometimes another class that definitely
exhibits a pattern very similar to that of class X (for
example, the “30-45" age group, if X represents the “under
18" age group). It is then necessary to have appropriate
indicators for the other components of the population and
correctly manage the consolidation of these estimates “in
parts”.

This type of method, used in the United States (Long
1993), seemed to us to be problematic, especially because
of the difficulty of adequately dealing with “anomalies”.

The proposed “multi-source” system is based on a robust
synthesis of estimates from different sources. It combines
demographic reasoning with purely statistical techniques.
It draws on the experiments conducted by the INSEE's
regional directorate in Brittany in the early 1970s (Laurent
and Guéguen 1971; Guéguen 1972). Should one of the
sources fail, such a system is not prevented from

functioning, even though its performance may be somewhat
diminished.

4. DEMOGRAPHIC BASE
The demographic reasoning which is at the base ﬁf the
system is elementary: assuming that we know the total
population P(n) for an area on January 1 of year n, the
population P + 1) of the area on January 1 of year n1 + 1

is deduced by summing the two components of the change
during year n: natural increase (births minus deaths), and
net migration (immigrants minus emigrants).

P(n + 1) = P(n) + N(n) - D(n) + Iin) - En).

In France, natural increase data are provided annually at
the commune level by vital statistics. If the latter are not yet
available in final form, which is often the case in the third
quarter of year n + 1, it is easy to estimate them with a low
margin of uncertainty.

The only unknown, then, is net migration for year n:
SM{(n) = K(n) - E(n) or what amounts to the same thing, the
net migration rate T(n) = SM(n)/P(n). In other words,
estimating the population comes down to estimating net
migration since the last date on which the population is
known (or is assumed to be known), and vice versa.

In France, net migration figures are of some importance,
although less so than in other countries such as Canada or
the United States. In addition, they generally exhibit a
certain inertia, at least at relatively aggregated geographic
levels. One way to assess the influence of changes to them
from one intercensal period to the next is to measure the
errors that would have been committed during each period
if the population had been estimated by using the average
annual net migration rates for the preceding period. Over
the period 1982-1990, for the departments (excluding
Corsica), the mean end-of-period error (in 1990, at the end
of eight years) would have been only 1.3%. It was not
certain, when the team started its work, that much greater
accuracy could be achieved. However, both in 1975 and in
1982, the mean error that would have been committed with
the trend method would have been much greater: 2.8% and
2.7% respectively (over seven years). It would therefore
seem that the period 1982-1990 was exceptional and that in
the future the difference will again be more pronounced.

5. ESTIMATES FROM THE
DIFFERENT SOURCES

From each source, using an appropriate method, we draw
an estimate of annual net migration rate for the population
as a whole. The methods that may be used depend on the
data available.

For each of the sources tested and found to be “good”, at
least at the departmental level, a method is proposed, The
five sources retained are the following: housing tax;
electrical utility customers; children receiving family
allowances; educational statistics; electoral file.

The data on the composition of households for tax
purposes, which appear in the income tax files, are the sixth
source that should provide very good results. However, to
date, these data have been analysed for only a few
departments, and the methodology for using thern is not yet
completely defined.
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We aiso propose to integrate a trend estimate of the net
rpigration rate into the system.

Two categories of methods are used. The first concerns
the sources relating to households; the second concerns
those relating to individuals.

5.1 Sources Relating to Households

Some sources provide information on changes in the
number of households. This is the case with the files on
housing taxes (HT) and electrical utility customers (EUC).
The housing tax is one of the four main local direct taxes.
As its name indicates, it applies to occupied dwellings, with
main residences and secondary residences being treated
separately. The housing tax file takes account of the
situation on January 1 of the taxation year. Starting in the
1980s, the HT source was the basis for the departmental
population estimates developed by INSEE (Descours 1992).
In the early 1990s, it was replaced by the EUC source, in
light of the distortions caused by a change to the HT
management system which gradually worked its way
through all departments.

The method adopted for using these sources follows
classical principles. It leads directly to an estimate of the
total population, and it involves three main stages:

1) estimating the number of households;

2) estimating average household size and from there,
estimating the population of households;

J) adding the “non-household” population.

In the first stage, it is assumed that the number of
households changes in accordance with the data supplied by
the source (number of main residences for HT purposes or
number of electrical utility customers). The second stage is
more delicate. It is based on both the use of statistics on
dependants from the HT files and on a trend estimate of
average household size.

In the proposed “multi-source” system, we move on to
the net migration rate, for comparison with other sources,
using vital statistics data (cf. Section 4).

5.2 Sources Relating to Individuals

The other sources used concern individuals. Only a
certain age group X of the population is generally covered
adequately. The method then involves two main stages:

1) estimating, from the source, the net migration rate for

the population aged .X;

2) from there, estimating the net migration rate for the
population as a whole,

The second stage is based on the following statistical
relationship, observed in the past, between the change, from
one period to another, of the overall net migration rate (7)
and the change in the net migration rate for the population

8ged X (7X):
T, - T, = 8, (TX, - TX)),

where 8, is a coefficient close to 1, depending on the age
roup X This relationship is similar to the one used by

de Guibert-Lantoine (1987) to estimate the population on
the basis of educational statistics.

For the corresponding age groups in the different sources
used, the values, estimated by linear regression, of the
coefficient 8,(+/~2 standard deviations) are shown in
tables 1 and 2.

Table 1
Estimates of &, on Departments, Excluding Corsica,
Internal Net Migration

Period | | Period 2 Age at end of period

0-19 10-14 35 and over

1962-1968 [1968-1975 | 0.76 (+/- 0.04) { 0.69 (+/-0.06) | 1.24 (+/-0.09)

1968-1975{1975-1982 | 0.77 (+/-0.03) | 0.88 (+/-0.06) | 1.56 (+/-0.08)

1975-1982|1982-1990 | 0.70 (4/-0.11) | 0.49 (+/-0.10) | 1.26 (+/-0.17)

Table 2
Estimates of 8, Over the Two Periods 1975-1982 and
1982-1990, Excluding Corsica, Total Net Migration

Age at end of period

0-18 9-15 35 and over
Departments 0.65 (+/-D.11) 057 (+-0.10) 1.22 (+/-0.16)
Department ~ :
employmentzone  0.65 (+/-0.04)  0.59 (+/-0.04)  1.17 (+/-0.06)

The approach followed in the first stage depends on the
source:

Electoral File

Annual migration figures for voters in the selected age
group (30 and over) are supplied directly by the electoral
file managed by INSEE. We go from the rate of net
migration of voters to the residential net migration rate by
dividing the former by a coefficient reflecting the
magnitude of the change in the electoral file.

Educational Statistics

The net migration figure for those in the 5-9 age group
is obtained by subtracting their number in year » from that
of the same cohorts the next year (that is, fror those in the
6-10 age group in year n + 1) and deducting deaths.

Children Receiving Family Allowances

The number of persons in the 0-17 age group is
estimated on the assumption that it evolves similarly to the
number of children receiving family allowances. From this
a figure for the net migration of young persons is obtained
by comparing this estimate to a hypothetical change in the
youth population without migration, that is, a change due
solely to natural increase.

_87,



Decaudin and Labat: Small Area Population Estimates in France

6. SYNTHESIS

6.1 Principles

The different basiz estimates of the annual net migration
rale are treated statistically in order to obtain a “synthetic
rate”, to be used as the final estimate. The treatment serves
to eliminate outliers, underweight suspect values and, more
generally, assign to each source a weight that reflects its
performance.

More specifically, since each source can “drift”, the
different basic estimates are generally biased; they are first
corrected for the national bias of the corresponding source
for the year considered, a bias that is estimated in advance.
In proceeding in this way, we implicitly assume that the
difference between the local bias and the national bias is
minor in relation to the irreducible unexplained portion of
the difference (flou iréductible). Once we have estimates
for 2 number of years, it should be possible to test this
hypothesis and if necessary, replace it with one that
comresponds more closely to reality, so as to improve the
correction of biases at the local level.

It should be noted that such a seemingly simple operation
as cormrecting the national bias nevertheless requires several
precautions. The solution that consists in carrying out a
gross calibration on the national net migration rate,
considered by definition as a good reference, is not very
satisfactory, owing to anomalies that may distort the
calibration. It is therefore preferable to estimate the biases
by means of a process in which we also eliminate
anomalies. The process is similar to the one used for
synthesis, which is described below. However, the deter-
mination of biases, assumed to be national in scope and
therefore calculated for 96 departments, is less sensitive to
anomalies than the determination of synthetic rates,
calculated over a small number of sources. Only major
anomalies are likely to significantly throw off the cali-
bration of the rates and must therefore be corrected.

The “synthetic” net migration rate is a weighted mean of
the basic estimates thus calibrated. Each source § is
assigned an initial weight W that is supposed to reflect its
medium-term accuracy. But in addition, for a given year
and area, this weight is modulated to take account of the
plausibility of the corresponding rate. Thus, if a rate is
“abnormally distant™ from the rates obtained from other
sources — in practice, from a central value for all rates for
the area ~ its weight is cancelled or reduced. For this, we
look at the distance between the rate obtained from each
source and the central value identified, and we compare it
to a “norm” of distance NO; specific to the source, deter-
mined empirically on the basis of the data available: if the
distance is less than “a times the norm”, the weight is not
automatically changed; if it is greater than “b times the
norm”, it is set at Q; between the two, the weight is
multiplied by a coefficient, included between 0 and 1,
calculated by interpolation.

Note that the trend estimate is formally treated like those
from exogenous sources; its weight is cancelled when it is

considered as implausible because it is too far from the
other estimates.

‘The synthesis is achieved automatically, which ensures
homogeneity and an explicit logic to the treatments carried
out. This dues not, however, eliminate the need to control
the results obtained.

6.2 Theoretical Presentation

On the theoretical level, we sought to use reasonings and
robust estimation techniques, such as described in Hoaglin,
Mosteller and Tukey (1983). The method adopted falls
within the framework of M-estimators of central tendency
and more specifically in the category of W-estimators,
which use the reweighted least squares algorithm.

Since the net migration rates for year n and area z
obtained from different sources S (and corrected for their
national biases) are denoted TC(n, z), the synthetic rate
T(n, z) solves the implicit equation:

TC(n,z) - T(n,z) _
NO, 4=

where the function ¥ is of the type that redescends to a
finite rejection point:

gws . NOg . '¥( 0,

¥(r)=r for |r|<a,
¥ =r‘2‘—|’| for a< |r|x b,
¥(r) =0 otherwise.

Using an iterative process, we can gradually refine the
automatic processing of suspect data.

6.3 First Analysis of the Distances From Each Rate
to the Central Value for the Rates

1) For each area z we calculate a first central value of the
“calibrated” rates TCg(n,z). The central value used
must not be overly sensitive to the possible existence of
quite distant values for some sources, but at the same
time it must be influenced by a source to the extent that
the source is on average more accurate. Under these
conditions, rather than choosing the median — which
would meet the first condition — we use a statistic of
rank that is a little more elaborate but nevertheless
simple, owing to the small number of values; this
statistic is the mean, weighted by respectively 1/2, 1/4,
1/4, of the three quartiles:
~ the median of the rates TC,(n, z) weighted by the

initial weights W,
— the lower quartile ((Q1) of the weighted rates,
— the upper quartile (Q3) of the weighted rates.

2) Therates T1(n, z) thus obtained are calibrated on the net
migration rate for the higher level, by simple translation:

TCl{n,z) =Tl{n,z) +
TREF(n)- Y (T1(n, ) P(n,z)) / 3 P, z)
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where P(n, 2) is the population of area z on January 1 of
year n and TREF(n) is the net migration rate for the
higher level (the national rate for the departmental
synthesis).

3) For cach area, we calculate the differences between each
rate and this calibrated central value:

ECl4(n,z) = | TCy(n,z) - TCl{n,2) |.

4) For each source and each area, the size of this difference
is assessed in relation to the “norm” of distance NO;
specific to the source. This “norm” is determined
empirically on the basis of the available data:
theoretically it is the average of the distances observed
in the past, excluding anomalies. The result is a first
modulation of the weight originally assigned to this
source:

- if EClg(n,2) < alNO¢, where al is a parameter to
be chosen (in the vicinity of 2), we do not change
W, the initial weight for S. In other words, if
WMl .(n z) is the modulation coefficient of W
(coefficient included between 0 and 1), we take
WMl (n,z) =1;

~ if ECl¢(n,z)>b1 NO;, where bl is another
parameter (in the vicinity of 3), we set W at 0,
meaning that we eliminate source S: WM1.(n, z) = 0;

- if alNOg<EClg(n,z) < b1 NO;, we interpolate
WMl (n, 2) asafunction of the value of EC1 s{n 2

WMl4(n,2) = (b1 NOg - ECl(n, 2))/{((b] - al)NO).

5) At the end of this first phase, we therefore have new
weights specific to each source and each area, which
would allow us to locally eliminate or underweight
suspect rates: Wl(n, 2} = W WM (n, z).

6.4 Iterations

1) Using the weights thus modified 1 s{n, 2}, we estimate
a new central value for each area, this time taking the
weighted average of the rates:

T2(n,z) = E (TCg(n, 2)W1(n, z))/z W1,(n, 2).
5 3

2) We calibrate each rate T2(n, z) on the net migration rate
for the higher level, by translation. We obtain
TC2(n, z).

3) We calculate, in each area, the differences between each
rate and the calibrated average rate: EC2.(n,2) =
| TCy(n,z) - TC2(n, z) | . Using these differences, we
calculate new modulation coefficients for the initial
weights, using the parameters a2 and 42, which may be
different from al and b1 (theoretically they would be
lower). We thus obtain new weights W2.(n, z) which
more effectively take account of anomalies, since the

latter are assessed in relation to a better central
tendency. With these weights, we estimate a new
synthetic rate T3(n, z), which is calibrated on the higher
level to obtain TC3(n, z).

4) The operation; described in point 3 are repeated with the
same parameters a2 and b2. The tests conducted at the
departmental level over the period 1982-1990 show that
the convergence is generally rapid; the rates are quite
often stabilized by the fourth iteration.

7. IMPLEMENTATION AT THE
DEPARTMENTAL LEVEL

The estimation system outlined above, which is
operationalized for 1990 and subsequent years, was
implemented by the project team for the year 1990 at the
departmental level, with the following five sources: housing
tax (HT), electrical utility customers (EUC), family
allowances (FA), educational statistics (ES), electoral file
(EF), plus the trend estimate (TREND).

Figure 1 shows the results obtained for several
departments. Table 3 shows the values of the weights and
norms used to make the system operate. This table also
shows certain statistics obtained from the synthesis of the
net migration rates; in particular they concemn the
differences between the rates obtained from each source
and the synthetic rates.

Table 3
Implementation for Year 1990 at Department Level
Parameters and Statistics

HT EUC FA ES EF TEND
Weight 115 100 80 70 80 100
Norm 015 0.17 019 020 019 Q.12
Number of rates 96 96 89 96 94 96
Average distance 055 0.14 030 019 0.14 0.13
Number of “aberrant™ rates 37 2 17 3 1 6

Average of distances
without “aberrant™ rates 015 013 016 0.16 0.13 0.11

Note: - Coefficients (a, b) applied to norms: (2,5; 3.5) in the first iteration,

then (2; 3).

- The values of the distances and norms correspond to rates expressed
asa %.

- Distances are calculated in relation to the synthetic rates after three
iterations.

- “Aberrant” rates are those for which the weight is cancelled after three
iterations.

The results suggest that the system is even more effective
than indicated by the summary retrospective test carried out
on the 1982-1990 intercensal period with the same sources.
Aside from the HT source, which is still distorted, the
estimates from the different sources are more convergent
than they were on average in the retrospective test (see
Table 4).

There is nothing surprising about this, given the
rudimentary state of the system tested on the 1982-1990
intercensal period. The data used were rough or even
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Figure 1:

Summary of Net Migration Rates for 1990 for Twelve Departments, Identified by Number (49, 62, elc.).

Note: TC4 is the synthetic rate obtained after three iterations. Where the weight for a source has been climinated or reduced, the

value of the modulation coefficient (WM3) is shown.

fragmentary, owing to the difficulty of assembling, in 1993,
management data for years past (1982, ...); in addition, the
relationships used to draw an estimate of the net migration
rate from each source were simplistic; and lastly, the
method of synthesis was less elaborate.

It should be noted that the integration of other sources —
income tax data in particular — can only further reinforce the
effectiveness of the system.

Tabie 4
Mean of Distance in Retrospective Test

TH EDF AF EN FE

1982 0.26 0.34 0.50 0.47 0.34

1983 0.28 0.33 0.48 0.47 0.32

1984 0.23 0.28 0.40 0.45 0.34

1985 0.24 0.31 0.48 0.44 0.32
1586 0.23 0.33 0.40 0.33

1987 (.40 0.28 041 0.27

1988 0.84 0.29 0.30 0.37 0.24
1989 0.97 0.21 0.30 0.33 0.35
Overall mean 0.43 0.30 041 0.39 0.32
Notes:

-The number of rates per year is generally 96, except for FA (89)
and EF (94).

~The “clectoral file” source did not provide rates for 1986 or 1987.
-The “housing tax” source began to be distorted in 1987.

-The values of the differences correspond to rates expressed asa %.

8. SUPPLEMENTS

8.1 Sub-Departmental Levels

The use of some sources may become risky at a geogra-
phic level below the departmental level. There are various
reasons for this: because the hypotheses on which the
method is based become fragile, because the numbers are
small, efc. This is especially the case with educational
statistics.

However, it should be possible to operate the system for
employment areas, or more specifically for cross-tabu-
lations of department and employment area (there are
approximately 420 such areas), which serve to ensure
consistency with the departmental level. This should not
involve too many risks, for the following reasons:
= & cernain deterioration of performance in relation to the

departmental estimates is acceptable, especially since

the departmental estimates should be of good quality;
- the data from the income tax files should be quite useful;
~ trend estimation and calibration on estimates at higher
geographic levels (in this case the departmental
estimates) both act as safeguards.

Of course, there is nothing prohibiting the use of the
system to produce estimates for other sub-departmental
geographic units.

At the departmental level, it does not seem useful to
adapt the parameters (initial weights and norms) to
population size; on the other hand, for sub-departmental
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Robust Small Area Estimation Combining Time Series
and Cross-Sectional Data

D. PFEFFERMANN and L. BURCK!

ABSTRACT

The common approach to small area estimation is to exploit the cross-sectional relationships of the data
in an attempt to borrow information from one small area to assist in the estimation in others. However,
in the case of repeated surveys, further gains in efficiency can be secured by modelling the time series
properties of the data as well. We illustrate the idea by considering regression models with time varying,
cross-sectionally correlated coefficients. The use of past relationships to estimate current means raises
the question of how to protect against model breakdowns. We propose a modification which guarantees
that the model dependent predictors of aggregates of the small area means coincide with the corresponding
survey estimators and we explore the statistical properties of the modification. The proposed procedure
is applied to data on home sale prices used for the computation of housing price indexes.

KEY WORDS: Kalman filter; Linear constraints; State-space models.

1. INTRODUCTION

Statistical Bureaus are often confronted with the demand to provide reliable estimators
for small area means. The problem with the production of such estimators is that the sample
sizes within those areas are usually too small to allow the use of direct survey estimators. As
aresult, new estimators have been proposed in recent years which combine auxiliary informa-
tion (obtained from a census or administrative records) with the survey data obtained from
all the small areas. The common feature of these estimators is that they can be structured in
general as a linear combination of two components: a “‘synthetic estimator’” of the form X/
where X; represents the average auxiliary information at the small area level and 5 is a vector
of estimated regression coefficients; and a “‘correction factor’ of the form ( 9; — x:.8) where
J:and ; are the sample means of the target and the auxiliary variables. The correction factors
are used to account for the variability of the small area means not explained by the auxiliary
variables. The major difference between the various estimators is in the approach followed
to determine the weights assigned to the two components in the linear combination, ranging
from a “‘design based approach’’ (Sirndal and Hidiroglou 1989) to “‘empirical Bayes”’ (Fay
and Herriot 1979) and “*mixed linear models’’ (Battese, Harter and Fuller 1989, Pfeffermann
and Barnard 1991).

Very few studies are reported in the literature on the possible use of the time series relation-
ships of the data to further increase the efficiency of the small area estimators. This is despite
the fact that many of the small area estimators are derived from repeated surveys such as labour
force surveys. The econometric literature contains a vast number of studies on the combined
modelling of time series and cross-sectional data, sec e.g. Rosenberg (1973b), Johnson (1977,
1980), Maddala (1977, Chapter 7), Dielman (1983) and Pfeffermann and Smith (1985) for
reviews. However, none of these studies is directed to the problem of estimating (predicting)
small area means from survey data. Fitting time series models to survey data has been considered

' D. Pfeffermann, Department of Statistics, Hebrew University, Jerusalem 91905. L. Burck, Unit for Statistical
Analysis, Central Bureau of Statistics, Jerusalem 91130,
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in the context of estimating aggregate population means, see the review papers of Smith (1979)
and Binder and Hidiroglou (1988) and the more recent articles by Binder and Dick ( 1989), Tiller
(1989) and Pfeffermann (1991). But again, these methods are not in routine use mainly because
the classical survey estimators of the aggregate means are often almost as efficient when the
models hold and more robust when the models fail to hold.

The situation is clearly different when dealing with a small area estimation problem; it seems
to us that for this kind of problem, the use of time series models can be of great advantage.
Although the exact nature of the model to be used in a particular application is obviously ‘data
dependent’, the class of models we consider in the next section is broad enough to apply to
many, if not most of the small area estimation problems arising in practice. These models have
the further advantage that their estimation is relatively simple. Estimation issues are discussed
in Section 3.

The use of a model always raises the question of how to protect against possible model
failures and this question becomes even more sensitive when considering the use of a model
for the production of official statistics. In Section 4 we consider this issue and propose a
modification to the model dependent predictors which guarantees that for aggregates of the
small area means for which the direct survey estimators can be trusted, the modified model
predictors coincide with the survey estimators. The statistical properties of the modified
predictors are explored. We conclude the article in Section § with empirical results which
illustrate the performance of the model with and without the proposed modification. The data
used for the illustrations are the sale prices of homes in the city of Jerusalem during the months
of September 1985 through November 1989. These data are used routinely by the Central
Bureau of Statistics in Israel for the computation of housing price indexes.

2. REGRESSION WITH CROSS-SECTIONALLY AND
TIME VARYING COEFFICIENTS

2.1 A General Class of Models

In what follows we denote by ¥, the n,, x 1 vector of observations on a target variable
Y, pertainingtoanareakattimes, k = 1, ..., K, f = 1, 2, .... Weassume for convenience
that n; = 1 but as becomes evident later on, the model permits that some of the areas not
be observed at certain times. Let X, define the corresponding n, X (p + 1) design matrix
of the auxiliary variables with a vector of ones as its first column. In many applications,
the same row vector x;; of auxiliary values applies to all the Y values of a given time so that
Xy =1, &Xu where 1, is a column vector of ones of length ny . This is the case when the only
available data are the small area survey estimators. Confidentiality as well as processing costs
often preclude the use of micro data on individual survey respondents. The theory described
in this article is not restricted to the availability of the micro data (see the example in Section 2.2)
but data availability has an obvious effect on model specifications and precision of estimation.

The regression model holding in area & at time ¢ is defined as
Yu = XuBu + eus Elen) =0, Eleyes) = oil,, 2.1)

where 8/ = {Bexos Brers « - - Brkp)-

We define the (superpopulation) mean of the target variable values in area & at time ¢ to be

Oy = E(M:k | @rk) :-Xxkgrk (2.2)
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where
I Nrk ka
My = — Yui and Xy = — Y xi
tk Mk 2 tki ol Mk ,:E] thi
withi = 1, ..., Ny indexing the population units. Obviously, when xj; = x4, then X,, = x;;.

Let By define an estimator for 8. Then 8, = X, 8, and

) 1 Mtk Nk A A I Mk N
M, = FV:I: E Yii + E ,_gt’m-@rk:l = Oy + ]\T( E (Yo — J.Ctki@tk))

i=1 i=ng+1 N\ j=1

implying that in the usual case of small sampling rates within the areas, 8, can also be con-
sidered as an estimator of the finite population mean M,,. For this reason we no longer
distinguish between the finite and superpopulation means,

The notable feature of (2.1) is that the coefficients 8, are allowed to vary both cross-
sectionally and over time. The following equations specify the variation of the coefficients over

time:
[ﬁ;j] [ l‘f.a"r ) :I [l] i |
f J 3. 0 Nekjr J y rea P (')

where we use the notation BiisJ = 0, 1, ..., p, to define fixed coefficients which we interpret
below, and T; to define fixed (2 X 2) matrices and where the residuals {n;] satisfy

E(nu;) = 0, E(uugnue) = 86, EMuyieane) = 0 for d > 0. (2.4)

The implication of (2.4) is that residuals of different coefficients pertaining to the same time
t are allowed to be correlated but the serial and cross serial correlations are assumed to be zero.

Next, we illustrate the use of (2.3) by considering some simple cases:

(a) T; = [§1] implies that 8,; = Bi; + 14, so that By; represents, in this case, a common
mean. This is the well known Random Coefficient Regression Model (Swamy 1971) which
is often used in econometric applications. Obviously, by postulating, var(q,;) = 0, the
model reduces to the case of a fixed regression coefficient over time.

(b) 7; = [49] implies that B, = Bi—1 4 + nu; which is the familiar random walk model, see
e.g. Cooley and Prescott (1976) and L.aMotte and McWhorter (1977) for application of
this model in econometric studies. In this case the coefficient B;is redundant and should
be omitted so that 7; = 1.

) I; = [5’_‘ ',_"] implies the first order autoregressive relationship (8, — Bi) = p(Bioriy — Byj)
+ 74; considered by Rosenberg (1973a).

(d) 7, = [(') 1‘] implies that 8,; = Bi—1,4 + Bi; + nyu, which defines a local approximation to
a linear trend (Kitagawa and Gersch 1984). The coefficient By; represents, in this case, a
fixed slope.
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It should be emphasized that different matrices T} can be used for different coefficients Biks-
In faCt’ by defining Q‘[’k = (BrkOs Bk()! Btkl’ 6)'(11 IhCE Brkp' ka); TH. = diag[TD! Th Sy Tp] ,
a block diagonal matrix with 7; as the j-th block; G = I,.; ® [;] where [, , is the identity
matrix of order p + 1 and ® defines the Kronecker product and 9/ = (n%0s Mgt - - -» Nikep) »
the combined model holding for the coefficien.s 3, can be written as

Qe = -‘g!—l,k + G'H:k; E{ny) = 0, E(D‘rk!}:’—d,k) = AgzA (2.5)

where A; = [ ford = 0 and A; = 0 otherwise, and A = [8;] is defined by the variances
and covariances 8, (equation 2.4).

The model defined by (2.5) specifies the variation of the regression coefficients of a specific
area over time. The common approach to account for cross-sectional relationships between
small area means is to allow for random small area effects which are time invariant {ue). The
general model defined by (2.1) and (2.3) includes this case by writing ¥}, = 1, wlee + X Buc
+ & = X B + e, say, and specifying uy = w14 + 1y with uoe = 0, var(yy) = of
and var(y,) = 0 for ¢ > 1 (compare with case (b) above). By assuming in addition the
autoregressive relationship defined by case (c) for the intercept variable and fixing the other
regression coefficients (case (a) with zero residual variances), the resulting model is similar to
the model considered by Choudhry and Rao (1989) except that in their general formulation
of the model the observation residuals of equation (2.1) are allowed to be serially correlated.
Notice that equation (2.1) now contains two random ‘‘intercept terms’’ but the model is
nonetheless identifiable. Choudhry and Rao assume that the only available data are the survey
estimators so that the estimation of the serial correlations needs to be carried out externally,
using the micro observations. Alternatively, a model accounting for the serial correlations can
be postulated. Choudhry and Rao assume an AR(1) model in their study.

A more general way to account for the cross-sectional relationships between the small area
means is to allow for non zero correlations between the residual terms Nexj and ny,; of the
models specifying the time series variation of the regression coefficients By and B,,,; operating
in areas k and m (equation 2.4). Often it is reasonable to assume that the correlations
decay as the distance between the areas increases. This can be formulated as, E( ki Myms) =
80 f; (k,m), k # m, where Jj(k,m) is a monotonic decreasing function of the distances
D(k,m). The case of geometrically decaying correlations is obtained by defining f; (k,m) =
p}"‘”" ~!, The case of fixed correlations is obtained by specifying f;(k,m) = 1 and in what
follows we consider this case only. Allowing for fixed cross-sectional correlations for alf the
regression coefficients can be formulated as

E(gunm) = D(A)D, k # m (2.6)

where D(A) is the diagonal matrix with the variances d;; on the main diagonal and @ is another
diagonal matrix composed of the correlations o;-

Before concluding this section we present the model defined by (2.1), (2.5) and (2.6) in a
state-space form. Presenting the model in this form has important computational advantages.

Let ¥/ = (Y1, ..., Yix) represent the vector of observations of lengthn, = ¥, ny for all
the areas at time rand let ¢/ = (g/y, . ..,e/x) represent the corresponding regression residuals.
Define Zy. = [ Lk Oner Xekt» Qries - - «»Xtkp» Onie] Where 0, is a vector of zeroes of length 7, and
Xu; s the vector of values for the j-th auxiliary variable, j = 1, ..., p. Let Z, be the block diag-
onal matrix composed of the matrices Z,,. The matrix Z, is of order noxX [Kx2x (p+1)].
Define also ?_fr’ = (@, - -:Q‘:’K_): 2/ = {1, - 0ik)» L. = Diag(oflyy, ..., ok Lokl
T=0L®T,andGC =L ®G.
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Using this notation, the model defined by (2.1), (2.5) and (2.6) can be written compactly
as

Y, = Zig + ¢ E(g) =0, E(ge/) = ¥, (2.7)

o = Tary + Guis E(g) = 0, E(nyn/) = A, (2.8)
where A = [Ay], &k £=1, ..., K with Ay = A when k = £ and A, = D(A)@ when
k # £. The matrices Agrare (p + 1) X (p + 1).

The model defined by (2.7) and (2.8) conforms to the classical state-space formulation,
see, e.g. Anderson and Moore (1979) and Harvey (1984). By this formulation, (2.7) is the
observation equation and (2.8) is.the state equation with o, defining the state vector. The
apparent advantage of restructuring the model in a state space form is that the vectors g,
and hence the population means 9, as well as the estimation error variances can be esti-
mated conveniently by means of the Kalman filter. We discuss the use of the filter in
sections 3 and 4.

2.2 Explicit Estimators of the Small Area Means

In order to illustrate how past and neighbouring data are used under the model to
“strengthen’” the small area estimators we consider the case where the same vector x,, of
auxiliary values applies to all the units of a given area at a given time. In this case the obser-
vation equation can be formulated in terms of the sample means, i.e.

Yoo = XieBue + éwi E(&w) = 0, E(&}) = ofjng, k = 1, ..., K. 2.9)

Suppose that the regression coefficients follow a random walk (case (b) of equation 2.3)
so that for area &

Buj = Bty + My E(nug) = 0, Enpgnge) = S J,{=1,...,p (2.10)
and for areas k # m,
E(uinimi) = 85057 Equinime) = 0, # L. (2.11)

The random walk model implies that the coefficients drift slowly away from their initial
value with no inherent tendency to return to a mean value. Obviously, for residuals Nekj Such
that £ (nfkj) = 0 the corresponding regression coefficients are fixed over time. Notice also
tpat since 8 = By_|x + nu, the predictor of 8 at time (¢ — 1) is the same as the predictor
Be—1,60f By -

Using the Kalman filter equations presented in section 3, itis shown in the Appendix that
the estimator 8, of the small area mean B/ (equation 2.2) can be structured in this case in
the following form

K
5 E 'Ykm(}_/;m - '_’.(tfrrr@!—l.m)
MV = (2.12)

mak

of

2
. . ok " x
O = X/ Qr—s,k+(1 — )(Kk"‘-}’ﬁc@:—l.k) +

NycVi
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where the coefficients {vy,,} are the partial regression coefficients in the regression of
ew = (Y — x5k Bi_1 k) against the prediction errors {e,, = (¥, — X/ B,— 1,m) ] obtained
in the other areas and v} is the residual (unexplained) variance in the regression.

The estimator G,k is composed of three components: the ‘‘synthetic’’ estimator, x;; @, 1 ks
where §3,_ 1.k 1s the optimal predictor of 3, based on all the observations up to and including
time f — 1, the “correction factor” (¥, — x/ @,_1' «) based on the prediction error in area
k, and an ‘‘adjustment factor’’ based on the prediction errors observed for the other areas.
The first two components correspond to the components of the classical small area estimators
discussed in the introduction. Notice that the smaller the sample size n,;, the smaller is the
weight assigned to the current sample mean Y, in the estimation of 6, and the larger is the
weight assigned to the time series predictor x}, 5, 1,k- The third component in the right hand
side of (2.12) represents the information borrowed from neighbouring areas. The weight
assigned to this component depends on the magnitude of the correlations p; between the cor-
responding error terms {74;) in the models holding for the regression coefficients (equation
2.11). Obviously, when the regressions in the various areas are independent so that P = 0 for
all j and hence v;,,, = 0 for all m, the third component vanishes and the predictor G,k reduces
to a weighted average of the current mean ¥, and the time series predictor xj. 8, i e

3. MODEL ESTIMATION AND INITIALIZATION
USING THE KALMAN FILTER

3.1 Estimation of the Regression Coefficients by Means of the Kalman Filter

In this section we present the Kalman filter equations for the updating and smoothing
of the state vectors ¢, defined by the equations (2.7) and (2.8) (the area regression coeffi-
cients in our case). We assume that the V-C matrices ¥, and A are known. Estimation of
these matrices is considered in section 3.2. The theory of the Kalman filter is developed in
numerous publications (see e.g. Anderson and Moore 1979 and Meinhold and Singpurwalla
1983) and so we restrict the discussion to aspects most germane to the small area estimation
problem.

Let &, be the best linear unbiased predictor (blup) of ¢, _, based on all the data observed
up to time (¢ — 1). Since &,_, is blup for o,_, &y, = T@&,_, is the blup of g, at time
(¢ — 1). Furthermore, if P,_; = E(&,_; — a,_) (&_; — a;_;)" is the V-C matrix of the
prediction errors at time (f — 1), Py_y = TP, T’ + GAG’ is the V-C matrix of the
prediction errors (&y,—; — ¢, ). (Follows straightforwardly from 2.8).

When a new vector of observations [ Y;, Z,] becomes available, the predictor of ¢, and the
V-C matrix P,_, are updated according to the formulae

@r = é’rlr—l + Pr|r—IZ:’Fr_l(ft - ftlr—l)

(3.1)
= (1 - Pt“_lZ;F;_lZf)Ptlf—l

where f’,“_i = Z; &, is the blup of ¥, at time (¢ — 1) sothate, = (¥, — f,“_,) is the
vector of innovations with V-C matrix F, = (Z, Py1Z) + %))

The new data observed at time ¢ can be used also for the updatmg (smoothing) of past
estimators of the state vectors and hence for the updating of past estimators of the small area

means. Denoting by £* the most recent month with observations, the smoothing is carried out
using the equations
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Qe = & + ET'PJ:-IIU(@HIU' — Tgq,)
(3.2)
By = 8 ¥ BT PR Brsryr = Boaii P sp TP £ =2, 3, coun ¥

where P, is the V-C matrix of the prediction errors (&,,» — ). Notice that & ,» = &» and
Ppypo = Py define the starting values for the smoothing equations.

Estimators of the small area means or aggregates of the means are obtained from the filtered
(or smoothed) estimators of o, in a straightforward manner using the relationship &,, =
X Brk = Zu&n = ZaxAad where Zy = (1,0, Xy, 0, ..., X, tkps 0) and A,y is the appro-
priate indicator matrix. Hence, if 6 = L¥_, w, 6, then 8 = LE_ w2/ Ay &, = alé&,,
say. For given V-C matrices ), and A, the MSE’s of the estimation errors are obtained as

E(6y — 04)? = ZjAuPAlZy and E(8Y — O}) = @}, PGm- (3.3)

Notice that the MSE’s in (3.3) are with respect to the joint distribution of the observations
{Yy] and the vectors of coefficients {8, ] so that they represent average MSE’s over the
possible realizations of the area means.

3.2 Estimation of the V-C Matrices and Initialization of the Filter

The actual application of the Kalman filter requires the estimation of the unknown elements
of the matrices L, and A and the initialization of the filter, that is, the estimation of the vector
a, and the corresponding V-C matrix P, of the estimation errors. In this section we describe
simple estimation procedures which can be used for these purposes.

Assuming a normal distribution for the residual terms ¢, and 5, of equations (2.7) and (2.8),
the log likelihood function of the vectors ¥,,.1, ..., ¥+, conditional on the first m vectors
Yy, ..., Y., can be formulated as

1 &
L()\) = constant — 5 E (log | F, | + e/ F'g) (3.4)

t=m+1

where A contains the unknown model variances and covariances written in a vector form. The
scalar /m defines the number of time periods needed to construct initial values for the Kalman
filter. (For the random walk model considered in section 2.2, m = 1, provided that sufficient
data are available in every area to allow the computation of the OLS estimators of the vectors of
coefficients). The expression in (3.4) follows from the prediction error decomposition, see
Schweppe (1965) and Harvey (1981) for details. For given matrices L, and A, the innovations
¢, and the V-C matrices F; can be obtained by application of the Kalman filter equations (3.1).

The computation of the likelihood function requires the initialization of the Kalman filter
which can be carried out most conveniently by application of the approach proposed by Harvey
and Phillips (1979). By this approach, the nonstationary components of the state vector are
initialized with very large error variances which corresponds to postulating a noninformative
prior distribution so that the corresponding state estimates can conveniently be taken as zeroes.
(For the random walk model, initializing with a noninformative prior yields the OLS estimators
after one time period, see Meinhold and Singpurwalla 1983, for a Bayesian formulation of
the Kalman filter). The stationary components of the state vector are initialized by the cor-
responding unconditional means and variances which may be part of the unknown parameters
defining the arguments of the likelihood function. )
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Maximization of the likelihood function (3.4) can be implemented using the method of
scoring with a variable step length. In particular, let A, define initial estimates of the un-
known elements in A. Then the method of scoring consists of solving iteratively the set of
equations

Miy = Moy + Rl hi-n) 1 gyl (3.5)

where Ay is the estimator of ) as obtained in the (/ — 1)-th iteration, /[X;_;,] is the
information matrix evaluated at A;_, and g[\;_y,] is the gradient of the log likelihood
evaluated at A;_,. The coefficient r; is a variable step length introduced to guarantee that
L{X4] = L[N -] in every iteration. The value of r; can be determined by a grid search
procedure in the region [0,1]. The formulae for the 4-th element of the gradient vector and
the k¢-th element of the information matrix are given in Watson and Engle (1983).

Having estimated the model variances and covariances, these estimates can be substituted
for the true parameters in the Kalman filter equations (3.1) - (3.2) to yield the estimators of
the regression coefficients and the V-C matrices and hence the small area estimators and their
variances (see equation 3.3). Notice however that the estimated V-C matrices ignore the
variability induced by the need to estimate the unknown elements contained in A. Ansley and
Kohn (1986) propose correction factors of order 1/¢* to account for this extra variation in state
space modelling using first order Taylor approximations. Hamilton (1986) proposes a Monte
Carlo procedure which consists of sampling from a multivariate normal distribution with mean
given by the maximum likelihood estimator of the vector A and V-C matrix defined by the
inverse of the information matrix, and estimating the state vectors for each random realization
of the parameter values. This procedure is more flexible in terms of the assumptions involved
and provides further insight into the sensitivity of the Kalman filter estimators to errors in the
variance and covariance estimators. However, it is computationally more intensive.

4. MODIFICATIONS TO PROTECT AGAINST
MODEL BREAKDOWNS

4.1 Description of the Problem and Proposed Modifications

The use of a model for small area estimation seems inevitable in view of the small sample
sizes within the areas. However it raises the question of how to protect against model break-
downs. Testing the model every time that new data becomes available is often not practical,
requiring instead the development of a ““built-in mechanism’’ to ensure the robustness of the
estimators when the model fails to hold.

One possibility is to modify the regression estimators derived in the various time periods
so that they satisfy certain linear constraints obtained by equating aggregate means of the raw
data with their expected fitted values under the model. More precisely, we propose to augment
the model equation (2.1) by linear constraints of the form

k

YWE Y Yua= Y, WE Y xiBu €= 12, L), t=1, ..., 1 @41
k f i

where the coefficients W are fixed, standardized weights such that ¥, W{" = 1. An
example for such a constraint would be the equation
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K K K K
¥ NrkMrk/ Y, Ny = Nrk(Zﬁc@m)/ Y Nu (4.2)
k=1 k=1 k=1 k=1

where M is the direct, survey estimator in area k. For e = Xy, the equation (4.2)
guarantees that the model dependent predictor of the aggregate population mean coincides
with the corresponding survey estimator. Such a constraint can be justified by arguing that
the survey estimators, although not reliable enough for estimating the small area means due
to the small sample sizes, can be trusted when being combined for estimating the aggregate
mean. Notice that ‘“‘adding up’’ constraints are ordinarily imposed on statistical agencies
anyway. Battese, Harter and Fuller (1988) and Pfeffermann and Barnard (1991) use a similar
constraint for analysing cross-sectional surveys. Often, the small areas can be grouped into
broader groups, with sufficient data in each of the groups to justify the use of the survey
estimators for estimating the corresponding group means. In this case, one can impose several
constraints of the form (4.2) where the summation is now over the areas belonging to the same
group. Notice in this respect that in view of the correlations between the regression coefficients
operating in the various areas, a constraint applied to a sub-set of the areas will modify the
regression estimates in all the areas. We illustrate this property in the empirical study.

It is important to emphasize that the set of constraints in (4.1) does not represent external
information about possible values of the regression coefficients. Rather, it serves as a “control
system’’ to guarantee that the model estimators adjust themselves more rapidly to possible
changes in the behavior of the regression coefficients. As a result, the variances of the modified
regression estimators are slightly larger than the variances of the optimal estimators under the
model. Obviously, when no such changes occur and the variances of the aggregate means are
sufficiently small, one would expect the constraints to be satisfied approximately even without
imposing them explicitly. As mentioned above, it is possible to incorporate several separate
constraints in each time period but it is imperative that the variances of the corresponding
aggregate means will be small enough to ensure that the modifications are indeed needed and
do not interfere with the random fluctuation of the raw data.

4.2 Inference Incorporating the Linear Constraints

In Section 4.1 we proposed to amend the model equations (2.1) by imposing the set of
constraints (4.1) thereby ensuring the robustness of the regression estimators against sudden
drifts in the values of the coefficients.

Computationally, this can be implemented most conveniently by augmenting the vectors
Y; of equation (2.7) by the scalars L, W ¥, Yy, augmenting the matrices Z, by the corre-
sponding row vectors (W) 1;nZy, ..., Wi 1,xZ,x) and setting the respective variances of
the residual terms to zero. The augmented set of equations, together with (2.8), form a pseudo
state-space model which could be estimated using the Kalman filter equations (3.1). Notice
that the pseudo V-C matrix ¥ #) of the augmented residual vector is no longer positive
definite (the last L(r) rows and columns of L consist of zeroes) but this does not cause
computational difficulties.

The drawback of applying the Kalman filter to the pseudo model is that the V-C matrices
of the regression estimators fail to account for the actual variability of the aggregate means
appearing in the left hand side of (4. 1). In order to deal with this problem, we propose to amend
the formula for the updating of the V-C matrix P, (equation 3.1} so that the variances and
covariances of the aggregate means will be taken into account.
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Let Y and Z/4) represent the augmented Y vector and Z matrix at time ¢ and denote by
¥4 the actual V-C matrix of the residual terms { Y — Z/*) q,]. The matrix L4 is of
order [n, + L(¢)] with ¥, in the first n, rows and columns and the variances and covariances
of the means L, W? ¥, Y,; among themselves and with the vector Y, in the remaining rows
and columns. Denoting by &#{ the robust predictor of ¢, as obtained at time (£ — 1) using
the pseudo model and by P4 the actual V-C matrix of the errors (&'4) — @,_,), the
modified state estimator at time ¢ is obtained as

&4 = Tl + Pz (F) I [Y — 29 Ty (4.3)

where B, = (TP T’ + GAG') and F{P) = ZMWpi),z{Y" + L) (Compare with

3.1). It is shown in the Appendix that the actual V-C matrix P{*? of the errors (&) — g,)
satisfies the recursive equation

P = [1 - KIPZMPY, + KP[LA — LP)KP, 4.4)

where K(P) = P Z(A (F{") = is the pseudo Kalman gain. The first expression on the
right hand side of (4.4) corresponds to the usual updating formula of the Kalman filter (compare
with 3.1)). The second expression is a correction factor which accounts for the actual variances
and covariances of the means L; W& L; Y;1;, not taken into account in the first expression.
The amended Kalman filter defined by the equations (4.3) and (4.4) produces robust predictors
&) instead of the optimal, model dependent predictors, &, but otherwise uses the correct V-C
matrices under the model. Thus, this filter can be used for the routine estimation of the vectors
of coefficients and hence for the estimation of the small area means, and when the model holds
it will give similar results to those obtained under the optimal filter. In periods where the model
fails to hold, the updating formula (4.4) could be incorrect (depending on the particular model
failures) but the predictors @,‘A’ will nonetheless satisfy the linear constraints (4.1). The
smoothing equations (3.2) can likewise be modified to satisfy the linear constraints.

5. EMPIRICAL RESULTS

§.1 Description of the Data and Model Fitted

In order to illustrate the important features of the class of models defined in Section 2, we
fitted such a model to home sale prices in Jerusalem. The sale prices are recorded on a monthly
basis and are routinely used by the Central Bureau of Statistics in Israel for the computation
of monthly housing price indexes (HPI) adjusted for changes in quality. The HPI is computed
separately for each city or group of cities and for each house size defined by the number of
rooms, ranging from I to 5. The number of transactions carried out each month is very small
in many of these cells and for 1 room apartments it occasionally happens that there are no
transactions. The mean and standard deviation (S.D.) of the monthly number of transactions
carried out during the pertod July 1987 — November 1989 are listed below.

Size 1 2 3 4 5
Mean 2.7 29.0 101.9 39.7 5.6
S.D. 2.6 12.9 50.4 18.8 3.5
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The need to adjust for changes in quality results from the fact that the transactions performed
are not under control, giving rise to arge differences in quality from one month to the other
particularly in the small cells. The following quality measure variables (QMV) are recorded
for every transaction: X'"! - the apartment floor area, X‘® - the age of the apartment, X®,
X - dummy variables defining districts within the city.

The problems involved in the computation of the HPI and the method used in Israel are
discussed at length in a recent article by Pfeffermann, Burck and Ben-Tuvia (1989). The
following model was proposed by the authors as an alternative to the model in current use.
The triple index ‘‘rki’’ defines the i-th transaction of size & in month ¢ with Yy, standing for
the log of the sale price and XY} = log(X¥)),/ = 1, 2.

Yii = Buo + B X li) = BrthSc%) + 3rk3th') + Bua X + € (5.1)

Buo = 3:-[,.&0 + Biro + Mo
(5.2)

Buj = Bi—rhj + twjp J =1, .., 4,

with the error terms €,; and n,; satisfying the assumptions (2.1), (2.4) and (2.5). Notice that
the model assumed for the intercept term is the local approximation to a linear trend defined
under case (d) of Section (2.1). The model assumed for the other coefficients is the random
walk model defined under case (b).

The regression defined by (5.1) forms the basis for the construction of an HPI
adjusted for changes in quality. By fixing the values of the QMV’s at their average population
values which are constant over time, (the values of these variables are adjusted approximately
every five years), average sale prices can be computed using (5.1) and these averages are
comparable between months since they refer to homes of similar qualities.

Pfeffermann, Burck and Ben-Tuvia discuss the considerations in selecting the model defined
by (5.2) for the regression coefficients. They show empirical results which validate the fitness
of the model. However, the resuits of that study were obtained by fitting the mode! to each
cell separately, that is, without accounting for the cross-sectional relationships of the regres-
sion coefficients. This aspect of the model is explored in the present study. Another major
purpose of the empirical study is to illustrate the performance of the modifications proposed
in Section 4 to protect against model breakdowns.

5.2 Estimation of the Model

The model defined by (5.1) and (5.2) can be put in a state-space form similar to (2.7) and (2.8).
In fact, the vectors ¢, and the matrices Z,, Tand G assume, in this case, simple structures, since
forj =1, ..., 4, B; = 0(see case (b) of Section 2.1). Thus, @ = (Buos Bios Buets - - -» Buxa)s
Z!k = [ln!k:gntkl XIS(I)’ EC -9).(1&4)1» T = [ghgl + €2:€3 - - -1§5]’ a 6 X 6 matrix with Qj
having a one in position j and zeroes elsewhere and G = [e), e, ...,es] whichis 6 X 5. The
matrix A is defined as in (2.5). The vector g, and the matrices Z,, T, G and A are obtained
from the vectors (q, ] and the matrices (Z,}, 7, G and A in the same way as in (2.7) and
(2.8).

Having set the model in a state-space form we next attempted to estimate the unknown
variances and covariances using the method of scoring algorithm described in Section 3.2.
As it turned out, however, the computer time needed for convergence was way beyond the
capacity of the IBM 1481 mainframe used for this study. Notice that the number of unknown
parameters of the combined state-space model is dim()\) = 25 whereas the dimension of the
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state vectors and hence the dimension of the corresponding V-C matrices is dim(ga,) = 30. The
total number of observations per month ranges from 55 to 353. The computer program written
for this study uses numerical derivatives so that each iteration of the method of scoring requires
a separate sweep through all the data with each sweep involving [dim(A) + 1] computations
of the state vector &, and the V-C matrix P, (equation 3.1) at each point in time. These
computations are needed in order to evaluate the log likelihood functions and hence the cor-
responding derivatives. It is clear therefore that the computational costs increase with the length
of the series, the number of observations, the size of the state vector and the number of unknown
parameters.

In order to deal with this problem we estimated the variance of (equation 2. 1) and the
matrix A (equation 2.5) separately for each of the five apartment sizes using the time series
of observations corresponding to each size and then estimated the correlations p; (equation
2.6) by a crude, grid search procedure. We found that setting p; = Y for every j gives satisfac-
tory results both in terms of the behaviour of the innovations (the one step ahead prediction
errors) and in terms of the smoothness of the regression coefficients corresponding to apart-
ments of size one and five where the monthly sample sizes are very small. Notice that by
estimating the variances and covariances defining the time series relationships of the regression
coefficients separately for each size, one is more flexible in terms of the model assumptions
although there is some loss of efficiency if the variances and covariances are indeed the same
across the different sizes.

5.3 Results

Pfeffermann, Burck and Ben-Tuvia (1989) iliustrate the adequacy of the time series models
fitted to the various apartment sizes. As mentioned earlier, our purpose in this study is to
compare the results obtained with and without the accounting for the cross-sectional correla-
tions and to illustrate the performance of the modifications (4.1) in protecting against model
breakdowns.

In order to sharpen the comparisons as much as possible, we deliberately inflated the
Y-values by 5 percent in each of the following four months: October 1987, November 1988,
January 1989 and May 1989. Thus all the Y-values of all the apartment sizes corresponding
to the months October 1987 - October 1988 were inflated by 5 percent, the Y-values correspon-
ding to November 1988 - December 1988 were inflated by 10.25 percent (5 percent on top of
the previous 5 percent) and so forth. These kinds of model breakdowns (although obviously
not in such magnitudes) may result from intentional devaluations of the currency and are of
main concern when modeling sale prices. See Pfeffermann, Burck and Ben-Tuvia for further
discussion. Similar model breakdowns may occur, for example, with series of unemployment
rates in periods of abrupt economic recessions.

Table 1 shows the average mean squared errors (AMSE) of the model residuals B =
(Yi = Boo — Ly XY Bu;) and the model innovations i = [ Yo = (Bi_1 40 + Bro) —

At X 611 4] (see equations 5.1 and 5.2), separately for each of the five apartment sizes.
The AMSE’s were computed as AMSE,(€) = I/N L, (1/n, Ll €h); AMSE,(e) =
/NI, (1/n, Ll eh) wheret = 1, ..., Nindexes the months of July 1987 - November
1989. We distinguish between four different estimators of the regression coefficients as defined
by whether the model accounts for the cross-sectional correlations (p; = Y1), (p; = 0) and
by whether or not the estimators are modified to protect against the model breakdowns
(abbreviated as ““‘Rob. Inc.”” and “No Rob.” in the table). The modifications were carried
out by augmenting the observation equation of each month by three linear constraints of the
form 4.2. These constraints forced the aggregate means of the fitted values in each of the three
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Table 1

Average Mean Squared Errors of Residuals and Innovations With and Without
the Accounting for Cross-sectional Correlations and the Inclusion of the
Robustness Modifications, by Size

Mean Squared Errors of Innovations Mean Squared Errors of Residuals
gg; p =4 p=20 p=W p =0
Rob. Inc. No Rob. Rob.Inc. No Rob. Rob.Inc. No Rob. Rob.Inc. No Rob.
1 141 134 176 218 021 027 .056 .092
2 070 .090 .084 123 021 .039 .023 .070
3 .065 090 .070 197 017 .042 019 .143
4 .067 123 .072 .198 019 066 {021 141
5 067 114 .077 .193 .023 033 .065 .106

districts to coincide with the corresponding means of the observed values. When incorporating
the constraints, the model was fitted using the amended Kalman filter as defined by the
equations (4.3) and (4.4).

In order to illustrate the performance of the four sets of regression estimators in the various
months and in particular, in and around the months where we inflated the data, we plotted
the monthly MSE’s of the innovations and residuals as obtained for 3 and 5 room apartments.
The plots are shown in Figures 1 to 4. Notice that the values of Table | for 3 and 5 room
apartments are correspondingly the averages of the values shown in the four figures.

The main conclusions from the table and the graphs are as follows:

Accounting for the cross-sectional correlations and including the linear constraints to pro-
tect against the model breakdowns yields better results than in the other cases considered. This
outcome is most prominent in the cells of I and 5 room apartments where the sample sizes in
each month are very small. In the other three cells, there are only small differences between
the case (p = Y2, Rob. Inc.) and the case (p = 0, Rob. Inc.) which could be expected since
as the number of observations in each month increases, there is [ess borrowing of information
from neighbouring cells (small areas in the more general context). The situation is different,
however, when the linear constraints are removed. Accounting for the cross-sectional correla-
tions yields in this case much better results than when not accounting for them and this is true
for all the apartment sizes. Thus, by borrowing information from one cell to the other, the
estimators of the regression coefficients adapt themselves much more rapidly to the sudden
drifts in the data as seen also more directly in the figures [ The four peaks in each graph are
in the months where the data were inflated and as can be seen, the graphs corresponding to
the case (p = Y4, No Rob.) return to their normal level of the months before the inflation much
faster than the graphs representing the case (p = 0, No Rob.)

Another interesting comparison is between the case where the linear constraints are included
and the case where they are not. Clearly, the inclusion of the constraints improves the results
substantially when accounting for the serial correlations and the improvements are even more
prominent when the serial correlations are set to zero. It is interesting to compare in this context
the figures exhibiting the monthly MSE’s of the innovations with the figures exhibiting the
monthly MSE’s of the residuals. In the four months where we inflated the data the MSE’s of
the innovations are high which is obvious since the innovations are the differernces between
the observations and their predictors from previous months. Still, when the linear constraints
are included, the MSE’s return to their normal level right after the months of inflation. As
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Figure I Monthly Mean Squared Errors of Innovations, 3 Room Apartments
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Figure 2 Monthly Mean Squared Errors of Residuals, 3 Room Apartments
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for the residuals, once the linear constraints are included, there is practically no increase in
the MSE values in the months of inflation in the case of 3 room apartments and, when
accounting for the serial correlations, only a slight increase in the case of 5 room apartments.
However, when ignoring the serial correlations, the residual MSE’s for 5 room apartments
are much larger in the months of inflation than in the other months even when imposing the
constraints. This outcome has a simple explanation. The linear constraints are imposed on the
aggregate means of the fitted values in each district but since the number of observations in
5 room apartments is a small fraction of the total number of observations, the constraints alone
have a relatively small effect on the estimated regression coefficients in this cell. On the other
hand, the constraints have a large effect on the estimated coefficients in the other cells so that
when accounting for the cross-sectional correlations, the estimators corresponding to 5 room
apartments are also modified since they are correlated with the other coefficients.

The way by which the linear constraints protect against sudden drifts in the data is illuminated
in Figure 5 where we plotted the monthly intercept estimates for 3 room apartments.

As can be seen, with the linear constraints included, the intercept adapts itself to the new
level of the data in the same month that the inflation occurs. Without the inclusion of the
constraints, the adaption to the new level of the data takes several months. The plot of the
monthly intercept estimates of 5 room apartments does not have this nice pattern since with
the small sample sizes observed each month, the effect of the inflation is to alter also the other
regression coefficients.
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Figure 5 Monthly Estimates of [ntercept, 3 Room Apartments
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Our discussion so far centered on the empirical distribution of the model residuals and
innovations. A major application of small area estimation is the prediction of the small area
means (equation 2.2). Clearly, when a model yields residuals with well behaved properties it
can also be expected to yield good estimators for the population means. Nevertheless, it is
interesting to compare the theoretical variances of the small area means estimators as obtained
with and without the accounting for the cross-sectional correlations, under the model which
accounts for these correlations with p; = ¥. This comparison permits the assessment of the
loss in efficiency when the serial correlations are ignored.

Figures 6 and 7 show the monthly variances of the cell mean estimators as obtained for 3
and 5 room apartments. {The variances have been multiplied by 10%.) The figure for 3 room
apartments also contains the variances of the ordinary least squares (OLS) estimators of the
population means, that is, the variances of the estimators when estimating the regression
coefficients in each month by OLS. These estimators are not operational in the case of § room
apartments because of the very small monthly sample sizes.

The important conclusion drawn from the two figures is that by accounting for the cross-
sectional correlations the variances of the resulting estimators can be reduced quite substan-
tially, depending on the sample sizes. This is obviously the case in the case of 5 room apart-
ments but is also true for 3 room apartments despite the fact that the sample sizes in these cells
are relatively very large. The large sample sizes ordinarily obtained for 3 room apartments make
the OLS estimators quite comparable to the estimators obtained when ignoring the cross-
correlations in the estimation of the population means. Notice however the big gap between
the variance of the OLS estimator and the variance of the other two estimators in October 1987.
In this month there were only 10 observations of 3 room apartments and it is here where the
use of the past data has its main impact even when ignoring the cross-sectional correlations.
(The number of observations for 3 room apartments in November 1987 is 28; in all the other
months there are at least 46 observations.)

Another important outcome arising from the two figures is the much greater stability of
the variances of the optimal estimators under the model as compared to the variances of the
estimators which ignore the cross-sectional correlations. Notice in this respect that the
differences in the variances from one month to the other depend not only on the sample sizes
in each month but also on the values of the explanatory variables (the design matrix) and the
amount of past data observed. Still, it is the sample sizes which mostly explains the differences
in the variances of the estimators particularly towards the end of the series.
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APPENDIX

a) Derivation of Equation (2.12)

When xu; = Xu, Ou = X Bu = Zk&y so that Q= (8, ....0) = Zg,.

Also, for the random walk model the matrix 7 is the identity matrix and by equation (3.1)
2& = Z,@y + (Z,P‘,H_IZ,’)F!_I(X, - Zr@r—l) =
(I - ErFr_l)r: + ErFr_er@r—l (Al)

since Fy = (Z,P,_1Z{ + L,). Suppose for convenience that ¥ = | and define

s hy
Fy = [f”'f' ] and H, = F ' = [h"’”l ] were fj, and Ay
Si Fa by \Hy

are scalars, [,’ and A{ are [1 x (K — 1)] and F>, and Hy are [(K - 1) X (K - 1)].
Using this notation, it follows from (A1) that

2 2 2 K h
A a] - gi . A o Ik
Oy = (1 - -hu) Yoo+ —hy (3018-1) — — Y hu—éq. (A2)
ey 3 o, Ay
Lety{ = (vizs -y Yig) = ﬁF{zldeﬁncs the partial regression coefficients in the regression
of &, on (&, ..., &) and v} = (f;; — _fl’Fﬁl‘f;) define the residual variance in the
regression.

Equation (2.12) foliows directly from (A2) since
_ 1, g -
[iFa' = = —hi; (fu - fiFa'f)~" = h, (A3)
1
by well known properties of the inverse of a partitioned matrix.

b} Derivation of Equation (4.4)
By-(4.3),
& = (I -~ KPPz Ta!) + kP yiH, (A4)
Hence,

MY~ = (1 - KPZIONTe2) — @) + K2 (9 - zfg). (A)
The prediction errors (T¢4] — q,) are independent of the residuals (¥*) — Z(4'q,) and so,
PV = E[(&% - q) (@ ~ )] = QP 0f + KDL KD (A6)

where we denote for convenience Q, = (/ — R zbany
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By definition of the matrix F{*? (see below 4.3), equation (A6) can be written in the form

1 A)’ Py Py P (P’
PP = gPfY — PRELZMVES + KIPFPI KD

+ K,(F)(Er(“” - E{tP))KI(P)’ (AT)

which implies the relationship (4.4) by straightforward algebra.
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Issues and Strategies for Small Area Data

M.P. SINGH, J. GAMBINO and H.J. MANTEL!

ABSTRACT

This paper identifies some technical issues in the provision of sma!l area data derived from censuses, administrative
records and surveys. Although the issues are of a general nature, they are discussed in the context of programs at
Statistics Canada. For survey-based estimates, the need for developing an overail strategy is stressed and salient
features of survey design that have an impact on small area data are highlighted in the context of redesigning a
household survey. A brief review of estimation methods with their strengths and weaknesses is also presented.

KEY WORDS: Sample design strategy; Design estimates; Model estimates.

1. INTRODUCTION

For decades, administrative records and censuses were
the main sources of data used for policy and planning for
both large and small areas. These are still the richest source
of statistical data at small area levels in most countries.
During the forties and fifties, however, as the reliance on
sample surveys increased, survey based estimates comple-
mented the traditional sources because they provide more
timely and cost efficient statistical data in a variety of
subject matter fields. Although designed to provide reliable
estimates primarily at larger area levels such as national
and provincial, increasingly such surveys are being used
to meet the growing demands for more timely estimates
for various types and sizes of domains. No technical
problem arises as long as these domains are large enough
(e.g., age-sex groups, larger cities and sub-provincial
regions) to yield estimates of acceptable reliability. If data
are needed for small domains, however, particularly if
such domains cut across design strata, special estimation
problems arise and several methods have recently been
proposed to deal with such problems.

The main message of this paper is to emphasize the need
to look at the problem of small area data in its entirety,
Small area needs should be recognized at the early stages
of planning for large scale surveys. The sampling design
should include special features that enable production of
reliable small area data using design or model estimators.
The handling of this growing challenge to statistical agencies
at the estimation stage should be viewed as a last resort.

In section 2, we discuss data needs and the three main
sources of socio-economic data in the Canadian context,
namely, the census, administrative records and surveys.
Section 3 identifies some technical issues regarding the
three sources of data and highlights the problems of
quality measures and their interpretation. Then a need for

developing an overall strategy that includes the planning,
designing and estimation stages in the survey process is
highlighted in section 4. Two aspects of the design, namely,
clustering in a multi-stage sample design and sample
allocation are discussed. In section §, we present some
sample design options being incorporated during the current
redesign of the Canadian Labour Force Survey, the largest
monthly household survey conducted by Statistics Canada,
with a view to enhancing the survey capacity to provide
better quality small area data. The purpose of section 6
is to review the many different approaches to estimation
for small areas. We also suggest some new estimators and
provide comments on the strengths and weaknesses of
various domain estimators. A cautious approach towards
the use of mode! estimators is stressed.

2. INFORMATION NEEDS AND
DATA SQURCES

As the country’s national statistical agency, Statistics
Canada plays an integral role in the functioning of Cana-
dian society. While guaranteeing the confidentiality of
individual respondents’ data, the agency’s information
describes the economic and social conditions of the country
and its people. Its economic, demographic, social and
institutional statistics programs produce reliable data on
many aspects of life at the national, provincial, and sub-
provincial levels for use by federal and provincial govern-
ments, private institutions, academics and the media. With
increases in the planning, administration and monitoring
of social and fiscal programs at local levels, there has been
increasing demand for more and better-quality data at
these levels. Three major sources of social, socio-economic
and demographic data with emphasis on small area
statistics are briefly discussed below.

' M.P. Singh, J. Gambino and H.J. Mantel, Statistics Canada, 16th Floor, R.H. Coats Building, Tunney’s Pasture, Ottawa, Ontario, Canada
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Census of Population: The guinquennial census of
population provides benchmark data and serves as the
richest source of information, available every five years,
for small areas and for various characteristics/domains/
target groups of policy interest such as ethnic minorities,
disabled persons, youth and aboriginal peoples.

Administrative Records: Administrative records are an
increasingly important source of statistical data. These are
extensively used in the demographic field by statistical
agencies to produce local area estimates (Schmidt 1952,
Verma and Basavarajappa 1987). In certain areas, such
as vital statistics, administrative records are the only source
of information for production of statistics at various levels
of aggregation. In others, the relative merits of adminis-
trative records compared to censuses or surveys as data
sources in terms of timeliness and quality of data deter-
mine the manner and the extent to which these data sources
are used. In addition to direct tabulations, administrative
records are used in a number of programs as a source of
supplementary information for use in improving the
quality of survey-based estimates. They are also being used
in the construction of sampling frames for conducting
surveys. Examples at Statistics Canada include the Business
Register and the Address Register of residential dwellings.

Like the census of population, administrative records
are very rich in geographical detail, making them a useful
source of information for small area statistics. They are
available more frequently and, due to recent technological
advances, they are becoming a more cost-effective data
source. However, administrative data are based on defi-
nitions made for programmatic rather than statistical
purposes and their content is limited. Details of a Statistics
Canada program for integration and development of an
administrative records system to produce statistical outputs
are given by Brackstone (1987a, 1987b). Experiences in
the use of administrative records in other countries are
included in the conference proceedings edited by Coombs
and Singh (1987).

Household Surveys Program: Household surveys have
long been an important source of economic and social
statistics at Statistics Canada. Surveys under this program
may be placed in three groups, namely, (i) the Labour
Force Survey, (ii) Special Surveys and Supplementary
Survey Programs and (iii) Longitudinal/Cyclical Surveys.
These surveys are briefly introduced below indicating the
scope for small area statistics in general.

Starting as a quarterly survey in 1945, the Canadian
Labour Force Survey (LFS) became a monthly survey in
1952. The information provided by the survey has expanded
considerably over the years and currently it provides a rich
and detailed picture of the Canadian labour market. In
addition to providing national and provincial estimates
the survey regularly releases estimates for subprovincial
areas. Regular estimates of standard labour market indi-
cators are also in great demand for small areas such as

Federal Electoral Districts, Census Divisions and Canada
Employment Centres. These estimates are used by both
federal and provincial governments in monitoring programs
and allocating funds and other resources among various
political and administrative jurisdictions.

Because of cost considerations, the LFS is heavily used
as a vehicle for conducting ad hoc and periodic surveys
at the national and provincial levels in the form of supple-
mentary or special surveys. In the case of supplements, the
LFS respondents themselves are asked additional questions,
whereas for special surveys a different set of households
is selected using the LFS frame. Both special and supple-
mentary surveys are usually sponsored by other govern-
ment departments and are conducted on a cost-recovery
basis. For these surveys, the demands for small area
statistics differ greatly from survey to survey, and generally
the demands seem to be less pressing than those from the
LFS itself.

Statistics Canada conducts a General Social Survey
(GSS) annually to serve, in a modest way, the growing data
needs on topics of current social policy interest. The GSS
program (Norris and Paton 1991) consists of five survey
cycles, each covering a different core topic, repeated every
five years. Because of the limited size of sample (10,000
households nationally) the focus of the GSS is on estimates
at the national level and on analytical statistics.

Longitudinal/panel surveys are new in the Canadian con-
text. Statistics Canada has started two longitudinal surveys
that will enrich the household survey program greatly,
namely, the Survey on Labour and Income Dynamics and
the National Population Health Survey. Both are large scale
panel surveys and they are already creating expectations
for data at sub-provincial and local area levels.

3. ISSUES IN DOMAIN ESTIMATION

There are numerous policy and technical issues that
need to be addressed in the provision of small area
statistics. The seriousness of these issues may vary from
agency to agency and from one application to the next
within the same agency depending on data guality and
release policies. These issues are relevant for national and
provincial estimates, but they assume higher significance
in the context of small area statistics. As Brackstone
(1987a) notes ‘*on the issue of small area data evaluation,
it is worth noting that error in small area estimates may
be more apparent to users than error in national
aggregates. .. at a local area level, there will be critics
quick to point out deficiencies. . . it is true that for small
areas, where estimation is more difficult, scrutiny of
estimates is also more intensive’. Several research and
developmental studies on small area estimation are
described in two volumes, one edited by Platek ef al.
(1987), and the other by Platek and Singh (1986). For a
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recent overview of small area estimation techniques
currently being used in United States federal statistical
programs see U.S, Statistical Policy Office (1993).

Use of Administrative Records: Federal and provincial
government policies are the prime factors that influence
the supply as well as the demand for small area data in
most situations. On the supply side, government program
driven administrative records contain a wealth of statistical
information that can be used to produce local area data.
Examples of files being used in the Canadian context are:
Family Allowance, Unemployment Insurance, Income
Tax, Health, Education, Old Age Security. Income-related
statistics are produced at the local area level on a regular
basis. Any change in government policy and associated
programs can have immediate impact, for better or worse,
on the coverage, availability, timeliness or quality of
statistics derived from the corresponding administrative
records. On the demand side, as noted earlier, govern-
ments need local area data for planning, implementing and
monitoring their policies.

Conceptual issues: Quite frequently, conceptual and
definitional issues in a data series are confounded with
sampling and estimation problems. For example, consider
the Unemployment Insurance (UI) system in Canada, Ul
regulations stipulate different qualification and requalifi-
cation periods depending on the unemployment rate in a
given region such that regions with higher unemployment
rates require shorter qualifying periods of continuous
employment. The estimates of regional unemployment
rates derived from the LFS are used in determining the
eligibility for an individual to receive benefits. These local
area estimates are thus continually under close scrutiny by
the public and the media. Such scrutiny however refers
more often to conceptual issues rather than estimation
issues per se; aspects such as the treatment in the survey
questionnaire of discouraged workers, lay-offs and job
search methods are questioned,

Use of Models and Related Quality Measures: Domain
estirnates are produced for virtually all large scale surveys,
and as long as design estimators, i.e., approximately
design-unbiased estimators are of acceptable quality, no
problem arises. We consider two classes of design esti-
mators. Following Schaible (1992), direct estimators refer
to estimators which use values of the study variable only
for the time period of interest and only from units in the
domain (e.g., the regression estimator with slope estimated
using only data from the domain). Such estimators may,
and often do, use information on one or more auxiliary
variables from other domains or other time periods, and
are design unbiased or approximately so. The second class
of design estimators, modified direct estimators, may use
information from other domains on both the auxiliary and
the study variable but still retain the property of design
unbiasedness or approximate unbiasedness (e.g., the
regression estimator with slope estimated using the whole

sample). There is a growing literature on indirect (or model)
estimators, that is, estimators which use information on
both the study and auxiliary variables from outside the
domain and/or the time period of interest without any
reference to their design unbiasedness properties.

Most producers and users of survey data are accustomed
to design estimators and the corresponding design-based
inferences. They interpret the data in the context of repeated
samples selected using a given probability sampling design,
and use estimated design-based ¢vs (coefficients of variation-
square root of design variance divided by the design
estimate} as the measures of data quality. For situations
where either domains are too small or the sampling design
did not foresee production of small area estimates, the
design estimates may lead to large design ¢vs and model
estimates may be the only choice if the survey-based
estimates have to be provided for individual domains.
A major challenge for statisticians is how to estimate,
compare and explain to the users the relative precision of
estimates from a survey that produces a large number of
estimates at the national, subnational and large and small
domain levels, most using design estimators but a few
using model estimators. The model-based evs (square root
of design variance of model estimate divided by the model
estimate) may convey a completely different message and
may be several times lower than the corresponding design-
based cvs for the same small area and in many cases, lower
than the design-based cvs for much larger areas.

For model estimators, it is usually straightforward to
derive expressions for the corresponding mean square
errors (i.e., design variance + square of the design bias).
Estimation of these expressions, with an adequate degree
of reliability, is a different matter. If we follow the argu-
ment that the data (e.g., sample size) for such domains are
inadequate for producing design estimates, it is unlikely
that they would be adequate for producing design estimates
of the corresponding variances and biases. As the estimation
of bias is relatively more difficult, some authors seck
design consistent model estimators, implying perhaps that
bias can beignored. However, if the sample size within the
domain is sufficiently large to make the model estimator
consistent, then the design estimator itself should give
reliable estimates for the domain. For model estimators,
suggestions have been made to use estimates of average
mean square error computed over all domains. As the need
for estimates for different domains usually arises because
these domains are thought to be different from each other,
a challenging task is to explain why estimates from all such
domains are given the same degree of reliability. Another
possibility is to construct indirect model-based estimates
of the variance and bias of the model estimators for indi-
vidual domains. Finding suitable methods of estimating
mean square error for individual domains should be a
research priority. Another serious concern for survey prac-
titioners is how to guard against model failures. This
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suggests a need for research into model validation for
complex survey situations. Further, for mode} estimators
that use data on study variables for periods other than the
time period of interest, estimates of change over different
time periods would be of questionable quality; se= Schaible
(1992). Also, model estimators that borrow strength from
other domains in the larger area will suffer a similar
drawback when comparing differences in the two domains
within the large area.

Issue of Privacy: In order to construct rich data bases
for providing small area statistics, it is sometimes necessary
to combine ¢census, survey and/or administrative records.
This necessitates linkage of records obtained from different
sources. However, given the public’s concern about
privacy, record linkages should be carried out only after
careful examination of all their implications. Under the
Statistics Act, Statistics Canada may have access to admin-
istrative records of other departments for statistical pur-
poses. But even for statistical purposes, as Fellegi (1987)
notes, ‘‘we should have rigorous and auditable review
procedures to ensure that we only earry out record linkage
where the resulting privacy invasion is clearly outweighed
by the public good from the new statistical information”’.

4. NEED FOR AN OVERALL STRATEGY

Even though large scale surveys are designed primarily
for national and provincial estimates, it is rare that the
estimates from such surveys relate only to the national/
provincial populations as a whole. That is, invariably, such
surveys are used to produce estimates for various cross-
classified domains and in some cases for areal domains

(e.g., subprovincial) as well. In many cases, no special _

attention is paid to achieving a desired level of precision
at the domain level either at the design or the estimation
stage as long as the reliability is (believed to be) within
reasonable limits. Problems arise when the cross-classified
domain refers to a rare subpopulation or when the areal
domain refers to a small area in which case either no esti-
mates are possible/available or the estimates are of ques-
tionable quality. In a number of cases, this may happen
simply because not enough attention was paid to these
needs at the start of the survey planning process. If small
area data needs are to be served using survey data then
there is a need to develop an overall strategy that involves
careful attention to meeting these needs at the planning,
sample design and estimation stages of the survey process.
For discussion of the design and estimation aspects, we will
classify domains into the following two types:

Planned domains: In sampling terms these are individual
strata or groups of strata for which desired samples have
been planned. In the Canadian context these are typically
subprovincial regions, such as Economic Regions, Unem-
ployment Insurance Regions, and Health Planning Regions.

In other cases, such domains could be larger counties,
districts or similar subprovincial regions.

Unplanned domains: These are areas that were not iden-
tified at the time of design and thus may cut across design
strata. Such domains can be of any size and they may
create special estimation problems.

Planning: As noted earlier, the data demands from
continuing periodic surveys such as the LFS are relatively
much higher than from ad hoc surveys. In the case of
periodic surveys that are redesigned every five or ten years,
a suitable strategy can be developed during survey rede-
signs, since, in such cases, statistical agencies are usually
in a much better position to project future small area data
needs based on past demands. For ad hoc surveys,
designers should include the establishment of such needs
as an integral part of objective setting for the survey, Thus,
in both cases, survey designers should establish the desired
degree of precision, not only for national and provineial
level estimates, but also for the domains of interest,

The first step of a strategy, in terms of the provision
of small area data, will depend on the extent to which
domains are identified in advance so that they can be treated
as planned domains at the time of the design (or redesign)
of the survey. If budgetary considerations do not permit
reliable estimates for certain very small domains, then the
option of either collapsing domains, pooling estimates over
different surveys or not providing the estimates at all should
be given serious consideration by survey designers in discus-
sions with the survey sponsors. Some domains cannot be
determined in advance. These unplanned domains should
be handled through special estimation methods.

Sample design: In practice, it is rare that a design is
optimal either for the national or provincial levels or for
a single subject matter of interest. Usually varying degrees
of compromise are introduced at different stages of
sampling and the data collection process to satisfy theo-
retical and operational constraints. Depending on the data
needs, estimates for domains should also form an integral
part of this compromise. We will discuss two ways of taking
small area data needs into account at the design stage,
namely, sample allocation and the degree of clustering of
the sample.

Allocation Strategy: In general, an optimum allocation
strategy for national level estimates allocates samples to
provinces approximately in proportion to their population.
The reliability of estimates for smaller provinces in such
cases suffers. Therefore a compromise allocation is usually
preferred. There are different ways in which this compromise
can be achieved depending on the emphasis placed on sub-
national estimates. Small reductions in sample sizes for larger
provinces usually have little effect or the reliability of data
for such provinces (or the national level data) but the
corresponding sample increase in smaller provinces has
significant impact on the reliability of their data.
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The same principle holds for planned domains within
the provinces. This is because optimum allocations in most
situations are flat and the designers can exploit this feature
by reallocating sample from the larger areas to planned
domains that are smaller in size.

Clustering: Large scale household surveys usually
involve stratified multistage designs with relatively large
primary sampling units in order to make the design cost-
efficient for national and provincial statistics. Such designs
are thus highly clustered and, therefore, detrimental to the
production of statistics for unplanned area! domains in the
sense that, due to chance, some domains may be sample-
rich while others may have no sample at all. Given the
importance of domain estimates, attempts should be made
to minimize the clustering in the sample, The following
factors are important in this context: choice of frame,
choice of sampling units and their sizes, number and size
of strata and stages of sampling. The goal should be to
make the design effects as low as possible given the oper-
ational constraints,

Estimation: No matter how much attention is paid to
domain estimates at the early stages of planning and
designing a particular survey, there will always be some
smaller domains for which special estimation methods will
be required for producing adequate estimates. Recently,
synthetic estimators, which borrow strength from domains
that resemble the domain of interest, have attracted a good
deal of attention. However, since synthetic estimators are
very sensitive to the assumption that domains resemble
each other, even a small departure from the assumption
can make the design bias high and put their use in question.
Probability samplers, conscious of design bias, have sug-
gested combinations of direct and synthetic estimators,
with a view to addressing the design bias problem while
trying to retain the strengths of the synthetic estimator.
Empirical Bayes and similar techniques have been used to
assign a weight to each component in the combined esti-
mators. A brief review of these developments is given in
section 6 on estimation.

5. SAMPLE DESIGN CONSIDERATIONS

5.1 Introduction

The small area problem is usually thought of as one to
be dealt with via estimation. However, as was noted in the
previous section, there are opportunities to be exploited
at the survey design stage. This section uses the Canadian
Labour Force Survey (LFS) to illustrate this.

The current LFS design: The Canadian Labour Force
Survey is a monthly survey of 59,000 households which
are selected in several stages using various methods. The
ultimate sampling unit, the household, remains in the
sample for six months once it is selected and is then

replaced. Higher stage units (primary sampling units
(PSU), clusters) also rotate periodically. Each of Canada’s
ten provinces is divided into economic regions (ER) which
the LFS further divides into self-representing areas
(medium and large cities) and non-self-representing areas
(the rest of the ER). Stratification and sample selection
take place within these areas, and the number of stages of
sampling as well as the units of sampling differ between
these two types of area. For example, in areas outside
cities, there are three stages of sampling, whereas there are
only two in the cities. For a detailed description of the
current LFS design, refer to Singh ef af. {1990).

5.2 Sampling Stages and Sampling Units

Area frames are usually associated with clustered
sampling, i.e., the first-stage units of selection are typically
land areas containing a number of second-stage units. If
a list of the second-stage units becomes available, then
sampling directly from the list becomes possible, leading
to a less clustered sample. This will result not only in
improved estimates (due to lower design effects) but also
in better small area estimates for unplanned domains. The
latter holds since, by spreading the sample more evenly,
it is more likely that an unplanned areal domain will
contain some selected units. In contrast, in a clustered
design we are often faced with a situation where one
domain has sufficient sample because it happens to contain
sampled clusters while a similar domain happens to have
too few or no sampled clusters to produce good estimates.

To reduce clustering in the LFS we investigated two
options: (i} the possibility of replacing the area frame (with
its two stage design) in the larger cities with a list frame
using the Address Register and (ii) reducing the sampling
stages in rural areas and smaller urban centres. The Address
Register, created to improve the coverage of the 1991
Canadian census (Swain, Drew, Lafrance and Lance 1992),
consists of a list of addresses, telephone numbers and
geographical information for dwellings by census enumer-
ation area (EA). One option involved the selection of a
stratified simple random sample of dwellings from the
Address Register frame. This sample could then be sup-
plemented with a sample selected from a growth frame
which comprises a set of dwellings that are not in the post-
censal address register. Handling of growth became the
major stumbling block in pursuing option (i) as no cost-
efficient method could be devised and tested in time for
the current redesign. However, an updating strategy for
the post-censal Address Register is still being investigated
for future censuses and surveys.

With regard to option (ii), in keeping with the idea that
less clustering is better for small area estimates, changes
in the units and reduction in the stages of sampling were
investigated for the areas outside the cities. Due to the
changes that have taken place in data collection techniques,
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namely, from face-to-face interviewing to telephone and
computer assisted interviewing, the cost-variance analyses
from the past are no longer relevant. More than 80 percent
of LFS interviews are now conducted by telephone. With
the increase in telephone interviewing and the resulting
decrease in travel, it became feasible in almost all cases to
eliminate the current PSU stage and to sample EAs directly.

5.3 Stratification

One approach to stratification, similar in spirit to the
above discussion on PSU size, is to replace large strata by
many small ones. The hope is that a redefined domain or
an unplanned domain will contain mostly complete strata,
This will make the sample size in the domain more stable.

There may be several overlapping areas for which esti-
mates are required, For example, each Canadian province
is partitioned into both Economic Regions (ER) and
Unemployment Insurance regions (UIR). One way to deal
with this situation is to treat all the areas created by the
intersections of the partitions as strata. In the Canadian
case, for example, the 71 ERs and 61 UIRs yield 133 inter-
sections, a manageable number. In some cases, however,
the number of intersections may be too large to handle
effectively. In addition, some of the intersections may have
very small populations, making them unusable as strata.

By combining decreased clustering with smaller strata,
we hope to have a design which is better able to meet small
area needs. For example, the design should provide more
flexibility in satisfying both ER and UIR requirements
efficiently and in dealing with future changes in the defi-
nition of regions.

5.4 Allocation

If the definitions of small areas are known in advance,
we may be able to treat them as planned domains and take
them into account when designing the survey. The survey
designer may endeavour to allocate sufficient sample in
each small area to make the production of reliable estimates
feasible. For large surveys such as the Canadian Labour
Force Survey, this approach can, at least in theory, make
the production of a great many small area estimates fea-
sible. With a monthly sample of 59,000 households, and
assuming that, say, 100 households per month are needed
to produce reliable quarterly estimates, the country can
be divided into about 600 non-overlapping areas, each
guaranteed to have sufficient sample. Unions of such areas
will also have enough sample to produce reliable monthly
estimates.

Various sample allocation strategies are possible. In a
top-down approach, once a provincial sample size is deter-
mined, the sample is allocated among the sub-provincial
regions. However, it may turn out that it is not possible to
satisfy the requirements for the reliability of sub-provincial

estimates for the given provincial sample size. In a bottom-
up strategy, the sample would be allocated to sub-provincial
regions first in such a way that reliability objectives for
each region are satisfied. As a result, we would expect
comparable sample sizes in each sub-provincial region.
This approach may result in a provincial sample size that
is bigger than the one specified in the top-down approach.
Regardless of which of the two strategies is used, adjust-
ments to the initial allocations will usually be required. The
resulting allocation will likely resemble a compromise
between proportional allocation and equal allocation. In
practice, the survey designer must perform a complex
juggling act among provincial reliability requirements,
sub-provincial requirements for one or more sets of
regions, total survey costs and in-the-field details.

The approach taken in the current LFS redesign may
be useful in other surveys as well. The sample was allocated
in two steps: first, a core sample of 42,000 households was
allocated to produce good estimates at the national and
provincial levels; then the remaining sample was allocated
to produce the best possible sub-provincial estimates. The
resulting compromise allocation will produce reliable
estimates for almost all planned domains. The compromise
resulted in only minor losses at the provincial level and
substantial gains at the subprovincial level. For example,
the expected CVs for ‘unemployed’ for Ontario and
Quebec are 3.2 and 3.0 per cent, respectively, instead of
2.8 and 2.6. The corresponding figures for Canada are
1.51 and 1.36. Optimizing for the provincial level yields
CVs as high as 17.7 per cent for Ul regions. With the
compromise allocation, the worst case is 9.4 per cent.

Sample redistribution: There is usually some scope for
moving sample from one area to another. For example,
reducing the sample size by 1,000 households in a large
province and making a corresponding increase in a small
province will cause a marginal deterioration in the quality
of provincial estimates in the former but will improve the
estimates in the latter significantly. Similar movements of
sample can be attempted within province.

5.5 Other Considerations

Change in definitions of small areas: Survey designers
are faced with the fact that the definitions of planned
domains may change during the life of a design and they
may then have to treat the new domains as unplanned
domains. For example, it is quite possible that the defini-
tions of Unemployment Insurance Regions will change
two or three years after the new LFS design is introduced
in 1995. To deal with this at the design stage, the best that
the survey designer can do is to choose as building blocks
areas which are standard (e.g., census-defined areas whose
definitions are fairly stable) and hope that the redefined
regions are unions of these standard areas. This is the
approach that was taken in the current LFS redesign.
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An alternative is to adopt an update strategy. This
entails a reselection of units, doing it in such a way that
the overlap between the originally selected units and the
newly selected onzs is maximized. By taking this approach,
the number of new units that have to be listed is minimized.
This also minimizes other field disruptions such as the need
to hire new interviewers.

6. ESTIMATION

The purpose of this section is to review some of the
different approaches to estimation of totals for small
areas. No attempt is made to provide an exhaustive review;
the discussion indicates the trend of developments in small
area estimation research. For a detailed review, see the
recent paper by Ghosh and Rao (1993). To facilitate this
review we will classify small area estimation methods into
two types. This is just one of many possible classification
schemes. The first class of estimators we call design esti-
mators, i.e., (approximately) design unbiased estimators,
which includes direct and modified direct estimators. As
noted earlier, design estimators are often unsatisfactory,
having a large variance due to small sample sizes (ot even
no sample at all) in the small areas. The second class we
call indirect (or model) estimators, and it includes synthetic
and combined estimators. Some of these estimators are
compared empirically in an earlier version of this paper
by Singh, Gambino and Mantel (1992).

6.1 Design Estimators

Direct Estimators: Direct small area estimators are
based on survey data from only the small area, perhaps
making use of some auxiliary data from census or adminis-
trative sources in addition to the survey data. The simplest
direct estimator of a total is the expansion estimator,

E Wi Yi

1€54

(6.1)

where s, is the part of the sample in small area g and w;
is the survey weight for unit /, This estimator is unbiased;
however, it may have high variability due to the random
sample size in area a.

If the population size N, is known then a post-
stratified estimator,

Yosta = No ) Wf.Vi/

€5,

E W, = Na?e.alﬁe,a = Ng¥e,a
€5y (6.2)
may be used. This estimator is more stable than the expan-

sion estimator; however, there may be some ratio estimation
bias in complex surveys.

If the sampling scheme is stratified and the N, , are
known, where N, , is the population size in stratum A
and small area a, an alternative post-stratified esti-
mator is ?s!psra Eh(Nha Ereshawryr/ urfsha“ i} =
LalNwa Y,, ea/Nies = LuNioFha. The strata may also
be post-strata instead of design strata.

Ratio estimation is sirnilar to post-stratified estimation,
the difference being that another auxiliary variable is used
in place of the population counts N, and N, ,. For
example, if x is a covariate for which the small area totals,
X, or the stratum small area totals, X, ,, are known then
we may define the ratio estimators

Vo =XR, and Yo=Y XpoRieo (6.3)
h

where R, = Y,,/X“ is an estimate of the ratio ¥,/X,
and Riz a = Yﬁea/Xhea

A regression estimator attempts to account for dif-
ferences between small area subpopulation and subsample
values of the covariates via an estimated regression rela-
tionship between the variate of interest, y, and the
covariates, x. An advantage of regression type estimation
is that it is easily extended to vector covariates. The
estimator is given by

Yreg,a = Ya + Ba(Xa - Xa)’ (6.4)
where Y, may be an expansion or post-stratified estimator,
X, must be calculated in the same way as ¥,, and 8, =
Ties, Vi ' Wiyix{ [ Lies, vi' wix;ix{ ) ~' where v; are given
weights for the regression. Note that 8, = B, when x is
scalar and v; = x;. When Y, and X, are expansion esti-
mators this estimator is also called the generalized regres-
sion estimator. Approximate design unbiasedness of this
estimator follows from that of ¥, and X,.

As with the ratio type estimators, regression type
estimation may also be applied within design strata or
post-strata.

Modified Direct Estimators: Modified direct estirnators
may use survey data from outside the domain; however,
they remain approximately design unbiased. By a modified
direct estimator we mean a direct estimator with a syn-
thetic adjustment for model bias; since the adjustment
would have approximately zero expectation with respect
to the design, the modified estimator is approximately
design unbiased if the direct estimator is. An example is
obtained by replacing £, in (6. 4) bya synthetlc estimator
B = Lieevi'wiyix{ [Ligs v~ wixixi ) ' we will denote
this estimator by Y’m - 8 would generally be more stable
than §,; the choice between them would depend on the
size of the variance of §, relative to the variation in the
B,s over areas ¢. A compromise is to take a weighted
average A, f, + (1 — A,)B where A, is suitably chosen;

- 121~



Singh, Gambino and Mantel: Issues and Strategies for Small Area Data

options for the choice of A, are discussed under combined
estimators in Section 6.2. A second example is obtained
by replacing £, in (6.4) by R = ¥,/X.; note that R is a
special case of 5 where x i= scalar and Vi = X

6.2 Indirect Estimators

Synthetic Estimators: Synthetic estimation methods are
based on an assumption that the small area is similar in some
sense to another area, often a larger area which contains
it. Estimates for the other area would generally be more
reliable than those for the small area. The resulting synthetic
estimator would then have small variance, though it may
be badly biased if the underlying assumption is violated.

One of the simplest synthetic estimators arises from the
assumption that the small area mean is equal to the overall
mean. This leads to the mean synthetic estimator

Kyn,m.a =N, E W; ¥i E w; = N,¥. (6.5)

i€s i€s

A more common synthetic estimator is based on stratifica-
tion or post-stratification,

}Gn,srma

EN"”’E W ¥ EW —EN;“,}’;,

itsp i€sy,

As with direct estimators, ratio synthetic estimation
may be based on other auxiliary data besides the popula-
tion counts N, or Ny o. For example, the common ratio
synthetic estimators based on a covariate x are defined as

?-Tyﬂ-r.a —X Y/X and YS)n:rra - E Xh.a?h.e/’?h.e,
g (6.6)

where ¥, = TiesWiy; is the expansion estimator of the
population total for y and ¥, , = Tje, wiyi- Xeand X, ,
are similarly defined. These estimators have been studied
by Gonzalez (1973), Gonzalez and Waksberg (1973) and
Ghangurde and Singh (1977, 1978), among others.
Singh and Tessier (1976) suggested an alternative ratio
synthetic estimator, using X instead of .X,, defined as

ﬁyn.r.a = Xa PE/X~ (67)

Both Y, ,and ¥, , have the same synthetic bias
and the ratio bias in ¥,,,, , will be negligible for large
samples. The choice between these two estimators depends
on p, the correlation of ¥, and X,. It can be shown that
for large samples V(¥ ) < V(¥y,,a) if p =
0.5 Cx/Cy » where ¢, and c, are the coefficients of variation
of X,and Y., respectively. In most cases, when p is high
or the population is skewed, Y, , would be preferred;
however, when ¢, is high and the correlation is only
moderate, Y, , , may be the better choice.

In some snuatlons information on a second auxiliary
variable (z) in addition to x may be available. Then a
bivariate ratio synthetic estimator may be constructed:

?S(y%l).r,a el TaXa?c/Xe + (1 — ’}"a)zaPe/Z‘;py (68)

where v, is suitably chosen. Extensions to a multivariate
ratio synthetic estimator may be considered following
Olkin (1958).

Regression synthetic estimation is similar to ratio
synthetic,

Ysyn,reg,a = Xq:

-1
3 = E v wixi { E vi-lwixixr"] - (6.9
ies

i€s

Again, regression synthetic estimation may also be applied
within design strata or post-strata. Royall (1979) suggested
a slight variation, f{tyn Roy,a E:s:a)’J + ﬁ(X ElEj’ X;),
where the sum of y-values for only units not mcludcd in
the sample is estimated synthetically.

Remark: The examples of modified direct estimators
presented in Section 6.1 can also be considered to be
ratio or regression synthetic estimators with a design-
based adjustment to correct for bias. For example we
may write Piop o = Yoo o + (¥, — AX,) where
¥, = 8X is an estimate of the bias of ¥,,, e ,. Simi-
larly, ‘seg,o €@N also be written as the Royall estimator,
}'}y,,'g,,,' a» With a design-based adjustment for bias.

Purcell and Kish (1980) discuss another type of synthetic
estimation which they call SPREE (structure preserving
estimation) for small area estimation of frequency data.
Detailed historical counts, perhaps from a census, are
combined with less detailed current survey estimates to
produce detailed estimates of current counts. The assump-
tion here is that certain relationships among the detailed
counts are stable over time.

Combined Estimators: By a combined estimator we
mean a weighted average of a design estimator and a
synthetic estimator,

Y;‘ >\ Ydesa+ (1 _'>\) spn.as (610)
where A, is suitably chosen. The aim here is to balance the
potential bias of the synthetic estimator against the insta-
bility of the design estimator. There are three broad
approaches which may be used to define the weights A, in
(6.10); they may be fixed in advance, sample size depen-
dent, or data dependent.

The first and simplest approach to weighting is to fix
the weights in advarnce, for example, to take a simple
average. However, this does not make any allowance for
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the actual observed reliability of the design estimator. For
some realized samples the design estimator for small area
@ is more reliable than for other realized samples. The
weight given to the design estimator should reflcct this.

The second general approach to weighting of the design
and synthetic parts is called sample size dependent, in
which the weights are functions of the ratio N, /N;.
Another possibility, not considered here, is to base the
weights on the realized sample values of a covariate x; for
example, the weight could be a function of X4, . /X, or
of 82,/03, where 82 _ is the realized variance of Xy, ,,
conditional on N, , or some other relevant aspect of the
realized sample, and ¢2, is the unconditional variance
of Xdﬁ.a .

Some specific estimators in this class have been proposed
earlier. Drew, Singh, and Choudhry (1982) proposed the
sample size dependent estimator

Yodira = Ma¥ra + (1 = ) Yoy (6.11a)
where
I f N.,= 38N
Ao = { . ' e “  (6.11b)
N /16N, otherwise

and 4 is subjectively chosen to control the contribution of
the synthetic component. Sarndal (1984) suggested

?.:sd.reg.a = )\a?:reg.a + (1 —A) ?syn.reg.a! (6.12)
where A, = N’,',/N,. Rao (1986) suggested a modifica-
tion to this in which A, would be taken to be I whenever
N,_,_a = N,. Sirndal and Hidiroglou (1989) refined Rac’s
suggestion by taking A, = (N, /N,)* 1 when N, , < N,,
where h is chosen judgementally to control the contribu-
tion of the synthetic component.

It is the bias of the synthetic component that is of
concern when using these sample size dependent estimators
in practice. The weight associated with the synthetic
component should be such that the bias is kept within
reasonable limits. For example, the sample size dependent
estimator of Drew, Singh and Choudhry (1982}, with
generalized regression estimation replacing the ratio
estimation and & = 2/3, is currently used in the Canadian
Labour Force Survey to produce domain estimates. For
a majority of domains the weight attached to the synthetic
component is zero as the direct estimator itself provides
the required degree of reliability. For other domains the
weight attached to the synthetic component is about 10%
on average and never exceeds 20%. Depending on the risk
of bias that one is willing to take, 5 may lie in the range
[2/3,3/2] for most practical situations.

The third approach to weighting we call data dependent.
The optimal weights for combining two estimators generally
depend on the mean squared errors of the estimators and

their covariance. These quantities would generally be
unknown but may be estimated from the data. For our
combined estimators this would usually require some
modelling of the bias of the synthetic part. An early and
well known example of this approach is due to Fay and
Herriot (1979). They model the biases of the synthetic
estimators for the small areas as independent random
effects with an unknown but fixed variance. To be more
specific, if ¥y , is the design estimator then they consider
the model ¥, = X,8 + o, and Yy, = Y, + €, where
a, ~ (0,6, €, ~ (0,v%), and o, and €, are independent
and uncorrelated over a, o is unknown and »2 are assumed
known (in practice they would need to be estimated). For
a given value of ¢2 the optimal weights for combining
Yes.e and X, § can be calculated. An estimate of o? is
obtained by the method of fitting constants and substituted
into the optimal weights. Some protection against model
mis-specification is obtained by truncating the resulting
estimate if it deviates from the direct estimate by more than
a specified multiple of »,. Schaible (1979) and Battese
and Fuller (1981) also consider empirically estimated
optimal weights A, in (6.12) based on similar random
effects models for the small area totals.

‘Prasad and Rao (1990) provide an estimator of the
mean square error of the Fay-Herriot estimator which
makes allowance for the estimation of the variance com-
ponents. Kott (1989) proposes a design consistent estimator
of the mean square error, but finds it to be very unstable,

Another alternative is to use historical data to calculate
the weights; this has the advantage that the weights may
be more stable than if they are estimated from current
survey data; however, there is an underlying assumption
that the optimal weights are stable over time.

Remark: In sample size dependent estimation the
weights are allowed to depend on the observed size of
the subsample 5, but not on the values of the variate
of interest. This non-dependence of the weights on the
variate of interest has advantages and disadvantages.
Anadvantage is that the same weights would be used
for estimation of totals for all variates of interest; they
need to be calculated only once. More importantly,
the estimate of the sum of two variables is the sum of
the estimates of the two variables. A disadvantage is
that the weights do not directly take account of either
the reliability of the design estimator for the variate
of interest or the likely magnitude of the bias of the
synthetic estimator.

Combining data over time: For repeated surveys pooling
of data over survey occasions to increase the reliability of
estimates is a common practice. Depending on the rotation
pattern used for such surveys, significant gains in relia-
bility can be achieved. This pooling or averaging over time
is thus of particular interest in the context of domain
estimation where reliability is usually low. For domain
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estimation in the Canadian Labour Force Survey it is
normal practice to use a sample size dependent estimator
based on three month average estimates of employed and
unemployed. Due to the six month rotation scheme used,

as noted earlier, averaging over three months increases the -

sample size by one third. If samples completely overlap
between periods then averaging does not result in any gain
in efficiency. For other rotation patterns the sample size
for domain estimates could be more than doubled through
this process. There is, however, a conceptual problem with
pooled estimates, in that such estimates refer to an average
of the parameter of interest (e.g., unemployment) over a
period of, say, three months.

In composite estimation the current design estimator
is combined with the composite estimator for the previous
period, updated by an estimate of change based on the
common sample, This idea was used, though not in the
context of small area estimation, by Jessen (1942), and
Patterson (1950), among others. Binder and Hidiroglou
(1988) provide a review. The weights for the combination
are typically estimates of the optimal weights under the
assumption that these weights are time stationary. These
data dependent weights have the disadvantage that they
lead to inconsistency of estimates for different charac-
teristics and their sums.

A recent development in small area estimation tech-
niques is the use of time series methods for periodic
surveys. The relationship between parameters of interest
for different time periods is modelled and this model is
exploited to improve the efficiency of the estimates for the
current occasion. In most cases some allowance must also
be made, through modelling or otherwise, for the non-
independence of samples for different survey occasions
due to the sample rotation scheme. Some references for
this time series approach are Choudhry and Rac (1989),
Pfeffermann and Burck (1990), Singh, Mantel and Thomas
(1994) and Singh and Mantel (1991). All of these are
generalizations of the Fay-Herriot model which allow the
regression parameters, small area effects, and survey
errors to evolve over time according to various time series
models. The vector of small area estimates that results
from this approach can be written as a weighted average
of the vector of design estimates and a vector of synthetic
estimates which are based on past data and the current
values of covariates; however, the matrix of weights would
not generally be diagonal so that the estimator for any
single small area would generally depend also on the design
estimates and synthetic estimates for other small areas.

7. CONCLUSION
To produce adequate survey-based domain estimates

that are timely and up to date, sample designers must face
several challenging tasks, The first is to convince the

sponsors/program managers that some smaill area data
needs cannot be met as a by-product of a system designed
optimally for national/sub-national estimates. Significant
gains, which may vary from survey to survey, can be
achieved at the domain level at a marginal reduction in
reliability at higher levels, There is a need to develop an
overall strategy that incorporates desired reliability for the
planned domains as well as for higher levels through
compromise allocations, and reduced clustering to help
improve estimates for unplanned domains. It should be
noted that many of the planned domains at design time
may become unplanned (revised) over time in the context
of continuous surveys,

The overall strategy should also include consideration
of both design estimators for larger domains and model
estimators for small domains. A model estimator should
be preferred over a design estimator only if its mean square
error {design variance + bias?) is estimable and it is suffi-
ciently smaller than the corresponding variance of the
design estimator. We should have estimates of mean
square error for each of the individual domains. An option
that statistical agencies can exercise is to poal similar
domains or pool estimates over different time periods for
the same domain. They may even suppress estimates for
some domains on account of data reliability or privacy
concerns.

The second challenging task for statisticians is to explain
to users the different types of measures of reliability for
different sets of estimates from the same survey. It is
hoped that with more research on model validation and
better estimates of mean square errors, designers will get
more confidence in using model estimators for small
domains. In the meantime model estimators should be
used with caution even if they have significantly smaller
coefficients of variation.

Censuses, supplemented by data from administrative
records, are likely to remain the primary source of small
area socio-economic data, especially for countries having
a quinquennial census of population and housing. Also,
concerns about problems with conceptual issues in the
context of data for administrative records are likely to
continue until statistical agencies are given an opportunity
to influence the development of the forms used to collect
such data. Until then, this immensely rich data source
cannot be fully exploited for statistical purposes and more
so for domain estimation.
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COMMENT

W.A. FULLER!'

The authors are to be congratulated on an excellent
description of the design and estimation considerations
associated with domains. The authors discuss estimation
for planned domains, particularly situations in which
domain membership can be identified in the frame, and
estimation for unplanned domains including domains for
which the domain membership cannot be determined from
the frame. This is a fine contribution to the growing
literature on domain estimation.

The authors give a particularly good description of the
planning, data collection, and processing activities associ-
ated with surveys conducted by Statistics Canada. Included
are the traditional design problems of balancing needs for
domain estimation with desire for efficiency at higher
levels, the importance of confidentiality in using adminis-
trative records in constructing domain estimates, and the
importance of definitional compatibility in attempting to
combine information from different sources.

The importance of considering domain estimation at the
design stape is very well taken and is a point often ignored
by authors concentrating on small area estimation. As the
authors emphasize, careful design can often enable one to
construct estimates for domains in a direct and design con-
sistent manner. 1 am sure that those actually designing surveys
have considered the importance of clustering when designing
surveys that will be used for domain estimation, but it is
pleasant to see an explicit discussion,

The authors describe several types of estimators for
domains. Their classification emphasizes the number of
alternatives available to the practitioner. It is possible to
use the theoretical mean square errors to provide infor-
mation on the relative merits of the estimators. As an
example of such a comparison, assume a simple random
sample of size n selected from a population divided into
K domains. Assume that the domain sizes and the domain
means of an auxiliary variable, X, are available, Consider
the three regression estimators of the domain mean,

By = Fi + (g — &b,

na[l),w =Yy + (“xf - f,_)b_
and

By = Y.+ (pg — X8,

where

k
(X,y) E N—IN;(.X_";‘,_}_"-_),

=1

(%.90) = n7' Y (X Yy,
J=1

n; —1
b; = [ E (Xy; — fi.)z]
Jj=1

X E (Xy — %)Y — 7).

=1

k g -
b = [E N='Nn! E (Xy — fi.)z] l

i=1 i=1
k a;

X Y NN Y (X — 2 (Y = B,
i=1 i=1

n; is the number of observations in domain #, /V; is the
population size of domain /, u is the population mean of
X for domain i, and g, is the grand population mean of
X. In the authors’ terminology, the first estimator is a
direct regression estimator, the second is a modified direct
estimator, and the third is a synthetic estimator. We have

MSE(i iyl ni} = n7 (1 + 07 Y VY — B Xy €= )

+ O(ni_l)!

MSE{jt 2yl ) = 07 (1 + n =) VL ¥y — BXy| €= i}
+ 0(n™Y),

l\'iSE[,(}.(})y"' ﬂ,‘] = (l + n_l)
p
X Y, NTINIn7 'V Yy — BXyl €= 1)
i=1
+ (e — 15 )2 VD)

+ [y — . — Bl ~ )12+ O(n ™2,

where V(b ] = E{(b. — B)*}, Via,| t = i) is the
variance of the variable « for domain /,

Bi = [V Xyle=i)] ' Cl Yy, Xyl =)
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and

k -
8 =[ Y NTINVIX, | 6= n] l

i=1

k
x E N—IN,'CI Yf_’,erlf': f}.

i=1

The estimator 4, uses only information in the sample
of n; observations. Hence, all properties of the estimator
are functions of n; and of the domain parameters. The
regression bias is order n;~' and the variance is order n;~".
The estimator fi(y),; uses the domain means, but the entire
sample to estimate the regression coefficient, Hence, the
basic variance remains order #;”' and will be larger than
the basic variance of j(y,,; in those situations where g; # 8.
However, the second order contribution to the variance
is order n;~! n™" for fi(),; and is order n;% for fi (1),
Also, the regression bias for ft(z),; is order n~'. If the
domains were strata, fi,;,; might be called the separate
regression estimator and f(,,,; might be called the com-
bined regression estimator.

The estimator f (3, is a synthetic estimator and has a
variance of order n ~! instead of the order n;~! variance
of the first two estimators. The cost of this reduction in
variance is that the bias is order one, Only if the regression
line is the same for the domain as for the entire population
will the bias be zero.

The average mean square error of the three estimators
for any subset of small areas can be estimated. If the n;
are small, the estimated variances will provide only limited
information for discriminating among estimators, Like-
wise, there is only one degree of freedom for bias squared
for one particular domain. However, a large domain
deviation, relative to the standard error, wili lead one to
reconsider the synthetic estimator.

In their discussion of models, the authors stress the
importance of providing estimators of the reliability for
small area estimators. They allude to the fact that the prin-
cipal estimators of mean square error for model based
procedures are estimators of an average mean square
error. While this is true, it seems worth mentioning that
components-of-variance procedures do not assume the
mean square errors to be the same in each domain. Also,
for the typical survey situation, the estimators of mean
square error need not be constant over domains. For
example, one of the terms in the mean square error esti-
mator of the components of variance procedure is the esti-
mator of the variance of the direct estimator. The estimated
variance of the direct estimator will be a function of the
domain sample size and can also be a function of the direct
estimated variance of the direct estimator for that domain.
See Battese, Harter, and Fuller (1988), Harville (1976),
Prasad and Rao (1990), and Ghosh and Rao (1993).

In their discussion of designs, the authors explain that
the variance function is often relatively flat in the vicipity
of the optimum allocation to strata. A slight reallocation
of sample among strata can markedly increase the effi-
ciency of domain estimators for a relatively small decrease
in the efficiency of the overall estimates. The same is true
with respect to the combination of direct and synthetic
estimators. Thus, if one has a relatively good idea of the
variance component associated with small areas, either
from a previous study on the same population or from a
study on a similar population, and if one is under pressure
to produce estimates in a brief time span, then it is reason-
able to assign fixed weights to form the linear combina-
tion. The loss in efficiency is apt to be modest and the
programming required for estimation construction consid-
erably reduced. One estimator in this class, and the one
adopted by many practitioners, is the synthetic estimator.

The authors briefly raise the question of internal con-
sistency associated with the construction of small area
estimates. As they say, if one uses a data dependent pro-
cedure, such as variance components, for each dependent
variable, then one produces estimates that are not inter-
nally consistent. One option is to use multivariate pro-
cedures. See, for example, Fuller and Harter (1987) and
Fay (1987). Another procedure suggested by Fuller (1990)
is to construct components of variance estimators for a
limited subset of variables and then use these estimates as
control variables in a regression procedure. The regression
procedure produces weights for the individual observa-
tions. Once the weights are constructed, any number of
output tables can be constructed and all estimates are inter-
nally consistent.

It is my observation that the gains made in most prac-
tical domain estimation problems come primarily from the
wise use of auxiliary information. Thus, effort directed
towards obtaining quality auxiliary information is effort
well spent. If we are able to find a variable x that is highly
correlated with the variable y, then there is less variability
remaining to be allocated between area to area variance
and sampling variance.
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COMMENT

GRAHAM KALTON! ’

As Singh, Gambino and Mantel (SGM) indicate, there
1s a growing demand for surveys to provide domain esti-
mates for domains of various sizes and types. This demand
is being experienced in many countries throughout the
world. In part it may simply reflect a natural growth in
the sophistication of survey analysts, who once were
content with national estimates and estimates for a few
major domains, but who now want to compare and con-
trast estimates for many different types of domain. In part
it results from the needs of policy makers, who require
domain information in order to examine how current
policies affect different domains, to predict what effects
changes in policies might have, and for policy implemen-
tation. Information on administrative area domains (e.g.,
provinces or states, counties, and school districts) is of
particular interest for policy purposes (e.g., for identifying
low income areas for government support).

In some circumstances the need for domain estimates
of adequate precision can be satisfied within the design-
based inference framework that is standardly used in the
analysis of survey data. This holds for large domains for
which the sample sizes are adequate to give the precision
required. It can also hold for small domains provided that
they are identified in advance, and the sample design is con-
structed in a way that provides adequate sample sizes. Thus,
for example, in the United States, the National Health and
Nutrition Examination Survey and the Continuing Survey
of Food Intakes by Individuals use differential sampling

fractions by age, sex and race/ethnicity and by age/sex and -

low income status, respectively, in order to provide adequate
samples for the domains created by the cross-classifications
of these variables. The U.S. Current Population Survey
employs differential sampling fractions across the states
in order to be able to produce state-level employment
estimates. The limitation of this approach is evident when
there is a large number of small domains, in which case
the sum of the required sample sizes for each domain pro-
duces an extremely large overall sample size. This situation
occurs often with small administrative districts, such as
counties, school districts, and local employment exchanges.
In such cases, it may be necessary to discard the standard
design-based inference approach in favor of a model-
dependent approach that employs a statistical model in the
estimation process to borrow strength from data other than
that collected in the survey for the given small area. The
model-dependent approach may also be required for
unplanned small domains, where the need for oversampling
had not been foreseen at the design stage.

In response to the demand for small area estimates, a
sizeable literature has developed on model-dependent
small area estimation methods. Little has, however, been
written on the broader issues of small area estimation
discussed in the SGM paper, issues that need more atten-
tion. Like the authors, I believe that a cautious approach
should be adopted to the use of model-dependent small
area estimators. I therefore welcome their discussion of
methods to make small area estimates within the design-
based framework.

From my perspective, the first approach to making
small area estimates is to see whether estimates can be
produced with adequate precision within the design-based
framework. If the domains have been identified in advance,
consideration should be given to designing the sample to
meet the needs for small area estimates. This may involve
ensuring that the small areas do not overlap strata, and
ensuring a sufficient sample size for each small area.
Another approach suggested by SGM is to minimize the
amount of clustering. The smaller the amount of clustering,
the [ess the sample size in each small area is subject to the
vagaries of chance. In this regard [ see the benefits of less
clustering as mainly directed at providing the ability to
produce estimates for small areas that were not identified
at the design stage. When small areas for which estimates
are planned are made into separate strata, the sample size
in each small area should be under adequate control even
with a clustered sample (provided that the measures of size
used in the PPES sampling are reasonable). However, even
with planned estimates, there will often be an issue of how
to compute variance estimates for a small area from a
clustered design, since the number of PSUs sampled in
each small area is likely to be small. A variance estimate
based on the PSUs within the small area will then be
imprecise, with few degrees of freedom, and a generalized
variance function approach may be preferred (e.g.,
assuming that the national design effect applies for each
small area). In other words, although the estimate itself
may be a design-based estimate, the estimate of its variance
may be an indirect one, borrowing strength from other
areas. This consideration favors as unclustered a design
as possible even for planned small area estimates. The need
to model variances is, however, of lesser concern than the
need to model the estimates themselves.

An integral part of the design-based framework is a
recognition that auxiliary information available for the
population may be used at the design stage, at the analysis
stage, or at both stages. When information on auxiliary

! Graham Kalton, Westat, 1650 Research Blvd., Rockville, Maryland, U.5.A. 20850.
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variables that are closely related to the survey variable is
available, substantial gains in precision can accrue. The
use of auxiliary information at the analysis stage, through
such techniques as post-stratification and ratio, regression
and difference estimation, has a special appeal for small
area estimation. It should be emphasized that ratio and
regression estimators may be motivated by assumptions
about the model relating the survey variable { ¥) and the
auxiliary variables (.X), but that the resultant estimators
are design-consistent irrespective of the appropriateness
of the model. The use of an appropriate model produces
the greatest gains in precision, but the estimates are approx-
imately unbiased whatever model is chosen. This may be
seen in a simple case where variables X,, X3, ..., X, are
known for every element in the population, and the linear
combination ¥; = By + ByXy; + ... + B,X},is used to
estimate Y}, the value of the Y-variable for population
element /. Assume, for simplicity that the B's are deter-
mined from external data, not dependent on the sample.
With ¥; = ¥; + ¢;, the domain totalis ¥, = T,,¥; +
Lia€ = Y, + E,. Since ¥, is known, the estimation prob-
lem is one of estimating £,. From a sample of elements
in domain @, E, may be estimated by £, = ¥ jesp & /M
where =; is the selection probability for element j in the
sample. The estimator E, is unbiased, independent of the
validity of the model employed. The estimation procedure
in fact translates the estimation problem from one of esti-
mating Y, directly to one of estimating £, and adding on
a known constant ¥,. To be effective, the procedure
requires the domain variance of the e; to be smaller than
that of the ¥, There is no requirement that E, = 0. The
general logic remains the same in the more usual situation
where the B’s are estimated from the sample. In this case,
the estimate of ¥, is design—consistent, irrespective of the
model adopted (Sdrndal 1984). Moreover, the B's may be
estimated from the sample data only for the domain of
interest, producing what SGM term a direct estimator, or
from the total sample, producing a modified direct esti-
mator. A key consideration in the choice between the
direct and modified direct estimators in this case is whether
the overall B’s also apply for the domain. If not, inter-
action terms between the X’s and the domain indicators
are called for in the total sample model. With a full set of
these interaction terms, the modified direct estimator in

effect then reduces to the direct estimator.
The need for a model-dependent approach occurs when

the design-based estimate lacks sufficient precision even
after the auxiliary data available have been used in as
effective a manner as possible. Indeed, in some cases the
computation of a direct estimate may be impossible because
there are no sample cases in the small area. In such situa-
tions, it becomes necessary to use a statistical model to
borrow strength from other data, often data from other
areas. Such models are built upon assumptions (e.g.,
E; = 0 in the above example), and the quality of the

resultant small area estimates depends on the suitability
of the assumptions made. The assumptions are inevitably
incorrect to some degree, leading to biases in the smali area
estimates. Since indirect estimates are biased, the design-
based mean square error (MSE) is widely used as the
measure of their quality, where MSE = ¥’ + B? and
V'’ is the variance and B is the bias of the estimate,

The common way to compare the quality of a direct and
an indirect estimate is to compare the variance, V, of the
former with the MSE of the latter. However, reading the
paper caused me to question whether the MSE is the
appropriate measure of quality of an indirect estimator.
In a practical setting the variance ¥ of the direct estimate
can be estimated whereas the design-based MSE of the
indirect estimate cannot. In view of this situation, if
V = MSE, then the direct estimator would be clearly
preferred. In fact, the direct estimator may tend to be
preferred if the direct estimator has adequate precision,
irrespective of the likely relative magnitudes of ¥ and
MSE. In other cases, if B is the expected bias, then the
direct estimator may be preferred to the indirect estimator
unless ¥V > V' + kB*, where k is a multiplier greater
than 1 that allows for the fact that the unknown bias may
be larger than expected.

The same argument can be applied to combined (or
composite) estimators that employ a weighted average of
adirect and an indirect estimator. Often the principle for
choosing the weights is taken to be to minimize the mean
square error of the combined estimator, leading to weights
for the direct and indirect estimators that are inversely
proportional to ¥V and MSE, respectively. However,
following the above argument, an alternative procedure
would be to minimize the weight of the indirect estimator,
subject to the condition that the combined estimator is
sufficiently accurate. Alternatively, the weights could be
determined on some maximum likely value of the MSE,
rather than the expected MSE, to reduce the risk of serious
bias in the combined estimator.

1 do not follow the rationale for the sample size depen-
dent estimators described by SGM in equation (6.11) and
{(6.12) in general, but under certain assumptions they may
be seen to fit in to the logic given above. With an equal
probability sample design and § = 1, these estimators
reduce to the direct estimator when the achieved sample
size is greater than, or equal to, the expected sample size.
If one assumes that the expected sample size gives adequate
precision for the small area, this outcome accords with the
above reasoning. If the achieved sample size is smaller than
expected, the sample size dependent estimator takes a
weighted average of a direct and an indirect estimator. If
one assumes that the expected sample size is the minimum
sample size to give the required precision, this outcome
also accords with the above reasoning. If this indeed is the
basis of the sample size dependent estimators, then it
would seem useful to generalize them to situations where
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the expected sample size is not the sample size that just
gives the level of precision required.

As has been noted, auxiliary information plays an
important role in the production of accurate small area
estimates. Such information may be used for improving
the precision of design-based estimates or it may be used
in the models employed with the model-dependent approach.
Ideally auxiliary information that is highly related to the
survey variables involved in the estimates is required. The
regular compilation of up-to-date auxiliary data for small
areas from administrative and other sources can provide
a valuable resource for a small area statistics program.

Although the paper mentions the more general problem
of small domains, it focuses predominantly on small areas.
This is in line with the general literature and the application
of indirect estimation procedures. In part, this may be
because the number of socio-economic and other small
domains of interest (e.g., age/sex domains) is usually
relatively small, compared with the numbers of small
areas, so that socio-economic domains can be handled by
designing the sample to provide direct estimates of adequate
precision for each of them. In part, it may be because the
definitions of socio-economic and demographic domains
are often chosen in the light of the feasibility of producing
design-based estimates of adequate precision for them
(e.g., using wider age groupings for some domains); in the
case of areal domains, however, the areas are predefined,
and no collapsing of areas is acceptable. In part, it may
be because there is a lack of auxiliary data to use in the
statistical models for such domains. In part, it may also
be because the analysis of socio-economic domains is often
conducted to make comparisons between the domains.
Such comparisons are distorted when the estimate for one

domain borrows strength from other domains (see, for
example, Schaible 1992). This issue brings out the general
point that indirect estimates should not be uncritically used
for all purposes.

In conclusion, I should like to express my support for
the general approach of this paper. Where possible, samples
should be designed to produce direct small area estimates
of adequate precision, and sample designs should be
fashioned with this in mind. Auxiliary data should be used,
where possible, to improve the precision of direct small
area estimates, When indirect estimates are called for, a
cautious approach should be used. Models should be
developed carefully, estimators that are robust to failures
in the model assumptions should be sought, and evaluation
studies should be conducted to assess the adequacy of the
indirect estimates. Lacking good measures of quality for
individual indirect estimates, such estimates need to be
clearly distinguished from design-based estimators. Since
indirect estimates are not universally valid for all purposes,
users need to carefully assess whether the given form of
indirect estimate will satisfy their particular needs.
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RESPONSE FROM THE AUTHORS

We would like to thank Wayne Fuiler and Graham
Kalton for their stimulating comments, which we find to
be quite complementary to the position developed in our
paper. In many cases their comments make certain points
clearer and strengthen the arguments presented. Encouraged
with this kind of endorsement we would like to carry some
of the points about survey design further, while responding
to the main points made by the discussants.

There is no doubt that survey designers try to optimize
the design under operational constraints to meet the stated
objectives of a survey. There are usually several objectives
to be met by major surveys and it is quite likely that
designers have limited influence in the setting of priorities
among the various competing objectives. Nevertheless, it
is at this stage of priority setting that the case for small area
needs should be made strongly, particularly for major
continuing surveys.

During the sixties and seventies emphasis in most countries
was placed on sub-national (state/provincial) estimates and
certain compromises were made to the earlier designs that
optimized national estimates. For example, different
sampling fractions were used to ensure a minimum sample
size for smaller states/provinces. With the demands for
data at the sub-state/province level, such as, county, district
and municipality, more compromises to the national
optimum allocation become necessary, requiring differing
sampling fractions among the administrative areas within
states/provinces. For example, if the aim is to produce sub-
provincial estimates of comparable quality, then provinces
will likely receive sample roughly proportional to the
number of subprovincial regions they contain. Such an allo-
cation may not be the same as one using the relative popula-
tion sizes of the provinces. As we discussed in section 5.4,
the allocation approach should put more emphasis on a
bottom-up strategy. Losses at higher levels and gains at
lower levels would differ from survey to survey but it is
likely that in many cases a minor loss in CV at the national
level will lead to appreciable gains at small area levels.

Kalton stresses the importance of reduced clustering
for variance estimation; it is advantageous to increase the
degrees of freedom by having a large number of smaller
clusters rather than a small number of larger clusters. We
would like to emphasize that clustering has another draw-
back for estimation, and especially small area estimation,
namely, a highly clustered design will lead to high design
effects, even for planned small domains. The usual reason
for resorting to clustered designs is to reduce survey costs.
In light of the changes that continue to occur in the data
collection process, such as decreased reliance on at-home
interviews and increased use of computer assisted inter-
viewing, a periodic review of the cost-variance models that
underlie clustering decisions is necessary.

One other issue not addressed in our paper is the impact
of sample rotation in continuous surveys. For a given time
point, there may be insufficient sample in some small
domains to produce reliable estimates. But, as units rotate
out of the sample and are replaced, the accumulated or
effective sample in the domains increases and may allow
the computation of reliable, albeit time-biased, domain
estimates. By judicious choice of rotation schemes, survey
designers can maximize the cumulative sample size over
some time period. For example, for quarterly estimates in
a monthly survey, the optimal rotation pattern is [1(2)] %,
i.e., repeat the sequence ‘‘one month in sample, two months
out’ k times. This thinking is in the same spirit as Leslie
Kish’s ideas on cumulation of samples over time.

Kalton clarifies and elaborates the cautious approach to
the use of indirect estimators by suggesting a weighted mean
squared error, which attaches a weight greater than I to the
bias term, to allow for the fact that the bias of the indirect
estimator may be larger than expected. There are two
distinct reasons why the bias may be larger than what is
expected from the model for small area effects: random
variation within the model, and model breakdown. It is
worth recalling here the suggestion of Fay and Herriot
(1979) to constrain a combined estimate to be within one
standard error of a design estimate; this approach makes

allowance for the possibility of large bias in the model

estimator for whatever reason. Kalton also reiterates our
position that if a direct estimator is of acceptable quality,
then in practice, one may decide to use this direct estimator
even though its estimated mean squared error exceeds that
of model-based competitors. Because there is always the
possibility of model failure lurking in the background, this
“‘better safe than sorry’’ approach is desirable, at least until
some experience with particular indirect estimators in
specific situations has been gained. This does not contradict
the view that there arise situations in which it is necessary
to throw caution to the wind.

In his remarks on the sample size dependent estimator,
Kalton’s comments imply that there is a risk in the strategy
which gives the synthetic component zero weight if the
observed sample size in the small domain exceeds the
expected sample size there since the latter may be too small
to yield adequate direct estimates. One option is to use a
value n,,;, which is the size that produces direct estimates
that are just barely acceptable. Note, however, that ny, as
defined here is characteristic-dependent.

In his comments, Fuller briefly describes an approach
to small area estimation that takes advantage of a variance
components model and yet has fixed weights for internal
consistency among estimators for different characteristics.
Besides internal consistency of small area estimates for
different characteristics, a second type of consistency that
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is sometimes required is that estimates of totals for the set.
of small areas within a larger area should add up to the
published direct estimate for the larger area. One way to
achieve this is to benchmark the small area estimates to the
direct estimate for the larger area using, for example, a
simple ratio adjustment; however, if the ratio adjustment
factors depend on the characteristic then this would destroy
the first type of consistency. Both types of consistency
could be achieved simultaneously if the direct estimators
for the larger area are generalized regression estimators,
Y, + (X — X.)8, and the modified direct (Section 6.1 in
the paper) estimators Yoy , = Yoo + (X, — X, )5 are
used for small areas.

As Fuller notes, the average squared bias of an estimator
for any subset of small areas can be estimated. Here we
would like to stress again that the average bias over a set
of small areas is not directly relevant for any particular
small area. It is for this reason that we prefer to use,
whenever possible, estimators that are approximately design
unbiased. When use of a model estimator is unavoidable,
serious attempts should be made to find appropriate
covariates for which reliable auxiliary information is avail-
able in order to minimize the residual bias of the model
estimator.

Perhaps due to the obvious timeliness problems associated
with census data, neither of the discussants commented on
censuses as a source of data for smaller domains. In this
context it is worth mentioning that some form of ongoing
major post-censal survey replacing or supplementing the

decennial census long-form may be considered. Such a
strategy, called rolling samples, is described by Kish (1990);
a similar approach, called continuous measurement, is
described by Alexander (1994). This approach provides a
number of options which are worth investigating as poten-
tially cost effective means of producing timely statistics for
smaller domains.

Lastly, we would like to stress that the emphasis we put
on keeping domain estimation in mind at the design stage,
particularly for medium size domains, in no way under-
mines the important role of models in estimating for very
small domains.

We hope that the general direction of the strategy pro-
posed in the paper, supplemented by the fine points brought
out by the discussants, particularly the support and cautions
summarized by Kalton in his concluding paragraph, will be
helpful to survey designers and researchers in finding
solutions appropriate to the particular problems they are
dealing with.
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ABSTRACT

The problem of estimating domain totals and means from sample survey data is common. When the domain is large,
the observed sample is generally large enough that direct, design-based estimators are sufficiently accurate. But
when the domnain is small, the observed sample size is small and direct estimators are inadequate. Small area estimation
is a particular case in point and alternative methods such as synthetic estimation or model-based estimators have
been developed. The two usual facets of such methods are that information is ‘borrowed’ from other small domains
(or areas) so as to obtain more precise estimators of certain parameters and these are then combined with auxiliary
information, such as population means or totals, from each small area in turn to obtain a more precise estimate
of the domain (or area) mean or total, This paper describes a case involving unegual probability sampling in which

no auxiliary population means or totals are available and

borrowing strength from other domains is not allowed

and yet simple model-based estimators are developed which appear to offer substantial efficiency gains. The approach
is motivated by an application to market research but the methods are more widely applicable.

KEY WORDS: Synthetic estimation; Design-based estimation; Small area estimation; Modei-based estimation;

Market shares.

1. INTRODUCTION

This paper is concerned with the common problem of
estimating domain totals and means from a disproportion-
ately allocated sample survey. Some domains may be large,
in which case the achieved sample size may be large too
and design-based (or direct) estimators will be satisfactory.
Some domains may be small, in which case the achieved
sample size may be small too and design-based (or direct)
estimators will be too imprecise for practical use. The
methods proposed will be motivated through the example
of estimating sales, market shares and market penctrations
for products in a market research survey. The domains are
particular auto manufacturers or models. However, the
general approach is applicable to other disproportionately
allocated surveys of businesses or institutions.

The problem is analogous to that of using synthetic
estimation for small area estimation (Gonzales 1973;
Gonzales and Hoza 1978; Platek ef al. 1987). Synthetic
estimation usually depends on two factors: (i) the use of
auxiliary variables in conjunction with population means
or totals for each small area (or domain) to improve
estimates through poststratification or regression estima-
tion, and (ii) the improvement of estimates by pooling
data across the small areas (or domains). In our situation
no auxiliary population means or totals are available
and, since the essential objective is to compare domains
(i.e., manufacturers and particular products), the idea of
borrowing strength between these is inadmissible. A class

of synthetic estimators is proposed which uses neither of
these two approaches and yet is preferred to the direct
survey estimators. The proposed estimators have a simple
structure, an interesting interpretation and can be justified
under a set of model assumptions which are testable under
the general assumption of non-informative survey design.

2. THE MARKET RESEARCH EXAMPLE

Market researchers often estimate the total volume of
sales and market shares for each manufacturer of a partic-
ular product. We consider the case of autos purchased for
company fleet use in a single year. Estimates of totals and
market shares are required for each auto manufacturer and
for specific models which are widely purchased for fleet use.

The terms ‘fleet’ and ‘company’ are each interpreted
widely. A fleet car is taken to mean any auto purchased
on a commercial as opposed to a private basis, and used
in conjunction with a business in the broadest sense. This
includes autos purchased for sales representatives which
may be purchased in large numbers. It also includes single
purchases of luxury cars for company directors and other
senior staff of large companies, as well as purchases by
small ‘companies’ such as groups of doctors, or self-
employed people such as shop owners. Thus the population
of purchasing companies ~ termed consumers — includes
a large number of small companies that purchase only one
or two autos every few years.

' . Holt and D.J. Holmes, Department of Social Statistics, University of Southampton, Highfield, Southampton, UK, SO9SNH.
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In the reference period of one year we define Yy to be
the number of autos of product type & purchased by con-
sumer {. The product type k (the domain) may refer to a
specific model of a particular manufacturer, or to all
models produced by a manufacturer. Thus, ¥, = ¥; Yy
is the total number of autos of type k purchased by all con-
sumers. Let Z, be the total number of autos of any kind
purchased by consumer i, and Z = §,Z; be the total
number of auto sales. The market share for product type
k is defined as R, = Y,/Z.

We further define

Yii=1 if Y; >0
=0 if Yy=0
and
Zi=1if Z;> 0
=0 if Z; =0

Thus, Y{; and Z; are indicator variables for consumers
who purchase product type k and at least one auto of any
Kind, respectively, in the reference period. The number
of consumers that purchase product & is thus given by
Y{ = ¥;Yiand the total number of consumers purchasing
at least one auto of any kind is givenby Z* = ¥,;Z/. The
market penetration for product &, in terms of the propor-
tion of consumers buying a car of any type in the reference
period who buy type £, is given by R} = Yi/Z’,

The four parameters Y, R;, Y and R} are all legiti-
mate targets of inference in market research and are
defined as finite population parameters; namely, domain
totals or ratios of domain totals.

3. THE SURVEY DESIGN AND DIRECT
ESTIMATORS

The survey design was based upon two mutually exclu-
sive frames and may be regarded as a simple stratified
design with ten strata. The first frame was a register
(Dun and Bradstreet) of 35,000 companies, stratified into
eight strata on the basis of the number of employees and
whether the company was classified as ‘manufacturing’ or
‘distributing’. The second frame was a large register of
1.4 million British Telecom business subscribers, stratified
into ‘private’ and ‘commercial’ numbers. Note that both
private and commercial numbers were business subscribers
but commercial numbers were allocated if separate com-
mercial premises were occupied.

Using previous survey data the sample was optimally
allocated using Neyman allocation to minimize the
variance of the estimator of the total number of autos pur-
chased (Z). Data on auto purchases were collected
immediately after the end of the reference year. The strata

sizes { N, ] and sample allocations {n,} forstrata h = 1,
..., 10 are given in Table 1.

Table 1
Sampling Frame- Sample Size and Weight by Stratum

Stratum Sample Weight
Stratum (A4) Size Size ~
Ny My T = Nfr/nfr
British Telecom:
Private 389,445 1,130 338.65
Commercial 1,007,399 7,406 136.02
Dun and Bradstreet:
Manufacturing
50-99 employees 6,646 235 28.28
100499 6,826 1,i13 6.13
500-999 992 520 1.91
1,000 + 1,110 849 1.31
Distributing
50-99 employees 8,703 472 18.44
100-499 7,625 1,437 5.31
500-999 1,133 484 2.34
1,000 + 1,523 1,117 1.36
Overall 1,431,402 14,783 96.83

The sample is a simple, disproportionately allocated
stratified design and the direct estimators and their vari-
ances are well known. The stratification results in large
differences in sampling weights (1.31 to 338.65) and is
useful but far from ideal. Many consumers do not pur-
chase any autos at all in the reference year so that each
stratum contains a mixture of zero and non-zero respornses.
For any particular product & the proportion of zero
responses in each stratum is obviously larger.

Table 2 contains the direct survey estimates, estimated
standard errors (see Holt and Holmes (1993) for derivation),
and coefficients of variation for a selection of products
from different auto manufacturers. Products A and B
represent all models for two major auto manufacturers.
Product Cis a single model with a substantial share of the
fleet market from manufacturer A. The remaining products
have small market shares. Products F and G cater for the
executive part of the fleet market. The list is incomplete
so that the market shares do not sum to one. Also note that
the product categories are not mutually exclusive. In
general the survey was judged to perform satisfactorily but
it was observed over a period of years that estimates for
manufacturers or models with small market shares were
unstable. This is best seen in terms of the coefficient of
variation which is greater than 0.1 for products with small
market shares and can be greater than 0.15 or 0.2 in some
cases. This instability also affects the estimates of variance
as well as the estimates of total sales or market shares of
the products.
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Table 2

Direct Survey Estimates, Standard Errors and Coefficients
of Variation for Selected Products

Estimating Consumers Estimating Autos

Product

(k) thal Penetﬁration Total Share

¥ R Y, R,
A 59,890 3843 270,051 3781
(2,651) (.0144) (35,704) (.0315)
(.044) (.037) (.132) (.083)
B 34,282 2200 153,518 2149
{1,960) (.0117) (8,653) (.0131)
(.057) (.053) (.056) (.061)
C 23,363 L1499 81,381 1138
(1,602) {.0098) (17,559) (.0194)
(.069) (.065) (.216) (.170)
D 13,857 0889 25,312 0354
(1,311 (-0081) (2,906) (.0039)
(.095) (.091) .115) (.110)
E 9,025 0579 24,370 .034)
(1,146) (.0072) (7,336) (.0101)
{127 (.124) (-3C1) (.296)
F 5,125 20329 13,724 0192
(676) (.0043) (2,369) (-0030)
(.132) (.131) (.173) (.156)
G 7,518 L0482 11,031 .0154
{1,015} (.0064) (1,458) (.0022)
(.135) (.133) (.132) (.143)
Row 1: estimate Row 2: s.e. Row 3: c.v.

4. A MODEL-BASED APPROACH

Given the sample design there is no prospect of im-
proving the efficiency of the direct survey estimators
within the conventional sample survey framework. The
usual approaches are through the use of auxiliary infor-
mation for poststratification, ratio or regression estimation
but all of these require knowledge of population means
or totals. No such information is available. We turn instead
to a model-based approach to provide alternative esti-
mators for the whole range of products.

4.1 Estimating ¥;: the Number of Consumers
Purchasing Product Type &

We consider, initially, the number of consumers who
buy product type £. We extend the notation from ¥ to
Y/ni in the obvious way to define the indicator random
variable of purchase for product & for consumer 7 in
stratum A. We treat each consumer’s decision as the out-
come of a Bernoulli trial. Let Pyx be the probability that
a consumer in stratum £ buys an auto of type k [Py =
Prob (Y, = 1)]. We define the model-based equivalent
of Y, the total number of consumers of product &, as

0L = Y Ny Py (1
f

Assuming that eacii consumer’s decision is independent
the likelihood may be written as the usual product of bino-
mial terms. The maximum likelihood estimators are given
by Pin = niy/ny, and the maximum likelihood estimator
of 9/ is the familiar stratified sampling estimator

5 N,
(1) =E“L"kh=ENh)_’éh. 2)

n
no R h

where rn,y, is the sample count of consumers in stratum A
that buy product &, n, is the stratum sample size and
Jin = nygu/nyis the sample mean for consumers in stratum
h (i.e., the sample proportion of consumers in stratum A
who buy product k). This estimator is generally unsatis-
factory when the sample size for product k is too small.

Suppose we introduce an additional conditioning factor
such that every consumer may be categorized into one of
its categories f, f = 1, ..., F, and further extend the
definition of the indicator random variable to Y.
These categories fwill cut across the strata 4 and the idea
is to define f so that, within any particular category,
whether a consumer buys product type k or not is indepen-
dent of the stratum membership 4. In the case of fleet
purchases we define a categorization based on the total
number of autos owned and operated by each consumer
(i.e., the fleet size). A more detailed discussion of the
choice of fis given in Section 5.

If Ny, the population counts of consumers in stratum
f1 and fleet size category f, are known then (1) may be
extended in the obvious way and the target parameter can
now be expressed as

0; = E E Nhj Pk|hf~ 3)
L

Equation (3) is the case of poststratification if [Ny/]
are known, and in this case the additional information will
lead to a gain in efficiency (Holt and Smith 1979). When
{ Vi) are unknown we may rewrite the model in terms of
two sets of probabilities:

Qs n = Prob (consumer has fleet size f | stratum A},

Pywry = Prob {consumer buys product type k | stratum
h and fleet size f).

The target parameter may now be expressed as

Oy = E E Ny Qrin Pejng -

L
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To obtain an alternative model-based estimator we
make further assumptions about the model parameters.
Suppose now that

Py = Py, forall h. (5)

This implies that conditional on the categorization f (the
size of the fleet operated by a consumer), the probability
of buying product type k is independent of the original
stratum membership £, Algebraically, the assumption is
analogous to that used in synthetic estimation for small
area estimation but in that case information is pooled
across areas. That form of the assumption is inadmissible
in our case, We choose instead pooling across strata within
the domain of study. The idea is to choose a conditioning
variable which accounts for the marginal association
between choice of product and stratum membership.
Using assumption (5) and with the obvious extension
of the notation (ny = T, nyp, efc.) it may be shown that

- .
By ==

. n,
O = -
ny NI

and the maximum likelihood estimator of @/ becomes

=E,\‘1f’if

r y

%@ =L T M e

=Y Ny, (6)
h

where Ny = T4 N, nye/ny, and jiy = ny/ny is the
unweighted sample mean for consumers in category f
(i.e. the sample proportion of consumers in category f
who buy product &).

Thus (6) has the form of a stratified estimator based on
the categorization f but with the population sizes in each
stratum {N,] unknown. Note that an estimator of this
form, but with known [Ny), would arise naturally if a
stratified sample based on f had been selected. In fact this
is not so: the sample members of category f are not
selected with equal probability. However, the parameter
assumptions lead to treating the sample in each category f
asif it was an equal probability sample since under assump-
tion (5) the sample weights are uninformative and simply
lead to efficiency loss when estimating Py Hence,
although the sampling fractions /N, are used to estimate
[Ny} they are not used explicitly in By, = nye/n, = 7.
Note that the estimator pools information across strata A,
within domain & but not between domains (i.e. products).

Note that if n,/N}, is constant, equation (6) reduces to
the usual expansion estimator given by (2), and assump-
tion (5) has not yielded a new estimator. If the sample is
disproportionately allocated the assumption leads to the

use of the sampling weights for N’f (where they are needed)
but not for estimating Py (where they are uninformative
given f and assumption (5)).

Equation (5) is a strong set of assumptions, requiring
Pﬂkf to be exactly equal to a common value £y, for all

. In practice, random assumptions such as Py =
Pfrlf + €gpar may be introduced, where E{€;s,] = 0 and
Viegw] = oZ. These assumptions will lead to hierarchical
Bayes or empirical Bayes analysis as described in Ghosh
and Rao (1994) or Fay and Herriot (1979). These methods
are not developed here since the simple form of the model-
based estimator would be lost, together with the insight
that this provides. In a similar vein the approach of Sarndal
and Hidiriglou (1989) or Drew, Singh and Choudhry
(1982) may be applied to yield sample size dependent
estimators without violating the requirement that no infor-
mation is pooled across domains (products).

We can compare the estimators in (2) and (6) when
assumption {5) holds since it may be shown that

- Ni
ACHONIES) H—Pklh(l — Pryul
Ny

=y ) %Qflkpklf
~ f E

LA A

Orin Orim by By (1)

where the notation ¥; (-) is used to emphasize that the
variance is evaluated with respect to the model-based
distribution.

It may also be shown that under assumption (5)

5 N}
iy =Y % ;"-Piu Qs (1 = Qpa)
nos h

-LEY _Pkif Ber Qrin Orom
AT
Iy
FT T L:i Py (1 = Py ) O
R oy E 7y Qrin

h

{(1 = Q) + M Qi

N [T+ (2ny ~ 3) Qs — 2(ny — I)Q}M}}
(8

E i Qrin
3

and that K(6{(1)) — V(8{(2)) = 0
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Thus under the additional model assumptions 8£(2)
has smaller variance as would be expected. These expres-
sions are model-based variances and no finite population
corrections arise. A predictive approach to the unobserved
clements in each poststraium would give rise to finite
population correction factors.

The maximum likelihood estimator of the market
penetration for product type &, R{, under assumption (5)
is simply given by

E A‘rf”*f YNy

0:(2) = =1 ©)
PP AL P 7
s fiy i

where n,, is the sample count of consumers in fleet cate-
gory f that buy an auto of any kind, and Zf = ny/ng
is the sample proportion of consumers in category f who
buy an auto of any kind.

4.2 Efficiency of the Model-Based Estimator of ¥}

To investigate the gain in efficiency of 8/(2) over
(-)k(l) we consider the efficiency of the model-based
estimator, defined by

- Vi(84(1)) — V(67(2))
e[8;(2)] = ¢ _ , 10
€] % (84(1)) -

for various population structures in which assumption (35)
hotds.

We consider a population with strata [k}, stratum sizes
{Ny] and sample allocations {n,] as given in Table 1,
and a conditioning factor with ten categories f (f = 1,

. 10) of increasing fleet size. We compute the efficiency
factor e[6.(2)} for various combinations of parameter
values of {Qrn) and [Py rh.

We consider five different structures for (Qrnl:

. P =h
(@) Qpp = for h=1,...,10
0 f=h
095 f=h for h=1,...,10
0.025 f=h—1 for h=2,...10
() Orpp =4 0.025 f=h+1 for h=1,...9

005 h=1,f=2 and h=10,/=9
0 otherwise

Band Matrix (0.025, 0.95, 0.025).

(c) Qrx = Band Matrix (0.05, 0.90, 0.05).
(d) Qy» = Band Matrix (0.05, 0.10, 0.70, 0.10, 0.05).
(C) Qf]!r=0~1 for h = 1, ., 10

and f =1, ..., 10.

We consider four different structures for (Pesl:

: 0.1 f=1,2
P, =
O Fas {0 otherwise.
(i) Py =01 —001(f -~ 1) for f =1,...,10.
(i) By, = 0.17 for f =1,...,10,
(IV) Pﬂf = 0.5 for f =1,...,10.

Structure (a) is one where the categorization f coincides
with the stratification. In structures (b), (c) and (d), in any
particular stratum h the majority of consumers fall into
one fleet category (f = k) with a few consumers in
neighbouring categories (e.g., for (b)and (c) f = & — I,
h + 1). Finally, structure (¢) implies that, in any stratum
h, consumers will be equally likely to fall into any one of
the fleet categories f =1, ..., 10.

Structure (i) for Pyy implies a type of auto that is
purchased with a small probability by consumers with
small fleet sizes (i.e. that fall in categories f = 1 or 2),
but not purchased by consumers with large (r) fleet sizes.
Structure (ii) suggests a type of auto purchased with small
probability which decreases as fleet size increases, whilst
structure (iii} implies the reverse. In structure (iv) a popular
model is bought with probability 0.5 regardless of the
consumer’s fleet size,

Table 3 gives the efficiency factor defined in (10) for
each combination of structures for Oy and P sunder the
disproportionate allocation given in Table 1. Column (a)
of the table is the special case where the stratification and
the categorization f coincide, and the two estimators
64(1) and 6{(2) are the same. The table shows that large
gains in efficiency (e.g., 70%) can be attained for certain
parameter combinations: the weaker the association

Table 3

Efficiency Factors, ¢[8(2) ], for Various Combinations
of Qfl" and Pk!f

Structure for Q_,—i;,

(a) (b) () (d) (e)

0.108 0.196  0.355 0.648
0.116 0206 0.391 0.695
0.103  0.18} 0.387 0.695
0.115  0.203 0.391 0.706

@

Structure (ii)
for Pklf (iii)
(iv)

e S e S o B = §
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between f and & the greater the efficiency gain. Even for
structures (¢) and (d) where the association between f and
f1is strong, substantial efficiency gains can be achieved.
The structure Qyy,, is much more important than FPryrin
determining efficiency gain.

In the special case (e) where Qr(» is @ constant for all
S and 4 it can be shown that the efficiency factor can be
expressed as

E T,,N,z,/n,,
82 h

— — . (11}
Py (1 = Pyy) E N2 /n,
h

e[6{(2)] = (1 -

where

o 1 & "
Py =23 Pys and 8% = - 7 (P, ~ Pyy)?
F B

are the mean and variance of { Pr\ ) over the categories
Siand 7, = 1 — m/n + O(n~"). The term in paren-
theses in (11) lies between Q and 1 and it’s value depends
on how the { Py ) vary over the categories /. In case (iv)
Py s is constant and so this term is unity. The second term
of (11) depends solely on the design, and its value for the
sample allocation specified in Table 1 is 0.706.

4.3 Estimating ¥;: the Number of Autos Purchased
of Product Type &

The previous approach in Section 4.1 may be extended
to the number of purchases. We introduce a further
conditioning factor which represents the total number of
autos purchased, m, regardless of product type, and we
extend the notation in the obvious manner to Yehsmis the
random variable representing the number of autos of
product type & purchased by consumer i in stratum h, fleet
size f, and buying »7 autos of any kind. The idea is that
the number of purchases of product & is likely to vary
depending on the total number of autos purchased. Let

Sminr = Prob{consumer buys m1 autos of any kind | A.Sf),
m=20,1,2, ...,

Tyipjm = Prob|[consumer buys { autos of type & | 4,f,m),
=01, ..., m.

The model-based target parameter, equivalent to the

total purchases of product k, ¥, is extended from (4) and
may now be expressed as

0, = E E E E N Qrin Sopng Tepngen £ (12)
h Vi i ¢

We consider two sets of additional assumptions, the first
of which is

Te‘|hfm = Tr'\fﬂ. forall /. (13)
These assumptions imply that conditional on fleet size
category, f, and the total number of new autos purchased,

m, the distribution of the number of autos purchased of
product type & is independent of stratum h.

The maximum likelihood estimator of 8, under assump-
tions (13) is

0:2) = Y Y N i (14)
S m

where Ny = LyNyttyym/ny, and Fepm = Lol Myl g,
is the unweighted sample mean of the number of autos
of product type k purchased by consumers of fleet size Vi
that purchased a total of m autos of any kind.

The selection probabilities are used here to provide a
weighted estimator of N, the total number of con-
sumers of fleet size fthat buy m cars of any kind. The form
of the estimator is analogous to that in equation (6). Under
the model assumption (13) it may be shown that

N NE
@) = 3737 30— kinQpmin (1 = Qi)
A f om A

NZ
- E E E E “E Him by m: Qfmyh Qf‘m'[h

Ao om ofom
myz2 (' '.m’)

+ E E E N_}? a}memM
oS

. E”n Ol
h

[(1 = Qpmip) + 1 Qi

(1 + ay = 3 Qs — 2(n5 — I)Q}m;u}

E Apy Qe
b (15)

where Qjml,, = Qflh SmW, W = E¢{ Yerpmi), and
O}m = Vs[ Ykhfmi}-

In practice, Jis.,, will be based on very few observations
if few customers in fleet size category f purchase exactly
mcars. For more stability m may be defined as an ordinal
variable by grouping the total number of autos purchased
into a small number of categories. In this case assumption
(13) implies that the distribution of purchases for product
type k is the same within fleet size category f and total
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purchase category . Also, ¢ may be treated as a con-
tinuous random variable and distributional assumptions
made about £ leading to ratio or regression estimators.

A second and even stronger set of parameter assump-
tions is

T!lhfm = T{U’m for all h,
Sm[hf = Smjf for all A, (16)

These assumptions imply that conditional on fleet size
category, f, the joint distribution of the number of autos
purchased of type & and the total number of autos pur-
chased of any kind, m, is independent of the stratum A.
In this case the maximum likelihood estimator of ©, is
given by

0:(3) = Y Ny o, )
S

where §,, = Y¥,fny/n,is the unweighted sample mean
of the number of autos of product type k purchased by
consumers in fleet size fregardless of how many autos the
consumer bought in total, and Ny = T, N, nye/ny is a
weighted estimator of the number of consumers of fleet
size foverall. It may be shown that under assumptions ( 16}

5 N
Ve(8u(3)) = 33 37—l O (1 — Q)
PR

e

N2
-y y n_:F‘fF‘f'Qflh Or in
h
Jes

{(1 = Orja) + 1, Qpa

N [1 + (2n, = 3)Qp — 2(n, ~ I)Q}p,B

Y. 74 Oppa
] (18)

If assumptions (16) were plausible then Fir would be
lgased on larger sample sizes than Fism in (14) and hence
0,(3) would be more stable.

The maximum likelihood estimator of the market share
for product type k, R, under assumption (16), is given by

) (19

where Z,, defined analogously to y,, is the unweighted
sample mean number of autos of any kind purchased by
consumers in fleet category f.

5. EMPIRICAL RESULTS

5.1 Estimating Consumers

In Section 4.2 the efficiency of ©7(2) was investigated
for various population structures when assumption (5)
held. Readers may find this measure unconvincing since
(5) will not hold in practice, We now use the actual survey
data to compute 0(2) for a particular categorization of
the conditioning factor that is defined by a combination
of the fleet size and whether or not the consumer pur-
chased any autos of any kind for fleet use (see Table 4).
Empirical evaluations of synthetic estimators have been
carried out by Schaible, Brock and Schnack (1977) and
Drew, Singh and Choudhry (1982) in different contexts.

For each of the products A-G listed in Table 2 a x 2 test
was used to test the hypothesis that, conditional on the
category of the conditioning factor (f), whether or not
a consumer purchases that product is independent of
stratum {Ah). Note that for our example the design is
stratified random sampling and standard multinomial
assumptions apply. For multistage designs, the standard
x* analysis would have to be adjusted by using Rao-Scott
adjustments for example. In practice it is difficult to find
a categorization f such that conditional independence
assumptions (5) hold for every product type. However, for
the categorization defined in Table 4 it was found that

Table 4

Definition of the Categories, f, of the
Conditioning Factor

Definition of f

Categories
f Fleet Size Fleet Purchases
1 Any ¢
2 1-4 >0
3 5-8 >0
4 9-15 >0
5 16-25 >0
6 26-50 >0
7 51-100 >0
8 101-200 >0
9 201-550 >0
10 > 550 >0
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most of the variability in the probability of purchasing a
particular product type was explained by the category fof
the conditioning factor and very little of the residual varia-
tion was due to differences in strata.

The model-based estimates for consumers, 8;(2) and
Q:(2), obtained from (6) and (9) respectively, are given
in Table 5. The model-based variances may give an opti-
mistic view of the precision of the estimators since they
depend on the conditional independence assumptions in
the model which may be untrue in practice. Alternatively
the usual survey estimate of the p-based variance of the
model-based estimator may be derived (see Holt and
Holmes 1993). This requires no distributional or condi-
tional independence assumptions of any kind and might
be considered a more objective measure. These estimates
of standard errors are given in Table 5. Since the estimated
standard errors are design-based, they include finite popu-
lation corrections. [We note here that the model-based
standard errors for 6;(2) (not shown in Table 5) were
consistently around 10% smaller than the p-based standard
errors].

Table 5

Model-Based Estimates with p-Based Standard Errors
for Selected Products

Estimating Consumers Estimating Autos

Product

(k) Total Penetration Total Share

Br(2) 2:(2) 0,(3) 8. (3)

A 63,433 L4070 263,511 e 7 b
(2,230 (.0105) (13,007)  (.0048)

B 39,673 .2546 177,067 2501
(1,587) (.0086) (9,530)  (.0046).

o 21,930 .1407 65,357 .0923
(1,142) {.0066) (3,836)  (.0027)

D 13,422 L0861 22,146 0313
(868) (.0052) (1,351)  (.0016)

E 7,366 0473 15,798 0223
(675) (.0041) (1,223)  (.0014)

F 5,826 0374 14,398 .0203
(492) (.0031) (1,113)  (.0012)

G 7,686 0493 11,207 0158
(633) (.0039) (813)  (.0011)

Row 1: estimate Row 2: p-based s.e.

Comparing these results with the usual survey results
given in Table 2 we find that the standard errors for esti-
mating totals are considerably smaller — around 30-40%
smaller for all products except A and B (the major
manufacturers) where the reduction is about 15-20%. This
pattern is expected since the original survey design was
optimal for the total sales of autos and therefore relatively

efficient for products with a large market share. We expect
the products with smaller market shares to benefit most
from the model-based approach.

For estimating market penetration the reduction in
standard error is again about 30-40% with slightly smaller
reductions for products A and B.

5.2 Estimating Autos

Table 5 also contains model-based estimates for the
total number of autos purchased of type & and the cor-
responding market share, 8, (3) and &, (3) as defined by
(17) and (19) respectively, for the same categorization f
of the conditioning factor as given in Table 4, P-based
standard errors for these estimates are also presented in
Table 5.

Comparing with the standard survey estimates given in
Table 2 large reductions in standard errors for estimating
totals are obtained (40-80%) apart from product type B.
Similarly, for estimating the market shares the reduction
in standard error is again substantial.

6. DISCUSSION

The model-based estimators are derived using condi-
tional independence assumptions to partition the estima-
tion problem into two components. The first, an estimate
of Ny (the number of consumers of fleet size f), makes use
of the unequal selection probabilities, whereas the second,
an estimate of the proportion of consumers of fleet size
JSfbuying product type k (or the average number of autos
of product type k purchased by consumers of fleet size f)
does not. This can result in a substantial efficiency gain.

If the conditional independence assumptions are invalid
then in ordinary design-based terms the estimators will
have a residual bias but this may be an accepiable risk to
achieve stability of the estimators over the whote product
range. For the numerical results in previous sections, only
the model-based estimates for product B are outside of
the 95% confidence interval based on the direct survey
estimator. The conditional independence assumptions will
depend on the choice of the categories f, and can be tested
using chi-square tests for contingency tables.

Whilst the results in Table 5 show that the design-based
standard errors for the model-based estimates are gener-
ally smaller than for the direct estimates shown in Table 2,
it may be argued that the model-based estimators may be
biased and hence provide no gain in terms of mean-
squared error (MSE). The bias will arise from the inappro-
priateness of the conditional independence assumptions
(e.g., equation (5)). This is not testable, but a comparison
of Tables 2 and 5 can give some insight into the size of bias
that would be required to cause the MSE to be the same
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for both the direct and the model-based estimators. Con-
sider the estimate of total consumers for product E which
is strongly affected by the procedure and hence perhaps
most susceptible to bias. The variance (and hence MSE) of
the direct estimator is 1,146% = 1,313,316 whereas for the
model-based estimator the variance is 6752 = 455,625.
Hence, the model-based estimate of 7,366 would need a
bias of 926 in order for the MSEs to be the same.
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Time Series EBLUPs for Small Areas Using Survey Data

A.C. SINGH, H.]J. MANTEL and B.W. THOMAS!

ABSTRACT

In estimation for small areas it is common to borrow strength from other small areas since the direct survey estimates
often have large sampling variability. A class of methods called composite estimation addresses the problem by
using a linear combination of direct and synthetic estimators, The synthetic component is based on a model which
connects small area means cross-sectionally (over areas) and/or over time. A cross-sectionat empirical best linear
unbiased predictor (EBLUP) is a composite estimator based on a linear regression model with small area effects.
In this paper we consider three models to generalize the cross-sectional EBLUP to use data from more than one
time point. In the first model, regression parameters are random and serially dependent but the small area effects
are assumed to be independent over time. In the second model, regression parameters are nonrandom and may take
common values over time but the small area effects are serially dependent. The third model is more general in that
regression parameters and small area effects are assumed to be serially dependent. The resulting estimators, as well
as some cross-sectional estimators, are evaluated using bi-annual data from Statistics Canada’s National Farm Survey

and January Farm Survey.

KEY WORDS: Composite estimation; State space models; Kalman filter; Fay-Herriot estimator.

1, INTRODUCTION

There exists a considerable body of research on small
area estimation using cross-sectional survey data in con-
junction with supplementary data obtained from census
and administrative sources. A good collection of papers
on this topic can be found in Platek, Rao, Sirndal and
Singh (1987). Small area estimation techniques in use in
U.S. federal statistical programs are reviewed by the
Federal Committee on Statistical Methodology (1993).
The basic idea underlying all small area methods is to
borrow strength from other areas by assuming that differ-
ent areas are linked via a model containing auxiliary
variables from the supplementary data. It would a'so be
important to borrow strength across time because many
surveys are repeated over time. Recently time series
methods have been employed to develop improved esti-
mators for small areas; see Pfeffermann and Burck (1990)
and Rao and Yu (1992). It is interesting to note that after
the initiative of Scott and Smith (1974) on the application
of time series methods to survey data, there has only lately
been a resurgence of interest in developing suitable estimates
of aggregates from complex surveys repeated at regular
time intervals; see e.g., Bell and Hillmer {1987), Binder
and Dick (1989), Pfeffermann (1991), and Tiller (1992).

In this paper we consider some natural generalizations
of the best linear unbiased predictor (BLUP) for small
areas when a time series of direct small area estimates is
available. Animportant example of the BLUP for small
areas is the Fay-Herriot (FH) estimator, which entails
smoothing of direct estimators by cross-sectional modelling

of small area totals. The resulting estimators are composite
estimators (i.e., convex combinations of direct and syn-
thetic estimators) and are called empirical BLUPs, or
EBLUPs, whenever estimates of some variance compo-
nents are substituted in the BLUPs. The work of Fay and
Herriot (1979) represents an important milestone.in the
field of small area estimation because it is probably the
first example of a large scale application of small area
estimation by government agencies for policy analysis.
With the use of structural models, we derive time series
EBLUPs which combine both cross-sectional and time
series data. The models underlying the time seriecs EBLUPs
were chosen on the basis of general heuristic considera-
tions rather than formal model testing procedures. Formal
testing of these types of models with survey data is very
difficult and not very much is available. Instead, we begin
with a regression model that is reasonable for the larger
area, and then allow random small area effects to account
for any local deviations from the global model. The regres-
sion parameters and random small area effects are allowed
to evolve over time according to a state space model that
was also formulated heuristically. We have not considered
here the problem of mean squared error (MSE) estimation
for our estimators. MSEs with respect to the motivating
models could be defined and estimated for many of the
estimators; however, the focus of this paper is on the
performance of the estimators in a repeated sampling
framework. MSE estimation is an important and difficult
problem, and the availability of reliable MSE estimators
could be an important consideration in the choice of
estimators.

" A.C. Singh and H.J. Mantel, Social Survey Methods Division; B.W. Thomas, Business Survey Methods Division, Statistics Canada, Ottawa,

Ontario, K1A 0T6.
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The main purpose of this paper is to compare time series
EBLUPs with cross-sectional estimators such as post-
stratified domain, synthetic, FH and sample size dependent
estimators. In the time series modelling of the direct small
area estimates we assume that the survey errors are uncorre-
lated over time. When survey errors are correlated over time
and can be modelled reasonably (e.g., ARMA) the approach
of Pfeffermann (1991) can be used to obtain time series
EBLUPs via the Kalman filter. Rao and Yu (1992) obtain
EBLUPs for a model, in which the Kalman filter cannot
be applied, with survey errors having arbitrary correlation
structure over time but being uncorrelated across areas. They
also develop second order approximations to, and estimation
of, the mean squared error under their model. When a model
for the correlated survey errors is difficult to specify it may
be possible, using a suitably modified Kalman filter, to get
good sub-optimal estimators {Singh and Mantel 1991).

In this paper we report on an empirical study of the effi-
ciency of time series EBLUPs. The study uses Monte Carlo
simulations from real time series data obtained from
Statistics Canada's biannual farm surveys. The main
findings of the study are

(i} There can be reasonable gains in efficiency with time
series EBLUPs over cross-sectional estimators.

(i1) Within the class of time series methods considered in
this paper, introduction of serial dependence in the
random small area effects is found to be beneficial.

(iii) Although any smoothed version of the direct small
area estimator is expected to be biased, the time
series EBLUPs exhibit less bias than cross-sectional
smoothing methods.

Section 2 contains a description of various cross-
sectional methods for small area estimation. Time series
EBLUPs are described in Section 3 and the details and
results of the Monte Carlo comparative study are given in
Section 4. Finally, Section 5 contains concluding remarks.

2., METHODS BASED ON CROSS-
SECTIONAL DATA

In this section we describe some well known small area
estimation methods that use survey data from only the
current time. Ghosh and Rao (1994) contains a good
survey of various small area estimators.

Let © denote the vector of small area population totals
Q,, k=1, ..., K. In this section, which deals with
methods based on cross-sectional data, we ignore the
dependence of © on time ¢ for simplicity.

2.1 Method 1 (Expansion Estimator for Domains)
This estimator is given by

Sk = E d; y;,

JEsy

where dj is the survey weight for sample unit j. For
stratified simple random sampling, which is used for our

-simulation study in Section 4, we have

e = E (Ny /1) E Yjs (2.1)
3

FEsn

where yy; is the j-th observation in the A-th stratum, s,
denotes the set of 1, sample units falling in the A-th small
area in the #-th stratum and n,, N, denote respectively
the sample and population sizes for the A-th stratum. This
estimator is often unreliable because n,;, the random
sample size in the small area, may be small in expectation
and could have high variability. Conditional on the realized
sample size ny, g1 is biased. However, unconditionally,
it is unbiased for B,.

2.2 Method 2 (Post-stratified Domain Estimator)

We will also refer to this estimator as the direct small
area estimator. If the population size Ny is known for
some post-strata indexed by /, then the efficiency of the
estimator g, could be improved by post-stratification.
We define

En = E Nk E d;y; E d; = E Ny P
I

Jespi JES) !

In our simulations our post-strata are the intersections of
design strata with small areas which leads to

8 = E (Nue/ i) E Yaj = E Npg Inic- (2.2)
h JESpi h

This estimator also may not be sufficiently reliable because
of the possibility of ny;’s being small in expectation. If
ny = 0, the above estimator is not defined. It is conven-
tional to replace y,, by 0 when n,, = 0. In the empirical
study presented in this paper, we replaced ¥, by the syn-
thetic estimate (X}, /X, )7, where X is a suitable covari-
able, whenever n,, = 0.

The estimator gs, in (2.2) is conditionally (given
Ay > 0) unbiased and approximately unconditionally
unbiased. Appendix A.1 gives details of estimation of the
conditional mean squared error, v, of gi.

2.3 Method 3 (Synthetic Estimator)

It is possible to define a more efficient estimator by
assuming a mode] which allows for “‘borrowing strength”
from other small areas. This gives rise to synthetic
estimators, see e.g., Gonzalez (1973) and Ericksen (1974).
Suppose different small area totals are connected via the
auxiliary variable X, by a linear model as

O, =8, + B X k=1, ..., K, (2.3a)
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or in matrix notation

0 = F8,

(2.3b)

where F = (F|, Fy, ..., F)', F, = (1, X;)’. Now con-
sider a model for the direct small area estimators gy 's as

g =FB + &,

Whel'egz = (Za1s ---. Bk}, € = (&, ..., €)", §sare
uncorrelated survey errors with mean ¢ and variance vy.
Note that the g5 s are uncorrelated over areas since they
are conditionally (given 7, ) unbiased and the samples in
different small areas are conditionally independent.

Denoting by § the weighted least squares (WLS) esti-
mate of f§, we obtain the regression-synthetic estimator of
O, under the assumed model as

e

& =F

The above estimator could be heavily biased unless the
model (2.3) is satisfied reasonably well. The above model
may not be realistic because no random fluctuation or
random small area effect (a,, say) is allowed.

2.4 Method 4 (Fay-Herriot Estimator or EBLUP)

Using the empirical Bayes approach of Fay and Herriot
(1979) or the more general best linear unbiased predictor
approach (see e.g., Battese, Harter and Fuller 1988, and
Pfeffermann and Barnard 1991), the bias of the synthetic
estimator can be reduced considerably by using a composite
estimator; for an early reference on composite estimation
see Schaible (1978). The composite estimator is obtained
as a convex combination of g, and a modified g;. For this
purpose, it is assumed that i

0 = F@ +a, (2.4)

where a,'s are uncorrelated random small area effects
with mean 0 and variance w, known up to a constant.
In our empirical study later we take w, = w. Thus we
model g; as

g =Ff +a+¢. 2.9

Here a is also assumed to be uncorrelated with €. The
BLUP of 6 under the model defined by (2.4) and (2.5) is

Es

g3+ Ag2 — g3)
(2.6)
= Ag + (I — A)gi,

where

A=(Vl+wh\Wwrl=wuy ' U=V + W,

V = diag(vy, ..., vg), W = diag{wy, ..., wg),
and g = Fj8*, §* is the WLS estimate of 8 under model
(2.5). Here it is assumed that both the covariance matrices
V and W are known in computing the BLUP.

The expression (2.6) follows from the general results
on linear models with random effects, see e.g., Rao
(1973, p. 267) and Harville (1976). The BLUP or BLUE
of F B is g§ and the BLUP of a is A(g, — £3). It may be
of interest to note that the structure of the BLUP does not
change regardless of whether or not §is known. However,
its MSE does change as expected due to estimation of 8.

When Vand W are replaced by estimates, the estimator
84 1s termed EBLUP. Note that the model (2.4) is more
realistic than (2.3), and therefore, the performance of g,
is expected to be quite favourable. The estimator g4
approaches g, when the v s get small, i.e., when the ng,s
become larg-e. However, it remains biased, in general,
conditional on 8, with bias tending to 0 as the ws get
small.

2.5 Method 5 (Sample Size Dependent Estimator)

An alternative composite estimator is given by the
sample size dependent estimator of Drew, Singh and
Choudhry (1982). It is defined as

gs = Agy + (I — A)g,

where A = diag(s,, ..., 5.},

1 it ) d = AN,
Jes
8, = 2.7
E di /AN, otherwise
jGSk

and the parameter A is chosen subjectively as a way of
controlling the contribution of the synthetic component.
The above estimator takes account of the realized sample
size f1y.'s and if these are deemed to be sufficiently large
according to the condition in (2.7), then it does not rely
on the synthetic estimator. This property is somewhat
similar to that of g,; however, unlike g, the above esti-
mator does not take account of the relative sizes of the
within area and between area variation. Rao and Choudhry
(1993) have demonstrated empirically how EBLUPs can
sometimes outperform sample size dependent estimators,
especially when the between area variation is not large
relative to the within area variation. Sirndal and Hidiroglou
(1989) also proposed estimators similar to the above
sample size dependent estimator.

- 147 -



Survey Methodology, June 1994

or in matrix notation
= FB, (2.3b)

where F = (F|,F, ... Fy)', Fy = (1, X})’. Now con-
sider a model for the direct small area estimators gs;’s as

& =FB+¢

where g, = {821, ..., 8ax) ' € = (€, ..., €)', €5 are
uncorrelated survey errors with mean 0 and variance v,.
Note that the g, s are uncorrelated over areas since they
are conditionally (given 7, ) unbiased and the samples in
different small areas are conditionally independent.

Denoting by 6 the weighted least squares (WLS) esti-
mate of 8, we obtain the regression-synthetic estimator of
6; under the assumed model as

& =r

[y s

The above estimator could be heavily biased unless the
model (2.3) is satisfied reasonably well. The above model
may not be realistic because no random fluctuation or
random small area effect (a;, say) is allowed.

2.4 Method 4 (Fay-Herriot Estimator or EBLUP)

Using the empirical Bayes approach of Fay and Herriot
(1979) or the more general best linear unbiased predictor
approach (see e.g., Battese, Harter and Fuller 1988, and
Pfeffermann and Barnard 1991), the bias of the synthetic
estimator can be reduced considerably by using a composite
estimator; for an early reference on composite estimation
see Schaible (1978). The composite estimator is obtained
as a convex combination of g; and a modified gy, For this
purpose, it is assumed that }

= FB +a, (2.4)

where a,'s are uncorrelated random small area effects
with mean 0 and variance w, known up to a constant.
In our empirical study later we take w, = w. Thus we
model g; as

Fg+a+ (2.5)

Here g is also assumed to be uncorrelated with €. The
BLUP of § under the model defined by (2.4) and (2.5) is

£4

gi + Alg — g1)
(2.6)

where

A

{l

(V' wh-iy-l cwyu-tLus=sv+ w,

vV

It

diag(v,, ..., vg), W = diag(w;, ..., wg),
and g7 = F 3%, 8* is the WLS estimate of § under medel
(2.5). Here it is assumed that both the covariance matrices
Vand W are known in computing the BLUP.

The expression (2.6) follows from the general results
on linear models with random effects, see e.g., Rao
(1973, p. 267) and Harville (1976). The BLUP or BLUE
of F§is g3 and the BLUP of ¢ is A(g, — g3). It may be
of interest to note that the structure of the BLUP does not
change regardless of whether or not 8 is known. However,
its MSE does change as expected due to estimation of 3.

When Vand W are replaced by estimates, the estimator
g4 is termed EBLUP. Note that the model (2.4) is more
realistic than (2.3), and therefore, the performance of g,
is expected to be quite favourable. The estimator g,
approaches g, when the v, s get small, i.e., when the n,,;s
become larg-e. However, it remains biased, in general,
conditional on ©, with bias tending to 0 as the s get
small.

2.5 Method 5 (Sample Size Dependent Estimator)

An alternative composite estimator is given by the
sample size dependent estimator of Drew, Singh and
Choudhry (1982). It is defined as

g = Agx + (I — A)gs,

where A = diag(s,, . ., Sx),
i if ) d o= AN,
JEsg
8 = 2.7
E d; /AN, otherwise
J€sg

and the parameter A is chosen subjectively as a way of
controiling the contribution of the synthetic component.
The above estimator takes account of the realized sample
size ny,’s and if these are deemed to be sufficiently large
according to the condition in (2.7), then it does not rely
on the synthetic estimator. This property is somewhat
similar to that of g4; however, unlike g, the above esti-
mator does not take account of the relative sizes of the
within area and between area variation. Rao and Choudhry
(1993) have demonstrated empirically how EBLUPs can
sometimes outperform sample size dependent estimators,
especially when the between area variation is not large
relative to the within area variation. Sirndal and Hidiroglou
(1989) also proposed estimators similar to the above
sample size dependent estimator.
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3. METHODS BASED ON POOLED
CROSS-SECTIONAL
AND TIME SERIES DATA

Suppose information is available for several time points,
t =1, ..., T,inthe form of direct small area estimators
g2, Where gy, is the vector of estimates gy in (2.2) based
on data from time ¢, and also the small area population
totals for the auxiliary variable. We will now introduce
some estimators which generalize the Fay-Herriot estimator
g4y in different ways by taking account of the serial
aependence of the direct estimates (g3,:2 = 1, ..., T).
Recali that for the Fay-Herriot estimator, the model for
©r has two components, namely, the structural compo-
nent Frf8yand the area componentgy. The estimator 841
borrows strength over areas for the current time Tand is
given by the sum of two components, each being EBLUP
(BLUE) for the corresponding random (fixed) effect, i.e.,

&r = Fr 8t + ar. 3.1

Methods based on time series data could, however, borrow
strength over time as well. Here we introduce three esti-
mators which are motivated from specific structural
models for serial dependence. All three of these estimators
are optimal under different special cases of a structural
time series model for the direct small area estimates
{gx:t = 1, ..., T} specified by the following state space
model. Let «, denote (8, /)’ and H, denote (F,, I).
Then we have

8x = G + €,
(3.2a)
9 =Ff +a=Haeg
and
o =Gy + {, (3.2b)
where
Gr“) 0 &
G = h=1 " ) (3.2¢)
0 G{(Z) n

along with the usual assumptions about random errors,
Le., &, {; are uncorrelated, {, is uncorrelated with o
for s < ¢, and that ¢, ~ (0, %), [, ~ (0,T,) where
T, = block diag[ B,, Q,}. The covariance matrices Vi, B,,
and Q, are generally diagonal. If G/ = Jand G/ = [
then 8, and g, evolve according to a random walk.

This model is in the general class defined by Pfeffermann
and Burck (1991) using structural time series models. The
main purpose of their study was to show how accounting
for cross-sectional correlations between neighbouring
small areas (in addition to serial correlations) and inclusion
of certain robustness modifications (to protect against

model breakdowns} could improve the performance of
time series model based estimators. They also used the
maximum likelihood method under normality to estimarte
model parameters. The focus of this paper, on the other
hand, is on the Monte Carlo evaluation of a special class
of time series estimators (related to Fay-Herriot) chosen
on the basis of heuristic considerations and not on the basis
of model fitting. The methods considered could, therefore,
be viewed as model assisted methods whose performance
will be evaluated in a design based (/.e., repeated sampling)
framework by Monte Carlo simulation. Moreover, it will
be seen later that, for the types of serial dependence con-
sidered, the model parameters can be estimated relatively
simply by the method of moments, without making any
distributional assumptions such as normality.

To find the optimal estimator (BLUP) of O in (3.2)
based on all the direct estimates up to time 7, we first
found the BLUP & of a7 from which the BLUP of 6,
is obtained as Ay &y. It is possible, albeit cumbersome,
to get &y directly from the complete data using the theory
of linear models with random effects. However, since the
ars are connected over time according to the transition
equation (3.2b), it is more convenient to compute it recur-
sively using the Kalman filter (KF). Traditionally KF is
viewed as a Bayesian technique in which at each time r,
the posterior distribution of ¢, given datauptot — 1is
updated to get the posterior distribution of g, given data
up to time ¢. Although it is instructive to view KF in this
manner, it is not necessary under mixed linear models,
Suppose &rj; denotes the BLUP of g7 based on data up
totimes, s < T.Itisknown (see Duncan and Horn 1972)
that, for the special structure of serial dependence consid-
cred here, the BLUP &7 of ar based on data up to time
T'is the same as the BLUP of ay based on &r|; and the
last T — 5 observations. In other words, information in
the previous data can be condensed into an appropriate
BLUP before augmenting more current data points. A
good description of the Kalman filter is given in chapter 3
of Harvey (1989).

3.1 Method 6 (Time Series EBLUP-I)

For the first estimator, we let §, evolve over time
(e.g., according to a random walk), but assume that g, is
serially independent. The equations for the state space
model for this case are similar to (3.2) except that the serial
independence of the g,s implies G/*) = 0. This will give
rise to a composite estimator

ger = Frfr + @r. (3.3)

Note that 3in (3.3) would now be based on all the small
area estimates up to time Tand therefore would be differ-
ent from 8% of (3.1) which is based on only direct estimates
at time 7. The estimator dr, as a result, would also be
different from the corresponding component g of (3.1).
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In the simulation study described later we take G = I,
B, = diag(y{, v, corresponding to a random walk model,
and Q, = r*I. Appendix A.2 illustrates the method of
moments estimation of the parameters vZ, 73, and 72.
The KF may then be run, with initial values for &, and its
MSE obtained from the FH estimatorat{ = 1, to obtain
the EBLUP of &;. Then Hy@ris the time series EBLUP-I
estimator ggr at time 7.

As pointed out by areferee, when the number of small
areas is quite large, or when the variation in 8, over ¢ is
relatively large, there is little difference between ger and
247 Indeed, there is little difference between the perfor-
mances of these two estimators in our simulation study
described in Section 4.

3.2 Method 7 (Time Series EBLUP-II)

For the second estimator, we let 8, be fixed (it may or
may not be common for different time points) and let the
area effects g, be serially dependent according to, for
example, a random walk. This time series generalization
could be viewed as an analogue of the model proposed by
Rao and Yu (1992). The resulting composite estimator will
have the same form as (3.1), i.e.,

gr = Frfr + ar, (3.4

but the component estimates 87 and 7 would be different.
We have two cases.

3.2.1 Case 1: Suppose the g5 are fixed and time-
invariant but the a,s are serially dependent. Then, in
(3.2), GV = Iand B, = 0. If Q,is taken as 7%/, then the
only unknown parameter 72 can be estimated by the
method of moments; see Appendix A.2. We will denote
by g77the EBLUP obtained in this case when the parameter
estimate is substituted.

3.2.2 Case 2: Here we assume that §,s are fixed but
different for different time points. The area effects g,
evolve over time as in Case 1. In (3.2) we have G} = 0
and B, = ml where m is a large number. The expressions
for &rand its MSE obtained frem the KF in this case give
the correct formulas as m — oo (see Sallas and Harville
1981). The KF updating equations for 4, in this case take
the special form

B = (FLAT'F) TR AT (g — G2 a, )
a = Gr(z){?;—l + Pr\r—lAr_l(QZa — GI(Z) a;_ - F 6:);

Po= Py_y — Py AT (A - FAFATE) TR

At-lPrlr—l:

where 4, = P,,_, + ¥, P, is the MSE of ¢, about g,
and Pj,_; = G/PP,_[G/?]" + Q,isthe MSE of G/*
d,_ as an estimator of g,. The time series EBLUP in this
case will be denoted by g3

3.3 Method 8 (Time Series EBLUP-III)

For the third estimator, we let both 8, and g, evolve
over time. This will have more complex serial dependence
than either (3.3) or (3.4). Its form will be similar to (3.1)
and can be represented as

gsr = FTET + dr. (3.5)

As before, if B, = diag(+i, v3} and Q, = 7%/, then the
model parameters 72, v7, v3 can be estimated by the
method of moments as in Appendix A.2. The resulting
EBLUP of O will be denoted by gg7.

It may be of interest to note that rhany of the estimartors
considered so far are optimal under special cases of the
model underlying ggr. As has been shown, the time series
EBLUPs of methods 6 and 7 result from making restric-
tions on the matrices G, and I',. The cross-sectional Fay-
Herriot estimators of Section 2.4 result from restricting
the data to a single time point. The synthetic estimators
of section 2.3 are special cases of the Fay-Herriot esti-
mators with zero variance for the random small area
effects, and the direct (post-stratified) estimator is obtained
in the limit as the variance of the small area effects goes
to infinity.

A further generalization that could be useful is to allow
correlations between neighbouring small area effects. This
can be accomplished by allowing the matrix @, in (3.2) to
be non-diagonal; however, it is not clear what would be
an appropriate correlation structure in ;.

4. MONTE CARLO STUDY

The cross-sectional and time series methods were com-
pared empirically by means of a Monte Carlo simulation
from a real time series obtained from Statistics Canada’s
biannual farm surveys, namely, the National Farm Survey
(in June) and the January Farm Survey. Due to the redesign
after the census of Agriculture in 1986, the survey data for
the six time points starting with the summer of 1988 were
employed to create a pseudo-population for simulation
purposes. To this, data from the census year 1986 was also
added. Thus information at one more time point was
available although this resulted in a 3-point gap in the
series. The missing data points, however, can be easily
handled by time series methods. It may be noted that
although the data series is short, it is nevertheless believed
to be adequate for illustrative purposes. The parameter of
interest was taken as the total number of cattle and calves
for each crop district (defined as the small area) at each
time point, For stmplicity, independent stratified random
samples were drawn for each occasion from the pseudo-
population, though the farm surveys use rotating panels
over time. The dependence of direct small area estimates
over time was modelled by assuming that the underlying
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small area population totals are connected according to
some random process. The auxiliary variable used in the
model was the ratio-adjusted census 1986 value of the total
cattle and calves for each small area. This showed high
correlations with the corresponding variable over time at
the farm level. Specific details of the empirical study are
described below.

4.1 Design of the Simulation Experiment

First we need to construct a pseudo-population from
the survey data over six time points (June 1988, January
1989, ..., January 1991). The actual design involves two
frames (list and area) with a one stage stratified sampling
from the list frame and a two stage stratified sampling
from the arca frame, for details see Julien and Maranda
(1990). We decided to use survey data from the list frame
only because the list frame corresponds to farms existing
at the time of Census 1986 and the chosen auxiliary variable
for model building was based on Census 1986 information.
Moreover, we chose to use the data from the province of
Quebec because its area sample is only a minor component
of the total sample and the estimated coefficient variation
for the twelve crop-districts (i.e., small areas of interest)
of this province showed a wide range for the livestock
variables. It was decided to avoid variability due to changes
in the underlying population over time by retaining only
those farms which responded to all the six occasions. Also,
farm units who belonged to a multiholding arrangement
in any one of the seven time points (including the census)
were excluded because of the problems in finding indi-
vidual farm’s data from the multiholding summary record
and changes in their reporting arrangement over time.

The various exclusions described above were motivated
from considerations -of yielding a sharper comparison
between small area estimators. The total count of farm
units after exclusions was found to be 1,160 out of a total
of over 40,000 farms on the list frame. For the pseudo-
population, we replicated the 1,160 farm units propor-
tional to their sampling weight so that the total size N of
the pseudo-population was 10,362, which was manageable
for micro-computer simulation,

The pseudo-population was stratified into four take-
some and one take-all strata using Census 1986 count data
on cattle and calves as the stratification variable, Although
we did not consider alternative stratifications or sample
sizes in our simulation study, there is no reason to think
that our conclusions would alter significantly if we were
to do so. The sigma-gap rule (Julien and Maranda 1990)
was used for defining the take-all stratum. To apply the
sigma-gap rule we look at the smallest population value
greater than the population median where the distance to
the next population value, in order of size, is at least one
population standard deviation: all units above this point
are placed into the take-all stratum. The algorithm of Sethi

(1963) was used for determining optimal stratification
boundaries for take-some strata. Neyman’s optimum
allocation was used for sample sizes for strata in order to
optimize the precision of the provincial estimate u{ total
count. This resulted in, from a total sample size of 207
(2% sampling rate), allocations of 51, 62, 48 and 335 from
takesome strata with 5,001, 3,188, 1,850 and 312 farms,
respectively, and the size of the take all stratum was 11.
The expected number of sample farms in each small area
varied from 4.6 in area 9 up to 27.5 in area 6, with an
average of 17.3. The expected number of sample farms
with some cattle and calves varied from 3.6 in area 9 to
18.8 in area 3, and the average over the small areas was
11.7. A total of 30,000 simulations were performed. For
each simulation, samples were drawn independently for
each time point using stratified simple random sampling
without replacement. The 30,000 simulations were con-
ducted in 15,000 sets of 2 simulations where each set corre-
sponds to a different vector of realized sample sizes in the
twelve small areas within each stratum. This was required
to compute certain conditional evaluation measures as
described in the next subsection, see also Sidrndal and
Hidiroglou (1989).

4.2 Evaluation Measures

Suppose m simulations are performed in which m, sets
of different vectors of realized sample sizes in domains
(h,k) are replicated m, times. The following measures
can be used for compating performance of different esti-
mators at time T. Let / vary from | to /m; and j from 1
to ms.

(i) Absolute Relative Bias for area &:

ARB; =|{m™! E E (estyx — trueg)/true;|. (4.1)

i 4

The average of ARB, over areas k will be denoted by
AARB. We take the absolute relative bias since our
primary interest in this study is in an overall measure
like AARB; however, in other contexts the actual
biases for individual smal} areas may also be of con-
siderabie interest.

The following measure is motivated by a desire to eval-
uate the conditional performance of estimators, condi-
tional on the vectors of realized sample sizes in domains.
It is conventional to measure performance conditional on
fixed domain sample sizes; here we consider the standard
deviation of the conditional bias, By, as a simple sum-
mary measure. If this standard deviation is small then the
method is robust to variations in the realized sample sizes.
Note that the expected value of B, is just the uncondi-
tional bias which is estimated by ARB,. Let B} denote the
unconditional expected value of B%. We define the
following Monte Carlo measure:
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(ii) Standard Deviation of Conditional Relative Bias for
area k:

U
SDCRB; = [m]_' E (8% - é,-,\.)/lruek - ARB:'.} i

By = my' ¥ sty — truey, 4.2)

Fi

" 2
Cao =my'(my—1)7! (E est,?jk — (E est,jk) /mz).
J

J

The correction term Cj; adjusts for bias in B, as an
estimate of B%, due to m; being finite. 8%, — C,; is
conditionally unbiased for B%; it is also uncondi-
tionally unbiased for B. The Monte Carlo average
m 'Y (B% — C,) converges to B} with probability 1
as m; — oo. By — C, may be negative for some i,
due to finite m,. For large m, the average over i is
usually very close to B%; whenever the average is less
than ARB? we set SDCRB, to 0. ASDCRB will denote
the average of SDCRB, over areas k.

(iii) Mean Absolute Relative Error for area &:

MARE, = m™! E E { esty, — true, |[true,  (4.3)
i

and AMARE denotes the average of MARE, over
areas.

(iv) Mean Squared Error for area k:
MSE, = m ™! E E (estyy — trueg)? (4.4)
PJ

and AMSE as before denotes the average over areas.
(v) Relative Root Mean Squared Error for area &:
RRMSE; = [MSE;}"/true,. (4.5)

Again, ARRMSE denotes the average over areas.

The precision (i.e., the Monte Carlo standard error)
of each measure depends on m,, m;. For all measures
except (ii), the optimal choice of my, m, under the restric-
tionthatm, > lism; = m/2, my = 2, since this mini-
mizes the Monte Carlo standard error. To see this, let A
be the average of an evaluation measure from m;, samples
all with the same sample configuration (set of random
sample sizes in domains) which we call C. Then the
expected value of A conditional on Cis a function of C,

say E(C), and the conditional variance of 4 is propor-
tional to m; ', say ¥ (C)/m,. The unconditional variance
of Aisthen V{E(C)} + EfV(C))/m,, and the overall
Monte Carlo variance of an evaluation measure based
on 1, sample configurations replicated m, times is
VIE(C))/m, + E{V(C)}/mm, which is minimized,
since ;n = m m,is fixed, by taking m, as large as possible,
For the second measure, the appropriate choice of 1, m,
is less straightforward. In the simulation study, » was
chosen as 30,000 and the corresponding values of 1, 1,
were set at 15,000 and 2.

4.3 Estimators Used in the Comparative Study

There were nine estimators included in the study,
namely, g, to gg and g7, all calculated for time 7 = [0.
We used a simple linear regression model for the synthetic
component with the auxiliary variable defined as

X, = (6,/8,)84, (4.6)

where ©y,, O, respectively denote the population totals
for small area k& and the provinceat¢ = 1, /.e., at Census
1986. The estimator 8, denotes the post-stratified estimator
of O, from the farm survey at time f at the province level.
Thus X, is simply a ratio-adjusted synthetic variable.
The variances of error components in the regression model
were assumed to be constant over areas. For time series
models, it was assumed that the serial dependence was
generated by a random walk. The above type of model
assumptions have been successfully used in many applica-
tions and the main reason for our choice was simplicity.
It was hoped, however, that the chosen models might be
adequate for our purpose and might illustrate the differen-
tial gains with different types of model assisted small area
estimators, /.e., both cross-sectional and time series
smoothing methods.

Since the Census 1986 data was included in the time
series, the direct estimate g,; corresponds to Census 1986
and therefore the survey error €, would be identically Q.
Moreover, from the definition of X, it follows that a
reasonable choice of (8, 82,) would be (0,1) which
implies that ¢, must be 0. Thus the covariance matrices
B, and W,atr = 1 are null and, therefore, the distribu-
tion of a, at ¢ = 1 would not require estimation. The
above modification in the initial distribution of «, is
natural in view of the extra information available from the
census. Moreover, since the direct estimates g,, were not
available for t = 2, 3, 4, equations for estimating model
variance components in Appendix A.2 were modified
accordingly.

For method 7 (case 1), B, was assumed to have a
common fixed value only for { = 2 because at f = 1,
B8, = (0,1)’. For the sample size dependent estimator g5
the parameter A was taken to be 1.
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4.4 Empirical Results

The main findings were listed in Section 1. Here we give
some detailed comparisons and some possible explana-
tions. We do not show separate results for g2 which
performs slightly worse than, though overall similarly ta,
&7- The estimators are summarized in Table 1. Figures |
to 3 and Tables 2 to 4 present some of the empirical results.
We have not shown the Monte Carlo standard errors but
they were all found to be quite negligible.

Table 1
Summary of Estimators

g1 - Expansion 25 — Time Series EBLUP-I, s
evolve over time, gs inde-

23 - Post-stratified pendent over time

£3 - Synthetic £7 — Time Series EBLUP-II, as
evolve over time, fixed

g4 - Fay-Herriot eomBion §

g5 — Sample Size
Dependent

gs - Time Series EBLUP-III, 8s
and as evolve over time

Table 2 gives the five evaluation measures averaged
over small areas, Figure 1 shows plots of the averaged
evaluation measures relative to the Fay-Herriot (g,)
value. There is a clear pattern in the behaviour of various
measures across different estimators. The direct estimator
&> does very well with respect to the bias measure (AARB)
but does somewhat poorly with respect to the other
measures. The cross-sectional smoothing method g,
(synthetic) does quite poorly with respect to the bias
measures. The Fay-Herriot method g, performs somewhat
better than post-stratified on average with respect to the
MSE measure but is much worse in terms of bias. The
sample size dependent method g5 is quite similar to £2,
slightly worse with respect to the bias measures and slightly
better with respect to the other measures. The time series
methods g; and g, perform quite well overall, though
they are somewhat worse than gy with regard to bias. The
performance of the time series estimator &6 is generally
between that of Fay-Herriot and the time series estimators
&7 and g;. For all of the estimators (including the synthetic
&) the slanc!ard deviation of the conditional relative bias
(‘A§DCF-B) IS appreciable; however, it is smallest for the
time series methods. A expected, the expansion estimator

PECt to the unconditional bias measure,

£; does well with res
AARB, but il; conditional performance (ASDCRB) is

quite poor.

=0 A s T e R
5.0
4.0

3.0

20

1.0

o

Figure 1. Evaluation Measures Relative to Fay-Herriot
Note: Relative ASDCRB for g, { = 18.98) not shown.

Table 2
Average Evaluation Measures

£ £ &3 £y &s 8 &1 &g

AARB 001 007 097 065  .018 070 .053 .05)
ASDCRB 282 016 .016 015 .023 010 .010 .010
AMARE .26% 147 115 108 136  .097 .087 088
ARRMSE JA39 0 192 137 137 176 L1200 109 LI

AMSE
{1,000) 72,979 27,596 13,382 12,898 22,760 10,603 8,610 8,829

Figure 2 plots averages of RRMSE, for three size
groups, namely small, medium and large small areas,
based on the ranking of their true population totals at time
T. They are divided up into these three groups because the
relative errors of estimation would be expected to be larger
for the smaller totals, and the plots do not contradict this
expectation, Again, the time series methods g5 and g
perform best. Note that the time series method g, which
assumes the small area effects to be independent over time,
does not do as well. The unaveraged values of RRMSE,
are given in Table 3. RRMSE; is relatively large because
the total number of cattle and calves for area 9 is less than
half that of any other small area. Areas 6 and 8 stand out
within the medium size small areas as being most difficult
to estimate by the smoothing methods. The reason for this
is that, while there was an overall decline of about 16%
in the total number of cattle and calves in the pseudo-
population from June 1986 to January 1991, the decreases
for areas 6 and 8 were the furthest from the average at 33%
and 1%, respectively, so the ratio adjusted covariate
would be least appropriate for those areas. Nevertheless,
the time series methods g, and gg performed significantly
better than the post-stratified estimator for areas 6 and 8.
This is because the random walk model for the small area
effects is able to track small areas which, like areas 6 and 8,
progressively deviate from the model.

- 1583-



Survey Methodology, June 1994

BeR N
<}: <> small fsmall a;reas
: z | OF medim small areas

Q | O farge small areas :

- A
Do & g g |

c o . 2 9 @

L o B &

0 R R T S S

£ 82 £3 £4 85 8 & &8s

Figure 2. Relative Root Mean Squared Errors: Averaged
within Size Groups

Table 3

Relative Root Mean Squared Errors and True Total
Cattle and Calves for Small Areas
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Figure 3. Absolute Relative Biases: Averaged within
Size Groups

Table 4

Absolute Relative Biases and True Total Cattle
and Calves for Small Areas

True True
Ared fyores| 81 82 83 84 &5 8¢ &1 8 Area Jyoes| 81 B2 83 B4 85 6 &7 88
g 8,502 | .580 .277 342 .275 277 199 160 .174 9 8,502 [.002 .47 .232 .139 .085 .09 .061 .069
10 18,990 | 360 .196 .078 )13 175 097 .103 .104 10 |18,990|.002 .002 .006 .007 .003 .015 .026 .025
Small 11 18,776 | 339 122 122 103 .112 .096 .086 .087 Small 1 18,776 | .002 009 .090 .052 .021 .062 .039 .037
Size 12 19,819 | 409 .237 076 .152 .212 123 117 .117 Size 12 [19,819|.000 007 .019 .011 .007 .023 .024 .023

Average | 16,5221 .422 208 .154 161 194 129 116 .120

Average { 16,522 | .001 016 087 .052 .029 .050 .037 .039

1 27,5951.312 206 .117 .130 .185 .120 .100 .102 1 27,595 |.001 .003 093 .063 .007 .078 .044 .045

) 6 29,0121.306 241 .2%6 .216 .224 224 .168 .172 & 29,012 |.000 .001 .239 .157 .023 195 .120 .123
Medium 7 23,600 | .341 .121 107 .094 .110 .088 .092 .092 Medium 7 23,600 | .000 .005 .088 .053 .014 058 .062 .06l
Size 8 23,627 (.383 .250 .155 .165 219 .I155 .146 .144 Size 8 23,627 (.002 .008 .143 106 .024 .124 .093 .09l
Average [ 25,959 | 336 205 159 151 .185 .47 126 127 Average | 25,959 ] .001 004 .141 .095 .017 .114 .080 .0S0

2 35,592].268 .171 .113 .110 .156 .09 .089 .088 2 35,592 ].000 .000 .095 .071 .009 .068 .049 .047

3 40,582 | 241 .151 .087 .0%0 .137 .070 .072 .073 3 40,5821.000 00! 047 041 .005 .029 .026 .025

Large 4 42,396 | .256 .160 .099 .103 .144 080 .0B3 .08S Large 4 42,356 |.001 .002 .066 .05 .DOB .044 _0ST .056
Size 5 35996 |.270 .176 .091 .097 .160 088 .085 .088 Size $ 35,996 |.000 000 .45 .029 005 .048 .035 .039

Average | 38,642 1 .259 .164 098 .100 .149 .083 .083 .0B4

Average [ 38,642 | .000 001 .063 .049 006 .047 .042 .042

Figure 3 and Table 4 are identical to Figure 2 and Table 3
in format, but show relative biases instead of relative root
mean squared errors. The biases for both the expansion
estimator g, and the post-stratified g, are negliglible. For
the smoothing methods the average absolute relative biases
for medium size small areas are relatively large, mainly
because of areas 6 and 8 for which the covariate is least
appropriate. Among smoothing methods, the sample size
dependent gs has the least bias because it is usually very
close to the direct g;; however, it also gains very little over
& with respect to mean squared error. Of the remaining
smoothing methods the time series estimators g; and gg,
which had the smallest mean squared error, also have the
smallest bias. Nevertheless, the relative bias of these
methods can be quite large, as in areas 6 and 8. In practice
it would not be possible to estimate these biases; however,
the possible size of the bias could be assessed using simu-
lated sampling from a variety of plausible populations.

5. CONCLUDING REMARKS

It was seen by means of a simulation study that small
area estimation methods obtained by combining both cross-
sectional and time series data can perform better than those
based only on cross-sectional data, with respect to both
bias and mean squared error. However, the cost in terms
of bias could still be substantial. A question of obvious
importance is whether it is possible in practical situations
to judge if the gains from any type of smoothing would
outweigh the costs, and how to make this judgement.

The models for the simulation study were chosen on
general considerations. However, in practice, suitable
diagnostics similar to those employed in Pfeffermann and
Barnard (1991} should be developed for survey data before
any model-assisted method can be recommended. It should
also be noted that the small area estimators could be
modified to make them robust to mis-specification of the
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underlying model as suggested by Pfeffermann and Burck
(1990), see also Mantel, Singh and Bureau (1993). Finally,
modification and further extension of the methods pre-
sented in this paper to the more realistic case of correlated
sampling errors should be investigated in the future.
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APPENDIX

A.1 Variance Estimation for g,

Let v, denote the conditional (given n,,,) variance of
824 in (2.2). Then v, is given by (whenever n,,, > 0 for
all A at time f),

Vie = E Nik (‘"h—kr[ = Nh_k}) 0k (A.1)
h

where g, is the population variance for the intersection
of the A-th stratum with the k-th small area at time . The

variance o}, can be estimated by the usual estimator s3,, ‘

for n,,, = 2. Note that the estimate of the conditional
variance vy, also provides an estimate of the unconditional
variance of gy, .

If npee = 1, then we can use a synthetic value as an
estimate of o}, which can be defined as T (m, — 1)
Shie/ I (Mpy — 1), the summation being over all k for
which nye, = 2 within each (A,7). If ny, = 0, v, of
(A.1) is of course not defined. With the synthetic value of
P used in this case, we need a synthetic value of its
mean squared error. For each (A,f), it can be defined as

(Rae/ Ky (' — Niz)sh, + (bias) 2,
where (bias) 2 will be taken as

E ((Xh{r/)?hr))_’hr - )_)hlr)z/mhn
npp>0

where m,, is the number of small areas with sample in
stratum # at time /.

A.2 Estimation of Variance Components

Using the notation of (3.2), we here illustrate the method
of moments for estimating variance components for the
model of Section 3.1 in the special case when there is only
one auxiliary variable X,,, O, = 7°[ and 8, follows a
random walk, i.e., G = L Let F, = (Fy,, ..., Fx) ",
Fu = (LX), B = (Bi,Ba) ', and B, = diag(y},v3).
The parameter 72 is estimated by the solution of

T K
Yo X (8w~ Fl B (v + 8 = T(K = 2).
k=1

=]

If there is no positive solution, we set #2 = 0. Here @,
denotes the WLS estimate of 8, based on only the cross-
sectional data at ¢. This is analogous to the method used
in Fay and Herriot (1979) for cross-sectional data. An
estimate of -y,? can be obtained by solving (fori = 1,2)

T
E Biv = B0 (W +di) =T — 1,
=2

where d{ is the (i,i)-th element of (F/_,U,~} F,_;) ™' +
(FrU'Fy—L
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Empirical Comparison of Small Area Estimation Methods
for the Italian Labour Force Survey

P.D. FALORSI, S. FALORSI and A. RUSS0!

ABSTRACT

The study was undertaken to evaluate some alternative small areas estimators to produce level estimates for unplanned
domains from the [1alian Labour Force Sample Survey. In our study, the small areas are the Health Service Areas,
which are unplanned sub-regional territorial domains and were not isolated at the time of sample design and thus
cut across boundaries of the design strata. We consider the following estimators: post-stratified ratio, synthetic,
composite expressed as linear combination of synthetic and of post-stratified ratio, and sample size dependent. For
all the estimators considered in this study, the average percent relative biases and the average relative mean square
errors were obtained in a Monte Carlo study in which the sample design was simulated using data from the 1981

Italian Census.

KEY WORDS: Small area estimators; Unplanned domains; Bias; Mean Square Error; Simulation study.

1. INTRODUCTION

In Italy, as in many other countries, there is a growing
need for current and reliable data on small areas. This
information need concerns most sample surveys realised
by the Italian National Statistical Institute (ISTAT), espe-
cially the Labour Force Survey (LFS), which has been
studied to warrant accuracy in regional estimates.

In the past, ISTAT’s solution to this problem was to
broaden the sample without changing the estimation
method (Fabbris er al. 1988). In the last few years, however,
in order to find a solution to the negative aspects of over-
sized samples, research has been launched to identify
estimation methods to improve the accuracy of small areas
estimates (Falorsi and Russo 1987, 1989, 1990 and 1991).

In our study, the small areas are the Health Service
Areas (HSA), which are unplanned sub-regional territorial
domains and were not isolated at the time of sample design
and thus cut-across the boundaries of the design strata.
The sizes of these territorial domains are such that the
reliability of regular estimates would have been satisfactory
had these domains been designed with separate fixed
sample sizes from individual domains.

The study was undertaken to evaluate some of the
alternative small areas estimators to produce HSA level
estimates from the LFS.

We consider the following estimators: post-stratified
ratio, synthetic, composite (expressed as linear combination
of the synthetic and of the post-stratified ratio), and
sample size dependent.

For all the estimators considered in this study, the
average percent relative biases and the average relative
mean square errors were obtained in a Monte Carlo study

in which the LFS design was simulated using data from
the 1981 Italian Census.

2. BRIEF DESCRIPTION OF THE LFS
SAMPLE STRATEGY

2.1 Design

The LFS is based on a two stage sample design stratified
for the primary sampling units {PSU). The PSUs are the
municipalities, while the secondary sampling units (SSU)
are the households. In the framework of each geographical
region the PSUs are divided according to the provinces.
In each province the PSUs are divided into two main area
types: the self-representing area consisting of the larger
PSUs, and the non self-representing area consisting of the
smaller PSUs,

All PSUs in the self-representing area are sampled,
while the selection of PSUs in the non self-representing
area is carried out within the strata that have approxi-
mately equal measures of size. Two sample PSUs are
selected from each stratum without replacement and with
probability proportional to size (total number of persons).
The SSUs are selected without replacement and with equal
probabilities from the selected PSUs independently. All
members of each sample household are enumerated.

2.2 Estimator of Total

With reference to the generic geographical region, we
introduce the following subscripts: 4, for stratum (A = 1,
..., H); i, for primary sampling unit; j, for secondary
sampling units; g, for age-sex groups (g = 1, ..., G).

! P.D. Falorsi, Senior Researcher, National Statistical Institute, Rome, Ttaly; S. Falorsi, Researcher, National Statistical Institute, Rome, lialy;
Aldo Russo, Associate Professor, University of Molise, Campobasso, ltaly.
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In the present study we consider the following age classes
14-19, 20-29, 30-39, 60-64, and over 65.

A quantity referring to stratum /;, primary sampling
unit /, and secondary sampling nnit j will be briefly referred
to as the quantity in Aij; and a quantity referring to stratum
It and primary sampling unit / will be referred to as the
quantity in /1.

The following notations are also used: N, for number
of PSUs in &; P, for total number of persons in /; n,, for
number of sample PSUs selected in /r; M,,; for number of
SSUs in Ai; Py, for total number of persons in hi; my,;,
for number of sample SSUs selected in Ai; Pypii, for
number of persons in group g belonging to 4ij; Py, for
number of persons in Aij.

Further let

G H
r=yY X
g=1 h=|

>

'

Mpi
2 You
j=

be the total of the characteristic y for regional population,
where Y,,; denotes total of the characteristic of interest
y for the P,,; persons. Actually, the estimate of Y is
obtained by a post-stratified estimator. This estimator is
given by:

P
g=1 "%
where
H Ay omp H ny o Mg
Yo = E Ky Youijs Py = E E Kiig Popiz
h=1 i=1 j=I =1 i=] j=1

Ny My

E P ghij -

=1 j=i

H
th:j 3 Pg = E
h=1

In the above formulas, the symbol K> that denotes the
basic weight, is expressed by:

[)h ‘MI i

Klrij =
ny Py iy

3. SMALL AREA ESTIMATORS

With reference to the generic geographical region, we
suppose that the population P is divided into D non-
overlapping small areas 1, ..., d, ..., D for which esti-
mates are required. Each area is obtained by an aggrega-
tion of municipalities. The problem considered is the
estimation the total of a y-variable for all units belonging

tothe small area d. In practice, the small area d will have
a non-null intersection with only a certain number of
design strata which we denote as 4 = (4| 4P, > 0],
where , P, represents th2 part of P, belonging to the small
area ¢.

Denoting by 4N, the number of PSUs belonging to
small area d in stratum A, we seek to estimate the small
area total

H o gy My

G
Y = E E Y;mj-
g=1

h=l i=t j=1

The development of a particular estimation method for
small areas basically depends on available information. In
[taly the accessible information at small area level is very
poor. At present the accessible territorial information is
total population by sex for each municipality collected
through register statistics. In a future context (at end of
1994), the population counts by age-sex group will be
available for each municipality. For this reason, in the
present study we consider only those small area estimators
that utilize, as auxiliary information, the population toral
by age-sex group.

3.1 Post-stratified Ratio Estimator

A post-stratified ratio estimator (POS) of ;Y is given by:

G ~
- - d g
afeos = ), £ 4R, (1)
g=1 "¢
where
H fiy mpyi
d¥; = E Knig Yony 00
k=1 i=1 j=I
A ony omy
aB =), Kij Poi O
h=1 i=1 j=1
H A aNn My
dlag = E d[)gh = E IDg.'uji
h=1 h=1 i=1 j=1
in which 4 £, denotes the total population for the age/sex

group g in small area  intersected by stratum #, &, is a
binary variate that equals 1 if the PSU 4i belongs to the
small area d and equals 0 otherwise. For a better explana-
tion of formula (1), we observe that PSU is a subset of
small area and then does not intersect it.

The post-stratified ratio estimator is unbiased except
for the effect of ratio estimation bias which is usually
negligible. The estimator is defined to be zero when there
is no sample within the domain. This estimator is not
reliable for small sample sizes.

= 138~
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3.2 Synthetic Eslimator

For computing a synthetic estimator, it is assumed that
the small area population means for given population sub-
groups arc approximately equal to the larger area popula-
tions means of the same sub-groups. This estimator is
obtained by means of a two steps procedure: (i) with
respect to an aggregated territorial level, estimates of the
investigated features are determined for population sub-
eroups; (ii) estimates for the aggregated territorial level
area are then scaled in proportion to the sub-group inci-
dence within the small domain of interest.

The synthetic estimator has a low variance since it is
based on a larger sample, but it suffers from bias depending
on the distance from the assumption of homogeneity, for
each subgroup, between the small area and the larger area
with reference to the characteristic of interest, y. The
problems associated with synthetic estimators have been
documented by Purcell and Linacre (1976), Gonzalez and
Hoza (1978), Ghangurde and Singh (1978), Schaible (1979)
and Levy (1979) among others.

In this study we consider the foliowing form of synthetic
estimator (SYN):

. ¢ 7
d¥syn = E =X 4R, (2)
£y
g=1
where
- H ny mpy H np g
=Y Kig Yo B =Y, ), Y, KugFouy-
k=1 i=1 j=I h=1 i=1 j=1

3.3 Composite Estimator

The composite estimator (COM) considered here is
obtained as a linear combination of the estimators SYN
(biased with low sample variance) and POS (less biased
with high sample variance):

aYcom = ag¥eos + (1 — a)aFsyn, 3

where o is a constant (0 = « =< 1). This estimator mini-
mizes the chances of extreme situations (both in terms of
bias and sample variance). Therefore, in a given concrete
situation such estimator may turn out to be more advan-
tageous than its two components considered separately.

The optimum value for « that minimizes the MSE of
the COM estimator is given by

Copt =

MSE (4¥syn) — E (4 ¥ayn — oY) (4 Fpos — ¥a)

MSE(y Ysyn) + MSE(4¥ros) — 2E (4 Ysyn — oY) (4 Foos — Yo

4

Furthermore, when neglecting the covariance term in
(4), under the assumprion that this term will be small
relative to MSE (,fsyn) and MSE(,¥pas), the optimal
weight « can be approximated by

g ns MSE {4 ¥syn)
P MSE (4 Fsyn) + MSE(g¥os)

(5)

This is the approach to define weights followed by Schaible
(1978).

In our work the optimal values of « have been obtained
from Census data using formula (5). When considering a
real sample survey only an estimated value of optimum «
may be used, thus resulting in a decrease in efficiency.

3.4 Sample Size Dependent Estimator

The sample size dependent estimator is a particular case
of the composite estimator. The linear combination of
synthetic and of the less biased estimator is made for each
sub-group and depends on the outcome of the given
sample. We consider the following form of sample size
dependent estimator (SD) which take into account the
realized sample size in the small area. It is defined as
{Drew, Singh and Choudhry 1982):

. p %
d¥sp = E {%(d—f dPg) + (I = ap) PT:dPg}s (6)

) 7N
l otherwise

{ 1/ {aRFY 1/4R, < F,
Ofg =
with 4R, = dPg/dﬁg.

The constant Fis chosen to control the contribution of the
synthetic component. The reliance on the synthetic portion
decreases as the value of Fincreases. The choice of the value
for Fwould depend upon several factors. In our study the
efficiency of sample dependent estimator has been inves-
tigated for F = 1. This value proved to be efficient while
affording protection against the bias of synthetic estimator.

The logic behind the SD estimator is that when the
sample size within domain d and group g is small, then the
direct estimate for domain  and group g would be unstable
and a synthetic estimate may be superior. However, if the
sample in domain & and group g is larger than expected
this is not a problem, since the performance of the post-
stratified direct part would improve as the sample size
improves. In conclusion, we observe that SD estimator
may be considered as a particular form of sample size
dependent regression estimator given in Sarndal and
Hidiroglou (1989), that has good conditional properties.
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4. DESCRIPTION OF THE EMPIRICAL STUDY

4.1 Simulation of the LFS Sample Design

In our study, we have considered the 14 i1SAs of the
Friuli region as small areas, The variable of interest, y, is
the number of unemployed.

Evaluation of the performance of the various estimators,
discussed in Section 3, was done by referring to a sample
design (two stages with stratification of the PSUs) identical
to that adopted for the LFS in Friuli. This design is based
on the selection of 39 PSUs and 2,290 SSUs from a popula-
tion of 219 PSUs and 465,000 SSUs.

We have selected independently 400 Monte Carlo
sample replicates each of identical size (in terms of PSUs
and of SSUs) of the LFS’ sample. All the information
utilized in the simulation is taken from the 1981 General
Population Census, so 4Y is known.

4.2 Evaluation of Small Area Estimators

We denote by ;¥ (smr) the estimate of the total ,Y for
the small area & from the rth Monte Carlo replicate when
using the estimator m. The percent relative bias of esti-
mator m for the small area d is given by

A
ARB, = - ¥ L Ll Y FYTY
R\ & ¥

where R is the number of samples (R = 400).

The average of the percent absolute relative bias of esti-
mator n1 over the whole set of small areas is:

o 1 P
ARBm = 5 E | dARBm I!
d=1
where D is the number of small areas under observation
(D = 14).

The percent root mean square error of estimator 71 for
small area 4 is

\=dMSErn

dRMSEm = ——dY— 100.

where the mean square error of estimator n for the small
area d is expressed by

R
dMSEm = E (d}ﬂ’(mr) - dY)z.
r=|

-

The average percent root mean square error of esti-
mator m over all areas is

D
RMSE,, = — ) 4RMSE,,.
d=1

1
D
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4.3 Analysis of Results -

A. Overall Performance Measures

The average percent absolute biases and the average
percent toot mean square errors of the small area esti-
mators for the LFS characteristic “‘number of unemployed
persons’’ are presented in Table 1. Looking at this table,
the following conclusions emerge:

(i) Asexpected, POS presents the smallest bias. The bias
of SYN s larger than the bias of the other estimators.
The bias of COM is roughly 30% lower than the bias
of SYN estimator. The bias of SD estimator is only
slightly lower than that of POS estimator.

(ii) SYN and COM have the smallest average percent root
mean square errors, but these estimators are affected
by a very high bias. POS, with low bias, is, conversely,
the less efficient estimator. The average percent root
mean square error of SD is approximately 30% higher
than those of SYN and COM estimators.

Table 1

Average Percent Absolute Relative Bias ARB
and Average Percent Root Mean Square Error RMSE
for Unemployed by Estimator

Estimator ARB RMSE
POS 1.75 42.08
SYN 8.97 23.80
COM 6.00 23.57

SD 2.39 31.08

B. Performance Measures by Small Area

Tables 2 and 3 present the Percent Relative Bias (;ARB)
and the Percent Root Mean Square Error (,RMSE} of the
estimators for each of fourteen Health Service Areas in
Friuli. Furthermore, Table 2 gives the percent ratio between
the population of the HSA and the population of the set
H of strata including the HSA (p,); Table 3 shows the
percent ratio between the population of the HSA and the
population of the region Friuli (p;) and the percent ratio
between the population of the set / of strata including the
HSA and the population of the region Friuli (p;). Looking
at these Tables, the following conclusions emerge:

{i) SYN and COM are badly biased in some small areas,
namely, in those small areas where the model under-
Iying SYN fits poorly. Generally the small areas with
low values of the ratio p, are affected by large bias
(e.z., HSAs 1, 2, 3, 4 and 6). Conversely, large values
of the ratio p, are associated with low values of the
bias (e.g., HSAs 5,9, 10 and 13). However, SYN and
COM consistently have an attractively low RMSE
compared to other alternatives. In three of the fourteen
areas (viz, areas 3, 4 and 8) COM is consistently the
most efficient estimator. In two areas (10 and [2)
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SYN is evidently more efficient and in the remaining
areas the two estimators are roughly similar from the
point of view of efficiency. Furthermore, we observe
that the lowest values of RMSE for SYN generally are
associated with the highest values of the ratio p,
(e.g.,HSAs 1,2,5,6,9and 13). HSAs 3 and 4, while
having an high value of the ratio p;, present a high
value of RMSE. This is due to the large bias.

(ii) POS shows negligible bias values in almost all smail
areas. The RMSE values of POS are much higher
than those of the other estimators in all the small
areas. We observe that the RMSE of the POS esti-
mator is negatively correlated with the ratio p,. This
is caused by the fact that the expected sample size
increases as the ratio p, increases. Consequently, the
variance (which is the main component of MSE of
POS) decreases.

(iii) The estimator SD presents a negligible bias in seven
(5, 7,910, 11, 12 and 13) of the fourteen small areas.
In the other areas the bias is quite low. Furthemore,
in nine areas (2, 3,4, 5,9, 10, 11, 12and 13) SD has
a bias similar to that of POS. The estimator SD is
better, from the MSE point of view, in comparison
with POS. In four areas (7, 8, 9, and 13) RMSE is
similar to those of SYN and COM.

(iv) Finally, we notice that in the largest areas with the
highest values of the ratio p; (e.g., HSAs 9 and 5) all
the estimators considered give similar results in terms
of bias and MSE. For the remaining areas, where the
estimators have different performances, there is a
problem in the choice of the best estimator.

Table 2

Percent Relative Bias (4ARB) of Each of Fourteen Health
Service Areas (HSA) in Friuli for Unemployed by Estimator

Estimator

HSA 21 POS SYN COM SD
1 19.1 —1.57 -10.92 -7.68 —3.0
2 16.1 -5.61 -9.21 -6.97 -4.79
3 15.3 —-5.21 28.82 17.98 5.79
4 16.3 —-2.50 20.92 15.02 2.99
5 47,1 —0.46 1.61 0.98 -0.28
6 24.6 —1.37 -12.24 -9.06 -3.28
7 §1.8 0.05 —6.25 -3.40 —1.66
8 70.7 0.81 11.80 6.63 2.17
9 92.2 0.47 0.76 0.68 0.78
10 11.2 0.36 -1.34 0.51 -1.02
11 21.7 -1.01 —5.64 -5.00 —1.62
12 40.6 —1.52 —6.66 —6.05 -1.19
13 56.3 —0.95 -3.12 —L.11 —-1.28
14 21.8 —2.51 -~ 6.21 -3.03 —-3.53
py = percent ratio between the population of the HSA and the

population of the set A of strata including the HSA.

Table 3

Percent Root Mean Square Error (;RMSE) of Each of
Fourteen Health Service Areas (HSA) in Friuli
for Unemployed by Estimator

Estimator

HSA  p ps POS SYN COM  SD

1 3.8 19.9 52.23 20.41 21.12 32.39
2 i1 19.2 63.36 19.45 20.81 38.30
3 6 232 57.44 36.57 30.7M 42.46
4 3.8 23.2 58.19 30.09 27.02 36,88
5 202 429 18.81 13.38 14.01 17.87
6 8.5 348 28.09 17.49 17.00 22.69
7 6.9 8.4 23.83 21.47 21.67 22.67
8 4.8 6.8 28.75 28.54 26.35 27.40
9 212 229 17.29 16.15 16.40 16.89

10 1.8 2.5 67.00 50.12 53.31 59.27
11 32 14.6  4%.82 18.35 19.20 30.42
12 43 10.7 46.40 22.10 24.04 33.18
I3 126 224  20.13 15.53 15.40 17.88
14 2.3 10.1 57.80 23.58 22.94 36.81

p3 = percent ratio between the population of the HSA and the
population of the region Friuli.

= percent ratio between the population of the set H of strata
including the HSA and the population of the region Friuki.

5
[

5. CONCLUSIONS

From the point of view of bias, the post-stratified ratio
estimator (POS) is essentially unbiased in almost all the
small areas. Furthermore the sample size dependent esti-
mator (SD) has negligible values of the bias in almost all
small areas. Synthetic (SYN) and composite (COM) esti-
mators present bias values much higher than those of the
other estimators.

From the point of view of efficiency, SYN and COM
consistently have significantly lower RMSE compared to
other alternatives. The estimator SD is much more efficient
than POS and furthermore in four of the fourteen areas
it shows RMSE values close to those of SYN and COM.
Further, when considering the estimator COM there is the
problem of the computation of optimum «. In practice
only an estimated value of & may be used, resulting in a
decrease in efficiency of this estimator. Thus considering
both, bias and efficiency, the SD estimator would seem
to be preferable to other estimators examined in the
context of LFS in Friuli. The sampling rates in Friuli are
relatively high and the magnitudes of relative biases and
efficiencies of these estimators may be different in other
regions where the sampling rates are low, e.g., Piemonte
and Lombardia.
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AN Efror-components IvioQei 10r FrediCrion of
County Crop Areas Using Survey and

Satellite Daia

GEORGE E. BATIESE, RACHEL M. HARTER, and WAYNE A. FULLER*

Knowledge of the area under different crops is important to the U.S. Department of Agriculture. Sample surveys have been
designed to cstimate crop areas for large regions, such as crop-reporting districts, individual states, and the United States as
a whole. Predicting crop areas for small arcas such as counties has generally not been attempted, due to a lack of available
data from farm surveys for these areas. The use of satellite data in association with farm-level survey observations has been
the subject of considerable research in recent years. This article considers {a} data for 12 Iowa counties, obtained from the
1678 June Enumerative Survey of the U.S. Department of Agriculture and (b) data obtained from tand observatory satellites
(LANDSAT) during the 1978 growing scason. Emphasis is given to predicting the area under corn and soybeans in these
counties. A lincar regression model is specified for the relationship between the reported hectares of corn and soybeans within
szmple segments in the June Enumerative Survey and the corresponding satellite determination for areas under eom and
sovbeans. A nested-error model defines a correlation structure among reported crop hectares within the counties. Given this
model, the mean hectares of the crop per segment in a county is defined as the conditional mean of reported hectares, given
1o satellite determinations and the realized (random) county effect. The mean bectares of the crop per segment is the sum of
& fixed component, involving unknown parameters 10 be estimated and a random component to be predicied. Variance-
cemponent estimators in the pested-error model are defined, and the gencralized least-squares estimators of the parameters
of the linear model are obtained. Predictors of the mean crop hectares per segment are defined in terms of these estimators.
An estimator of the variance of the error in the predictor is constructed, including terms arising from the estimation of the
parameters of the model. Predictions of mean hectares of com and soybeans per segment for the 12 Iowa counties are presented.
Siandard errors of the predictions are compared with those of competing predictors. The suggested predictor for the county
msan crop area per segment has a standard error that is considerably less than that of the traditional survey regression predictor.

KEY WORDS: Small-area estimation; LANDSAT; Junc Enumerative Survey; Components of variance; Nested-error model.

1. INTRODUCTION

The U.S. Department of Agriculture (USDA) has been
mvestiganng the use of LANDSAT satellite data, both to
improve its estimates of crop areas for crop-reporting dis-
wricts and to develop estimates for individual counties. The
methodology used in some of these studies was presented
by Cérdenas, Blanchard, and Craig (1978), Hanuschak et
al. (1979). and Sigman, Hanuschak, Craig, Cook, and Cér-
denas (1978). Additional research was presented by Chhi-
kara (1984). ‘

The USDA is engaged in several interrelated types of
research. Some research is directed toward transforming
satellite information into good estimates of crop areas at
the individual pixel and segment levels. The “segment” is
the primary sampling unit, and a “pixel” (a term for “pic-
ture element”) is the unit for which satellite information
is recorded. Segments are about 250 hectares; a pixel is
about .45 hectares. Other research is aimed at producing
good estimators of total crop areas for both large and small

* George E. Battese is Senior Lecturer, Department of Econometrics,
. University of New England, Armidale, New South Wales 2351, Australia.
Rzchel M. Harter is Assaciste Rescarch Director, A. C. Nielsen Com-
pany, Northbrook, IL 60062. Wayne A. Fuller is Distinguished Professor,
Department of Statistics, lowa State University, Ames, 1A 50011. This
r=search was partly supported by Research Agreement 58-319T-1-0054X
with the Stadstical Reporting Service of the U.S. Depariment of Agri-
culture, and Joint Statistical Agreement 82-6 with the U.S. Bureau of
the Census. The authors thank Chery! Auer and Stephen Miller for
2ssistance in writing computer programs for the empirical apalyses. Com-
ments of the editors and referees resulted in numerous changes to carlier
crafis of the article. A part of this research was conducted during the
periods the first author was at Towa State University, on study leaves
from the University of New England.

geographical units. Studies by Hanuschak et al. (1979) and
Hung and Fuller (1987) concentrated on obtaining good
functions of the satellite data.

In this article we consider the prediction of areas under
comn and soybeans for 12 counties in north-central Iowa,
based on 1978 June Enumerative Survey and satellite data.
The USDA Statistical Reporting Service field staff deter-
mined the area of com and soybeans in the 37 segments
of these 12 counties by interviewing farm operators. Data
for more than one sample segment are available for several
counties. Based on LANDSAT readings obtained during
August and September 1978, USDA procedures were used
to classify the crop cover for all pixels in the 12 counties.
Table 1 presents (a) the number of segments in each
county, (b) the number of hectares of corn and soybeans
for each sample segment (as reported in the June Enu-
merative Survey), (c) the number of pixels classified as
comn and soybeans for each sample segment, and (d) the
county mean number of pixels per segment classified as
corn and soybeans.

A preliminary analysis of the corn data indicated that
the second segment in Hardin county deviated from other
observations: The reported hectares of corn for the second
segment were identical to that of the first segment. There-
fore, all data for that (second) segment are deleted from
our analyses. The soybean data are deleted for conven-
ience, so the same number of observations is involved for
both crops.

© 1988 American Statistical Association
Joumal of the American Statistical Assoclation
March 1988, Vol. 83, No. 40, Applications
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Table 1. Survey and Sateflite Data for Corn and Soybeans in 12 lowa Counties

Mean number of

No. of pixels in pixels par
No. of segments Reported hectares  sample segments segment®
"County Sampie County Com  Soybeans Com Soybeans Corn  Soybeans
Cerro Gordo 1 545 165.76 8.09 374 55 295.29 189.70
Hamiiton 1 566 96.32 106.03 209 218 300.40 196.65 4

Worth 1 394 76.08 103.60 253 250 289.60 205.28

Humboldt 2 424 185.35 6.47 432 85 290.74 220.22
116.43 63.82 367 178

Franklin 3 564 162.08 43.50 361 137 318.21 188.06
152.04 71.43 288 206
161.75 42 49 369 165

Pocahontas 3 570 g2.88 105.26 206 216 257.17 247.13
i 149.94 76.49 316 221
64.75 174.34 145 338

Winnebago 3 402 127.07 95.67 355 128 29t.77 185.37
133.55 76.57 295 147
71.70 93.48 223 204

Wright 3 567 206.39 37.84 458 77 301.26 221.36
108.33 131.12 290 217
11817 124.44 ae? 258

Webster 4 687 99.96 144.15 252 303 262.17 247.09
140.43 163.60 293 221
98.95 88.59 206 222
131.04 115.58 302 274

Hancock 5 569 114.12 99.15 33 180 314.28 168.66
100.60 124.56 246 270
127.88 110.88 353 172
116.90 109.14 2n 228
87.41 143.66 237 297

Kossuth 5 865 93.48 91.05 221 167 298.65 204.61
121.00 132.33 369 191
109.91 143.14 343 249
122.66 104.13 342 182
104.21 118.57 294 179

Hardin B 556 8858 10259 220 262 32599 177.05
88.59 29.46 340 87
165.35 69.28 355 160
104.00 93.15 261 221
88.63 143.66 187 345
153.70 94.49 350 190

Themea.nmb«o!mxe!sofagwencupporugmlnamnﬂsmmmmdpuebdasyﬁedumm divided by

the number of segments in that county.

Figures 1 and 2 plot the reported hectares of corn and
soybeans for the remaining 36 segments against the num-
ber of pixels of corn and soybeans, respectively. Obser-
vations from segments within given counties are identified
with different symbols and jointed by lines, so the county
data are more clearly indicated. It is evident that there is
astrong relationship between the reported hectares of corn
_and the number of pixels of corn, and between the re-
ported hectares of soybeans and the number of pixels of
soybeans. In addition, the plots indicate that observations
for segments within counties tend to be closer togethcr
than observations for the whole sample.

Predictors of mean crop areas per segment in the sample
counties are obtained under the assumption that a linear
regression mode! defines the relationship between, the sur-
vey and satellite data. The random errors of the model
are assumed to be defined by the nested-error model, in
which deviations within a county are correlated. Estima-

-1

tion of this model was discussed by Fuller and Baitese
(1973) and was suggested for small-area estimation by
Battese and Fuller (1981) and Fuller and Battese (1981).
Alternative approaches to small-area estimation were
given by Fuller and Harter (1987). Fuller and Harter
(1987) also presented additional details for the method-
ology in this article.

2. COMPONENTS-OF-VARIANCE MODEL

The reported crop hectares for com (or soybeans) in
sample segments within counties are expressed as a func-
tion of the satellite data for those sample segments, such
that the reported crop hectares are positively correlated
within given counties but uncorrelated from different
counties. The model is "

i = Bo + Pixyy + Poxa + uyg, (2.1)
where i is the subscript for-county (i = 1,2, ..., T,
64 -
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Figure 1. Plot of Com Hectares Yersus Com Pixels by County.

where T = 12); j is the subscript for a segment within a
given county (j = 1,2, . . ., n;, where n, is the number
of sample segments in the ith county); y; is the pumber

of hectares of corn (or soybeans) in the jth segment of the’

ith county, as reporied in the June Enumerative Survey;
x;; and x,; are the number of pixels classified as com and
sovbeans, respectively, in the jth segment of the ith
county; and §;, £, and B, are unknown parameters.

The random error u;, associated with the reported crop
area yu, is expressed as

u; = v + ey, (2.2)

“herc v; is the ith county effect and ¢, is the random effect
associated with the jth sample segment within the ith
county. The random errors, v; (i = 1,2, ..., T), are
assumed to be iid N{0, ¢Z) random variables independent
of the random errors, ¢; (j = 1,2, ..., n3 i = 1,
2, ..., T), which are assumed to be iid N(0, &%) random
variables. These assumptions 1mply that the covariance
structure of the random errors, uy;, is given by

E(uu,,) = ot + o2, i=p j=gq
= g3, i=pj#aq
= (, i #p. (2.3)

This components-of-variance model is only one possible
model for area effects associated with observations from

similar geographic regions. Other correlation structures,
where reported crop hectares for geographically closer seg-
ments have stronger correlation than those farther apart,
were considered. Models were estimated where correla-
tion was a function of distance between segments, but the
distance effect was not statistically significant.

The components-of-variance model (2.1}-(2.2) does not
explicitly define a correlation structure between reported
hectares of corn and soybeans in sample segments within
counties. The model can be expressed in a multivariate
framework that considers the correlation between re-
ported areas of corn and soybeans. Fuller and Harter
(1987) covered the multivariate extension of the model
(2.1)-(2.3). The extension did not improve the precision
of estimation for our data, however, so we confine our
attention to the univariate case.

The model for reported hectares of corn (or soybcans)
defined by (2.1), was chosen after some preliminary in-
vestigations in which the reported hectares of corn (or
soybeans) were defined in terms of quadratic functions of
the numbers of pixels of corn and soybeans. In each case,
however, the null hypothesis—that the coefficients of the
nonlinear terms are (—was not rejected at the 5% level.
(Additional evaluation of the model is described in the
discussion of empirical results.)

- The sample mean of the reported hectares of corn (or
soybeans) per segment in the ith county is denoted by
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Figure 2. Plot of Soybean Hectares Versus Soybean Fixels by County.

¥, where j, = n7' 270, y;. The sample mean is expressed
in terms of the parameters of the model (2.1)~(2.2) by

y.-_ = ﬁo + B;E”_ + ﬁzfﬁ_ + v; 4~ E.-_, (2.4)

where %, = a7' 2/L, xy;and Xy, = n; 2}"_1 xy; are the
sample mean numbers of pixels of corn and soybeans,
respectively, in the »; sample segments within county i,
and g = n ! Ef‘.[ e, is the sample mean of the within-
county effects for the sample segments in the ith county.

The population mean hectares of corn (or soybeans) per
segment in the ith county is defined as the conditional

mean of the hectares of corn (or soybeans) per segment, .

given the realized county effect v; and the values of the
satellite data. Under the assumptions of the model (2.1)-
(2.2) this mean, denoted by y,, is

yi= b+ BZugy + baXup + Ui (2.5)

where Xy, = N E;'El xy; and Xzq,) = N1 E,-".",l Xy are
the population mean numbers of pixels classified as corn
and soybeans per scgment, respectively, in the ith county,
and N, is the total number of segments in the ith county.
Because the number of pixels of corn and soybeans are
available from the satellite classifications for all segments
in the ith county, the population mean pixel values Xy,
and Xy, are known. The prediction of the mean crop
hectares per segment, defined by (2.5), is the focus of this
article.

In a finite-population model, the mean hectares of corn
(or soybeans) per segment in the ith county is ¥; = N/*
2,_1 Yy, where Y;; denotes the hectares of the crop in the
jth segment in couutv i and the summation is over ail
scgments in the popuiation. The mean Y. is not equivalent
to y; [as defined in (2.5)], because the sum of the e;'s over
the finite population of segments in county i is not iden-
tically 0. As shown in Section 3, however, the predicte:
for the mean y, is an appropriate predictor for the finite-
population mean Y; when the sampling rate is small.

Obtaining the mean crop hectares per segment in county
i, y;, involves predicting the sum of a2 known linear functioa
of unknown parameters and an unobserved random vari-
able, v, This is a special problem in predicting a linezr
combination of fixed effects and random effects (see Har-
ville 1976, 1979; Henderson 1975; Kackar and Harviliz
1984; Peixoto and Harville 1986; Reinsel 1984, 1985). The
theory for our parameter estimators and crop-area pre-
dictors is an extension of results in the articles cited pre-
viously, and is presented in more detail in Fuller and
Harter (1987).

" Before introducing the estimators and predictors, we
present the components-of-variance model (2.1)~2.3) in
matrix notation. Let Y, represent the column vector of the
reported hectares of the given crop for the n; sample seg-
meants in the ith county, Y; = (ya, Yo, - - - » Yu) - FUI-
thermore, let Y represent the column vector of ‘the
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reported hectares of the crop for the sample segments in
the Tcounties, Y = (Y!, Y3, ... ,Y)" . Thusmodel (2. 1),
expressed in matrix notation, is

Y = XB + n, (2.6)

whaere the row of X that corresponds to the element y; in

Y is 1,' (1 Xyigs xlu) and B (ﬁO) ﬁl; ﬁl)‘

The covariance matrix for the random vector u in (2.6)
1s given by

Euu)=

whare -

= block diag(V,, Va, . . ., V), (2.7)

V.= Jol + lol, (2.8)

with J; the square matrix of order n; with every element
equal to 1 and I; the identity matrix of order a,.

The mean crop hectares per segment (2.5), expressed
in matrix notation, is

Yi=XnB tou, (2.9

- ay_1 TN, - -
where qu) = N,’ ! 2 -‘I x;}‘ = (1, x,,-(’), x;_;",)).

3. ESTIMATION AND PREDICTION

Basic to the prediction of the mean crop area (2.9) for
the ith county is the prediction of the county effect, v;. If
the random errors u; (j = 1,2, . . . , n;) are known, then
the best predictor of v; is the conditional expectation of
v, given the sample mean #;, where i, = 7' 27, wy.
Under the assumptions of the model (2. 1) (2.2), the ran-
dom variables v; and %; have a bivariate normal distri-

bution with zero mean vector and covariance matrix
a} al

o

ol + nlg?
The expectation of v;, conditional on i, , is
E(uvfz;) Uiy (3.1)

where g; = m; 6% and m; = (6% + n7'¢%). The error
variance in this best predictor is

E{(v: — ug)} = ¢2(1 - g)

= nrle? - nieim el

(3.2)

If the variances o2 and o2 are known, the f parameters
of the model can be estimated by the generalized least-
squares estimator

B = (X'V-IX)"IX'V-IY. (3.3)
Then a possible predictor for the ith county effect, v, is
(3.4

where &, = n;7! 2%, 4, and 4; = y; — x,f. The corre-
sponding predictor y; for the county mean crop area per
segment (2.9) is

h ﬁ = ai,gl'!

)71' = il'(p)l-} + f?-. (3.5)
This is the;best linear unbiased predictor of y, (see Har\nllc
1985). noow

SOUNIL U1 I ALRISTICUN L SisiiG U AR L, VIt 47

The variance of the error in the predictor (3.5} is
CE{(5 - ) = ai(l - &) + eV(B)d,

where V(B) = (X'V'X)™!, ¢; = %, — &%, and X, =
n7' 2%, x;. The variance of (3.6) is larger than that of
(3.2) by the term associated with the estimation of B.

A predictor for the finite population mean crop hectares
per segment in the ith county {see the paragraph following

(2.5)] is

(3.6)

[2 vy + 2 (xB + v)]

J=n; 4+

In this predictor, the unobserved y; are replaced by the
model predictions. It approaches the predictor (3.5) as the
sampling rate decreases. Because the sampling rates are
small in our application, we use the predictor (3.5).

This predictor is one of several that have been suggested
for the small-area problem. Let a class of predictors of the
county mean cTop area y; be defined by

b + (3. — xX:B), (3.7
where &, is a nonnegative constant and B is an estimator
for B.

For §; = g; and B = B, the predictor (3.7) is the best
linear unbiased predictor. For §; = 0, the predictor (3.7)
is x,wﬂ, this is called the regression synthetic predictor.
The term synthetic is used for predictors that are functions
0f Xy;), which may not be linear in Xy,). The prechctor (3.7)
when d; = lis x,(,)ﬂ + (3. — 5.B), which is equivalent
to the survey regression predictor 3, + (%, — %,)B. The
survey regression predictor adjusts the sample survey
mean ¥, using the difference between the population
mean of the regressor vector ¥, and the sample mean of
the regressor values for the sample segments X; in county
L. The survey regression predictor, with an alternative form
for the estimator B, was considered by Samdal (1984).
Under the model in which [ is unbiased for B the survey
regression predictor is unbiased for y,, conditional on the
realized county effect v; and the values of the satellite data.

The generalized least-squares estimator (3.3) and the
predictor (3.5) for the county mean crop area are infeas-
ible, because the variances ¢? and ¢? associated with the
nested-error model are unknown. Harviile (1977) re-
viewed a number of methods for estimating the variances
for components-of-variance models. We obtain the fitting-
of-constants estimator for o2, denoted by 62, which is de-
fined by the residual mean square for the regression model
(2.1), with dummy variables for the counties. Alterna-
tively, &2 is expressed as

T -1
6 = é'é[z (m - 1) - 2] ;

fm1

(3.8)

where &'¢ is the residual sum of squares for the regression
of the y deviations, y; — ¥, on the x deviations, x; —
X;, for those counties with n; > 1. Under the assumptions
of model (2.1)—(2.3), the estimator &2 is unbiased for o2
and is distributed as a multiple of a chi-squared random
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variable. That is, d,62/0? has a chi-squared distribution
with d, df, where d, = 2, (n, — 1) — 2.

An estimator for the variance of county effects, &, is
obtained by considering the average of the ordinary least-
squares residuals for county i,

A

L =y - %XX) XY (3.9)
It is readily verified that
E@) = bo? + da?, (3.10)

where

b =1 - 2nx, (X'X)™x]
T
+ % XX (T n’i'i,) (X'%)"'%;
j=1

and d; = n7'[1 — nX.(X'X)~'%;]. Thus the weighted sum
of squares of the average residuals for the counties,

T -1 T
e, = (Z n;b;) (2 nﬁ,%) (3.11)
i=1 i=1
has expectation
_ E(m)=m_ =0} + cal, (3.12)

where ¢ = (L, n;6)"(Z/-; nd;). Under the assumptions
of the model (2.1)—2.2), the weighted sum of squares
r7z_is independent of 2. Qur estimator for ¢} is

&2 = max{ra_ — ¢5%, QL (3.13)
An estimator of g; is
&= (62 + n'8) "ol ~.(3.14)

A feasible predictor for the mean crop area (2.9) in
county i is

¥i=XB + @b (3.15)

where 8 is the estimated generalized least-squares esti-
mator for B, obtained by replacing V of (3.3) with v,
where V is the estimator for the covariance matrix (2.7)
obtained by using the estimators &% and &7, defined by
(3.8) and (3.13), respectively; 4; =7 — X;B; and §;is an
alternative estimator to (3.14), which is defined in the
Appendix. The estimator §;, which is approximately un-

biased for g, was suggested by Fuller and Harter (1987)..

An approximation for the variance of the prediction
error, y; — J;, and estimators for this variance, were given
by Fuller and Harter (1987) for the multivariate case. An
estimator for the variance of the prediction error is given
in the Appendix. For more detail on the predictor, and
the estimator for the variance of the error in the predictor,
readers should consult Fuiler and Harter (1987).

4., EMPIRICAL RESULTS

Estimates for the parameters of the mode! (2.1)—(2.2)
are obtained by using a modification of the nested-error
option of SUPER CARP (see Hidiroglou, Fuller, and
Hickman 1980). The modification of SUPER.CARP in-
corporates the altemative estimator for the variance o7,

defined by (3.13). The variance components are first es-
timated, and then the estimated generalized least-squares
estimators for the § parameters are obtained. The esti-
mated parameters for com are

$i =51+ 329 %y — 134 x,
(25) (.050)  (.036)
g3 =150, &%= 140.
(45) -(89)

The estimated parameters {or soybeans are

}?ii =-16 + 028 Xy + .494 Xajiy

(29) (058)  (.065)
42 =195, &% =272
(59) (49)

The value of the constant ¢, defined by (3.12), is .349.

The three estimates of the regression function are sta-
tistically significant in the corn function, but only the coef-
ficient of soybeans pixels is significantly different from 0
for the soybean function. The estimated variances for
within- and among-county variation in reported crop hec-
tares are approximately equal for com, but for soybeans
the among-county variance is about 60% of the total of
the two variances. The among-county variance is signifi-
cant at the 10% level for corn and the 1% level for soy-
beans.

In our model (2.1)-(2.2) the errors are assumed to be
normally distributed. The predictor of the mean crop areas
for the counties retains desirable properties for nonnormal
errors, but the estimated variances of the prediction errors
can be seriously biased when the errors are not normally
distributed. Normal probability plots are presented in Fig-
ures 3 and 4 for the transformed residuals, &, for the corn
and soybean models, respectively, which are defined by

a5 = (yy — &y) — (%5 — ax;)p.

where & = 1 — [6%/(62 + ng2)]"*. These transformed
residuals are approximately uncorrelated with variances
approximately equal to g} (see e.g., Fuller and Battese
1973, p. 627). The Shapiro-Wilk W statistic for the trans-
formed residuals had values of .985 and 957 for com and
soybeans, respectively. If the residuals were independent
normal samples, then the probabilities of values less than
those observed would be .921 and .299, respectively. The
sample is small, but these analyses give no reason to reject
the hypothesis that the errors in the model (2.2) are nor-
mally distributed.

Given the assumptions of the model (2.1)-(2.2), the
parameters f; and §, can be estimated from the multiple
regression of the within-county deviations y; — . on the
deviations x,; — X and xp; — Xy [see Eq. (3.8)}. The
expectation of these estimators for B and f,, represented
by Bw, is the same as the expectation of the generalized
least-squares estimators of 8, and f,, represented Dy Bs-
Hence the estimators 3, and B can be used to construct
a test of model (2.1). Let 24 be the estimated covariance
matrix of the within-county estimator By, and let £ be
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Figure 3. Full Normal Plot Residuals of the Transformed Com Model.

the estimated covariance matrix of the generalized least-
squares estimator Bg. Then the approximate distribution
of the statistic

F =28 — o) Cw — 26)'(Bw — Bo)
ts the F distribution with 2 and 22 df, under the null hy-
pothesis that the slope parameters are the same within and

among counties. This result follows from the fact that the
estimated covariance between fy, and B is 3. The test

statistic is .46 for corn and .60 for soybeans. Hence we
accept the hypothesis that the parameters f, and f§, are
the same for within and among counties, as postulated in
(2.1).

With the predictor (3.15) we obtain the predictions for
the mean crop hectares per segment. Results are given in
Tables 2 and 3 for corn and soybeans, respectively, along
with the estimated standard errors for the best predictor
(3.15), the survey regression predictor, and the sample
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Figure 4. Fuil Nommal Plot Residuals of the Transformed Soybean Model.
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Table 2. Predicted Hectares of Corn With Standard Emrors of Alternative Fredictors

Standard emrors

Sample Predicted Best Survey regression Sample

County segmenis hectares predictor predictor mean
Caito Gordo 1 122.2 9.6 13.7 30.5
Hamilton 1 126.3 9.5 12.9 30.5
Worth 1 106.2 9.3 ; 12.4 30.5
Humboldt 2 108.0 8.1 9.7 21.5
Franklin 3 145.0 6.5 ' 7.1 17.6
Pocahontas 3 $12.6 6.6 7.2 176
Winnebago 3 112.4 6.6 7.2 17.6
Wright 3 122.1 6.7 73 17.6
Webster C 4 115.8 5.8 €1 15.2
Hancock 5 124.3 53 57 13.6
Kossuth 5 106.3 5.2 5.5 13.6
Hardin 5 143.6 5.7 6.1 13.6

mean of the survey data. The estimated standard error of
the sample mean is the square root of the withincounty
mean square, divided by the number of segments in the
given county.

The differences between the predicted hectares of corn
and soybeans and the corresponding sample means de-
crease (see Table 1) as the number of sample segments
increases. This is because the standard errors of the sample
means are larger for counties with smali numbers of sample
segments. The standard errors of the sample mean are
considerably greater than those for the survey regression
predictor. The ratio of the standard error of the best pre-
dictor to that for the survey regression predictor increases
from about .77 to .97 as the number of sample segments
increases from 1 to 5. When there are no more than 3
sample segments, the best predictor has a standard error
constderably fess than that for the survey regression pre-
dictor. The improvement in the precision of the predictor,
obtained by increasing the number of sample segments in
a county from 3 to 4 or 5, is modest.

5. COMMENTS

The survey regression predictor is unbiased for the 12
counties’ mean crop area, and it has relatively small van-
ance. Hence the survey regression predictor is adequate
for the entire area. It then becomes desirable to modify

the individual county predictors so that the properly
weighted sum equals the unbiased survey regression pre-
dictor for the total area. A possible adjusted predictor for
the ith county mean crop area involves adding to the best
predictor a proportion of the weighted sum of the differ-
ences between the survey regression predictors and the
corresponding best predictor for the counties involved.
This predictor is defined by

T

Yo = Ji + @ [’Zl W(7:
where ¢, = [ZN, WW(3)-'WV(5). V[5] is the esti-
mated variance of the prediction error for predictor (3.13),
and W, is the weight for the jth area used in consrrucnn..
the predlctor for the total area. It is clear that 27, W,y, is
equal to the unbiased survey regression predictor for the
total area, W7, + (Xg, — %)B]. The adjustment
produces a very small increase in the variance of the smail-
area predictors under the components-of-variance moce!
with unequal n; and/or unequal W,

The nested-error regression model (with satellite data
as auxiliary variables) offers a promising approach to pre-
dicting crop areas in small domains. The USDA has con-
ducted exploratory analyses with the software developed
for the univariate nested-error approach to predicting
county crop areas. The procedure allows for the use of

_ %) - g‘.-)],

Table 3. Predicted Hectares of Saybeans With Standard Errors of Altemative Preciclors

Standard errors
Sample Predicted Bast Survey regression Sample

Cournty segments hectares predictor predictor mean
Cemo Gordo 1 77.8 12.0 15.6 29.1
Hamilton i 94.8 11.8 14.8 29.1
Wotth 1 86.9 115 - 142 29.1
Humboldt 2 79.7 9.7 11.1 20.6
Franklin 3 65.2 76 8.1 16.8
Pocahontas 3 1138 7.7 8.2 16.8
Winnebago 3 98.5 7.7 8.3 16.8
Wright 3 112.8 7.8 8.4 16.8
Webster 4 109.6 6.7 70 14.6
Hancock 5 101.0 6.2 6.5 13.0
Kossuth S 119.9 6.1 6.3 13.0
Hardin 5 749 665 6.9 13.0
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supplementary information, such as estimates of variances
from other areas and other years, in the estimation of
variance components. Modification of the model to ac-
count ior stratification, according to land use within coun-
uies, was investigated by both Walker and Sigman (1982)
and Harter (1983).

APPENDIX: COMPUTATIONAL FORMULAS

The model parameters, county predictions, and standard er-
rors in the empirical section were computed with an adaptation
of the n2sted-error regression procedure of SUPER CARP (Hi-
dirogion. Fuller, and Hickman 1980). The modifications are
hased on the multivariate estimators suggested by Fuller and
Harter (1987). Univariate forms of the estimators for this specific
exampls follow.

The predictor for the county mean crop hectares per segment,
defined by (3.15), 1s

o= Tl + (5 - %f).,
where § = 1 — i:,,
hi [”_1- + i(,- + (nl—l - C):W.—]‘l [’1:—]&3 + (“f-l - C)ni—li’i},

m, = m + (a7 = c)él,

(A.1)

W, = 2d'mgL,

T -t

T
= 25Ky + n)y L D b, 2 mb(8y + n') ],
i=1l =1

=
[

and &; = max[0, (T — 5)~Y(T — 3)6:%1_ — ¢]. The constant b,
is definzd after (3.10), c is defined after (3.12), and 4, = 22 for
this application.
The variance of the error in the predictor (A.1) is estimated
by
1, =y} = n761 = i + eV(B)Y
+ RBE + dad + doFhEL (AL2)
“.he’re e: = idl,') = giu ér = (df + I)_lde$i i df-lni_la-y}n
&’. = n.—z[&:' + (n7' = C)"i"']l{".l.‘ + E-’ + (n7! - C)z’i’r']-l'
and 7, = 1 — (1 — me)h,. The last three terms of (A.2) are
nonnegzlive and arise from the estimation of the parameter m
defined by (3.12), and the estimation of the vanance, gl.

[ Received June 1984. Revised July 1987.]
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The Estimation of the Mean Squared Error of

N. G. N. PRASAD and J. N. K. RAO*

Small-arca estimation has received considerable attention in recent years because of a growing demand for.reliable small-area
statistics. The direct-survey estimators, based only on the data from a given small area (or small domain), are likely to yield
unacceptably large standard errors because of small sample size in the domain, Therefore, alternative estimators that barrow
strenpth from other refated small areas have been proposed in the literature to improve the efficiency. These estimators use
models, either implicitly or explicitly, that connect the small arcas through supplementary (e.g., census and administrative)
data. For cxample, simple synthetic estimators are based on implicit modeling. In this article, three small-area models, of
Battese, Harter, and Fuller (1988), Dempster, Rubin, and Tsutakawa (1981), and Fay and Herriot (1979), are investigated.
These models are all special cases of a general mixed linear model involving fixed and random effects, and a small-area mean
can be expressed as a linear combination of fixed effects and realized values of random effects. Using the general theory of
Henderson (1975) for a mixed linear model, a two-stage estimator (or predictor} of a small-area mean under each model is
oblained, by first deriving the best linear unbiased estimator (or predictor) assuming that the variance components that determine
the variance—covariance matrix are known, and then replacing the variance components in the estimator with their estimators.
Second-order approximation to the mean squared error (MSE) of the twa-stage estimator and the estimator of MSE approx-
imation are obtained under normality. Finally, the results of 2 Monte Carlo study on the efficiency of two-stage estimators
and the accuracy of the proposed approximation to MSE and its estimator are summarized. The MSE approximation provides
a reliable measure of uncertainty associated with the two-stage estimator. It can also provide asymptotically valid confidence
intervals on a small-area mean, as the number of small areas tends to ®,

KEY WORDS: Best linear unbiased estimator; Fay-Herriot model; Nested error regression model; Random regression coef-

Small-Area Estimators

ficient model; Two-stage estimator.

1. INTRODUCTION

In Section 2 we define the three small-area models. The
two-stage estimator of a small-area mean under each model
is derived in Section 3. A second-order approximation to
the mean squared error (MSE) of the two-stage estimator
and an estimator of the MSE approximation are obtained
under normality in Sections 4 and 5, respectively. The
results of a Monte Carlo study on the efficiency of two-
stage estimators and the accuracy of the proposed MSE
approximation and its estimators are summarized in Sec-
tion 6. '

Although we used Henderson’s (1975) approach for a.

mixed linear model, our results can be restated in the
empirical Bayes framework of Morris (1983), Ghosh and
Meedén (1986), Ghosh and Lahiri (1987), and others.

2. THREE MODELS
21 Nested-Error Regression Model

Battese, Harter, and Fuller (1988) proposed a nested-
error regression model in the context of estimating mean
acreage under a crop for counties (small areas) in Iowa,
using Landsat satellite data in conjunction with survey
data. Their model is given by
Yy = x,']B + v + €ijy

Lt oi=1,...,m (1)

* N. G. N. Prasad is Assistant Professor, Department of Statistics and
Applied Probability, University of Alberta, Edmonton, Alberta T6G
2EI, Canada. J. N, K. Rao is Professor, Department of Mathematics
anq Statistics, Carleton University, Ottawa, Ontario, K18 5B6, Canada.
This rescarch was supported by graats from the Natural Sciences and
Enginecring Rescarch Council of Canada. The authors thank Wayne
Fuller, the referces, and the associate editor for valuable comments and
many constructive supggestions.

where y;; is the character of interest for the jth sampled
unit in the ith sample area, x; = (x;; **- x;x)’ is a k vector
of corresponding auxiliary values, B = (B, -~ f)' isa k
vector of unknown parameters, and #; is the number of
sampled units observed in the ith small area (Zn; = n).
The random errors v; are assumed to be independent N{0,
o), independent of the ¢;, which are assumed to be in-
dependent N(0, ¢2). The normality assumption is not nec-
essary in deriving the two-stage estimator of a small-area
mean. The model (2.1) can be viewed as a random-inter-
cept model by taking x; = 1 and f; = a. The variables
a; = a + uy;are the random intercepts. '
The mean for the ith area may be written as

m=X{B+ v, (2.2)

assuming that N, the number of population units in the
ith area, is large, where X, is the vector of known means
of the x;; for the ith area. In the application of Battese et
al. (1988), N, ranged from 394 to 965 and n, from 1 to 6.
Note that g; is a linear combination of fixed effects B and
realized value of random effect v,. It can be interpreted
as the conditional mean of y; for the ith area given v;.

Finite populations with nonnegligible sampling fractions
ni N; are handled by assuming that the N; units from the
ith area are generated from an infinite superpopulation
model of the form (2.1); see Sections 3-5.

2.2 Random Regresslon Coefficlent Model

A more general model with random B was proposed by
Dempster, Rubin, and Tsutakawa (1981). Here, we con-
sider the special case of their model, with single concom-
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itant variable x and regression through the origin. The
model may be written as

yi = Bixy + e = Pxy + vixy t ey,

i=1,... P=1,...,1 (2.3)

where §; = f + v; and v; and ¢;; are as in the model! (2.1).
The mean for the ith area is given by

Hi = 7:.5 + 7;‘”;', (2.4)

a linear combination of fixed effect § and realized value
of random effect v;.

2.3 Fay-Herriot Model

In the context of estimating per-capita income for small
areas (population less than 1,000), Fay and Herriot (1979)
assumed that a k vector of benchmark variables x; = (x;

- x,)", related to y,, is available for each area {, and that
the g, are independent N(x;B, A), where B is a k vector
of unknown parameters. They further assumed that the
sample mean vector § = (J; > ¥)' = coliw=(¥), given
w = (u - u)',is N(g, D), where D = diag(D, --* D)
with known diagonal elements D;. The model can be re-
stated as a linear model:

’ ,[li

Vi=um+e and p=xf + v,

i=1,...,t (2.5

where e = (e; - €)' and v = (v; --- v,)’ are distributed
independently as N(0, D) and N(0, AI), respectively. The
normality assumption is not necessary in deriving the two-
stage estimator. Note that the auxiliary information at the
unit level is not needed, unlike in the nested-error regres-
sion model.

Our results for the Fay-Herriot model are valid for both
finite populations with nonnegligible sampling fractions n;/
N; and general sampling designs. In the latter case, we
replace ¥; by a design-unbiased estimator of ¥

3. TWO-STAGE ESTIMATORS
34 Best Linear Unblased Estimators

The models in Section 2 are all special cases of the
general mixed linear model

y=XpB +Zv + e, (3.1)

where y is the vector of sample observations, X and Z are
known matrices, and v and e are distributed independently
with means 0 and covariance matrices G and R, respec-
tively, depending on some parameters 0 called variance
components. Henderson (1975) showed that for 8 known
the best linear unbiased estimator (or predictor) of 4 =
I'B + m'vis given by

t0,y) =I'p + m'GZ'V-'(y — Xg), (3.2

where V = R + ZGZ' is the variance—covariance matrix
of yand f = (X'V~'X)"'(X'V~'Y) is the generalized least
squares estimator of B.

For the nested-error regression model, V = diag(V, -
V) with V; = o2, + o¥1.1;, so V7! = diag(Vy'

Joumal of the American Statistical Association, March 1990

Vo with Vit = (g7, — yn (e} ', and 3 =
oXgl + oln7") 7}, using a standard result on matrix in-
version: (A + uv')"' = A™' — A-'wv'ATY(1 + v'A 'u)
(e.g., see Rao 1973, p. 33). Hence, taking 1 = X, and m
= (0 --- 010 --- 0)" with | in the ith position and noting
that (g2/ad)(1 — y) = y/n;, we get the best linear unbiased

.estimator of y; from (3.2):

t{a? y) = XiB + »(y — X/B), (3.3)
where 0 = o? = (¢ ¢?)’ and X, is the sample mean of x;
for the ith area. In addition, y = colj«;x, c0l <., (¥;) and
X = coli<is; COligjsn, (x:j)
Similar calculations for the random regression coeffi-
cient model (2.3) lead to the best linear unbiased estimator
of y; as

t{et, y) = XB + ].’i?.‘(ﬁi - ﬁ)
Here, o = {c20?), 7 =o¥ol + c2/3x3)~", Bi =
Z;x%, and f= Ey,ﬁ,lf.y

For the Fay—Hernot model, the best linear unbiased
estimator of y; is obtained as

{(3.4)
foffyij/

A, §) = xB + (A/(A + D)(F - xiB), (3.5)
where § = (X'V'X)"'X'V-'y, with V = diag(4 + D,
«+ A + D)and X = coli (x{}. Under normality, the

estimator (3.5) is also a Bayes estimator, as shown by Fay
and Herriot (1979). Note that (A, §) tends to the direct
survey estimator y; as D;/(A + D;)— 0and to the synthetic
estimator x/ 8 as A/(A + D) — 0. Thus the best linear
unbiased estimator is a weighted average w;y; + (1 —
w))x! B, where w, = A/(A + D)) reflects the uncertainty,
A, in the model for the g relative to the total variance A
+ D!-

Assuming a supcrpopulation model of the form (2.1)
for the N; population units in the ith area, it can be shown
that the best linear unbiased estimator of ¥; = %,y,/N,

- under the nested-error regression model is given by

et y) = fiyi + (1 — fa (e y), (3.6)

where f; = n/N,, tf(a?, y) is given by (3.3), with X, re-
placed by X}, the mean of the x;; for the N, — n, nonsam-
pled units, and F stands for finite populations. Sim-
ilarly, for the random regression coefficient model the best
linear unbiased estimator of Y is given by (3.6), with
1#(o?, y) changed to (3.4) and X, replaced by %" .

3.2 Two-Stage Estimators

The estimator (8, y) [written as ¢(8) for convenience]
depends on the variance components 6 = (¢, --- 6,)', but
in practice the components of 8 will be unknown. Actually,
it depends solely on the ratios 6,/8,; for example, (3.3)
and (3.4) depend solely on o2/¢?. It is customary to es-
timate #(6) by replacing 6 with an asymptotically consistent
estimator 8 = 6(y). The resulting two- -stage estimator,
1(9), remains unbiased for u (i.e., E[{(§) — p] = 0),
provided that E[t(8)] is finite, the elements of 8 are even
functions of y and translation-invariant [i.e., B(-y) =
6(y) and 6(y — Xa) = 6(y) for all y and a] and the
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distributions of v and e are both symmetric (not necessarily
normal); see Kackar and Harville (1984). Nevertheless,
the MSE of t(f)) will increase relative to the MSE of #(8)
(see Sec. 4).

Various methods of estimating @ for a general mixed
linear model are available (see Harville 1977 for an ex-
cellent review), but here we confine ourselves to the well-
known method of fitting constants, catled Henderson's
method 3.

For the nested-error regression model, unbiased quad-
ratic estimators of o2 and ¢ from Henderson’s method 3
are given by

62=(n—t— k+ )53 (3.7

and

52 = ny{Z3a2 - (n — k)61, (3.8)
where n, = n — trf(X'X) "' Zi_, n#XX/], and 1 = 0 if the
model (2.1) has no intercept term and A = 1 otherwise.
Furthermore, {¢;} are the residuals from the ordinary least
squares regression of y; — ¥, on {x; — iy = X — X
and {d;} are the residuals from the ordinary feast squares
regression of y; on {x;; *** x;u}.

For the random regression coefficient model (2.3), un-
biased quadratic estimators of ¢? and o2 are given by

63 = (n — 1)"'22é; (3.9)
and

a2 = A:'[2zad - (n - 1)67, (3.10)
with é,-‘- = Wij = x,-,-(E,-x,—iy,-‘,-)(E,-x,?i)" and A, = EZxﬁ, =
[ZZ D2

An unbiased quadratic estimator of A in the Fay-Her-
riot model is given by

A=(—-k! [2 at - ; D1 - x:(X’X)"k,-)}, |

(3.11)

where &; = §; — x/f and § = (X'X)"'X'y. The two-stage
estimator #(A, ¥) is an empirical Bayes estimator of y;
under normality (Fay and Herriot 1979).

It is possible for 72 {defined by (3.8) and (3.10)] or A
[given by (3.11)] to take negative values, but Pr(é% = 0)
or Pr(A = 0) tends to 0 as t — », If 32 or 4 is negative,
we set it equal to (0, which ensures that the two-stage
estimator has a finite expectation. We define 67 =
max(é2, 0) and A = max(A4, 0). Generally, we denote
the Henderson unbiased estimator of €; by @, and define
8, = max(8,, 0).

4. SECOND-ORDER APPROXIMATION TO MSE
Kackar and Harville (1984) showed that
MSE[1(8)] = MSE[¢(0)] + E[(8) — 1(8)2, (4.1)

under normality, provided that 8 is translation-invariant.
Henderson (1975) gave an expression for MSE[(0)], but

the second term of (4.1) is generally not tractable except
in special cases, such as the balanced one-way analysis of
variance model y; = # + v + e, with n, = r (Peixoto
and Harville 1986). Kackar and Harvilie (1984} obtained
a Taylor series approximation

E{t(8) - «(8)] = E[d(8)'(8 — O) (4.2)

with d{(8) = 8:(0)/66, and then proposed a further ap-
proximation

E[d(0)' (6 — 0)] = tr[A(BE® ~ 0)(0 — 0)'], (4.3)

where A(8) is the covariance matrix of d(9}.
We propose a further approximation, given by

tr[A(B)E(® — _e)(é - 0)]
= tr{(VB)V(Vh')E(8 — 0)(6 — 8)'), (4.4)

where Vb’ = col;55,(ab'/36) and b’ = m'GZ'V~!. Gen-
eral conditions are given in the Appendix (Theorem A.1),
under which the precise order of neglected terms in the
approximations {4.3) and (4.4) is o{t™!) for large ¢. The
three small-area models satisfy these conditions. We also
show in the Appendix (Theorem A.2) that the precise
order of neglected terms in the Taylor series approxima-
tion (4.2), under the Fay-Herriot model (2.5), is o{t™").
It seems more difficult to give general conditions as in the
case of Approximations (4.3) and (4.4), but the proof
essentially involves showing that Eo, (1) = o(t™"), where
0,(t~") denotes terms of lower order than ¢ ™' in probability.
Combining (4.1)(4.4), we get

MSE[t(#)] = MSE[(0)]
+ t[(VB)V(VD'YE(® — 0)(@ — 0)'). (4.5)

We now evaluate (4.5) for each of the three small-area
models. Using Henderson's (1975) general result on
MSE[1(8)] or by direct calculation, MSE[r{a?, y)] for the
nested-error regression model is obtained as

MSE[t{o?, y)] = (1 — y)ai
+ (X - 2% X'VX) X - vE), (4.6)
under the arbitrary distributions of {v} and {e;,-},_wherc

(X'V-X)~! is the variance—covariance matrix of B.
Noting that (¢2/62)(1 — ) = y/n; and

By,/aaﬁ

WPB S FVEY:

I}

n (1, V1) [ } {8y:/dct dy,/dai],

where 1, V1,
tr[ (VB )V(VD' Y E(® — 0} — 0)']

= n7Ya? + g¥/n) var(Glel — Glol).

nHo? + o¢¥n;), we get

(4.7)

Similar calculations under the random regression coef-
ficient model give

MSE[t{c?, ¥)]
= X¥1 - 7)o + X1 — 7Y(E4) ‘el (4.8)

= 1.5



and
tr{{Vb'YV(Vb' Y E(® — 0)(6 — 0)'] -
= XAZx}) Yol + o¥%x}) Pvar(elel — dl0l).
In the case of the Fay-Herriot model, we get
MSE[t(A, 7)] = AD(A + D)!
+ DHA + D) X/(X'V-'X) ', (4.10)

(4.9)

and
tr[(Vb)V(Vb')'E(0 — 8)(6 - 0)']
= DHA + D) var(A). (4.11)

Ignoring the uncertainty in ¢ or Aand using the MSE
of the best linear unbiased estimator of y; as an approxi-
mation to the MSE of the corresponding two-stage esti-
mator of g could lead to a serious understatement, since
the neglected terms are of the same order, O(t"'), as the
term obtained by estimating B in the MSE of the best
linear unbiased estimator. g

For finite populations, the MSE of 1{(62, y) is given by

MSE[f(67, y)] = (1 ~ fF[MSE(F (57, y))
+ N7Y(1 - f)~'el], (4.12)

HOting that tl‘r &2! Y) - ?r' = (1 - f'.)[{r‘_t(&Z, Y) — HiF =
€7], where e is the mean of the e; for the N; — n, non-
sampled units. The approximation to MSE of £(62, y)
is the sum of (4.6) and (4.7) [or (4.8) and (4.9)], with
X; replaced by T* in (4.6). Hence no new theory is
required for getting a second-order approximation to
the MSE of the two-stage estimator ¢f(G2, y). For the
special case of a random one-way model, y; = ¢ + v; +
e;, the estimator rf(62, y) is essentially identical to
the empirical Bayes estimator of g, = g + v, proposed
by Ghosh and Meeden (1986) and Ghosh and Lahiri
(1987).

5. ESTIMATOR OF MSE APPROXIMATION

We now obtain estimators of the MSE approximation
(4.5) for the three models under normality. The Appendix
(Theorem A.3) shows that the expectation of the MSE
estimator is correct to O(r ') under the Fay-Herriot model.
Again, it seems more difficult to give general conditions,
but the proof essentially involves showing that Eo,(r™') =
o{t™").

For the nested-error regression model, the MSE ap-
proximation may be written as g,{0?) + g.(c?) + gi(a?),
where

(5.1)
(5.2)

&vi 02) = (1 - Yl')azos
g0 = (X, - yx)(XV-X)(X, - v,

and

g5da?) = niiol + aln7 ") of var(52)

+ o} var(g2) - 200l cov(

5 a3 (5.3)
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are all of order O(¢™"). Furthermore, under normality of
{v} and {e;;}

var(gd) = 2(n — t — k + 2)7'of, (5.4)
var(gd) = 2n:(n —t — k + 2)°!
X (t — D(n = k)o! + 2n.clol + neeal], (5.5)
and
cov(Z, 67) = —(t — Anglvar(g), (5.6)
where nes = tr(MZZ')* with M = I — X(X'X)'X’ (see

Battese and Fuller 1981).

Estimators of g,{(o?) and gy (o?) are simply given by
{6 and g, (6?) correct to O,(t™"), since &? is a consis-
tent estimator of or2. Nevertheless, g,,(62) is not the correct
estimator of g,{a?) to the desired order of approximation,
because its bias is of order O{¢™!). A correct estimator of
£.{o?) is obtained by adjusting g,{ 6°) for its bias to O(r™"),
which is obtained by making a Taylor expansion of g,{6?)
around o? and then taking its expectation. After consid-
erable algebraic simplification, we obtain Eg{6%) — gi{c?)
= —gi{o?) + o(t™"). Therefore, g (&%) + g:{6?) is cor-
rect to O,(t™!) in estimating g,(e?). It now follows that
an estimator of the MSE approximation with expectation
correct to O(t™Y) is given by

mse{t{6?, y)] = £.{67) + g{6%) + 28:(6%). (5.7)

Similarly, for the random regression coefficient model,
mse{t{&2, y)] is given by (5.7), with

gulo?) = XK1 - §)al, (5.8)
gul0?) = XH1 - 7)¥E3) "o, (5.9)
and
gilot) = X Exh) Hob + o¥(Zxl)1] ]
X [otvar(6l) + otvar(a?) - 20lsicov(al,al)]. (5.10)
Furthermore, under normality of {v} and {e;}
var(?) = 2(n — )"lgd, (5.11)
var(g?) = 2a:(n — 1)t — D(n - ) 'o?
+ 2&;6303 + ﬁ*pﬂ':l, (5.12)
and
cov(a?, 52) = —(r — Dz'lvar(d?), (5.13)
where Ase = tr(MZZ')%

It follows from (4.12) that an estimator of MSE ap-
proximation for finite populations is given by
(A = fiymse(e (6% ¥))
+ N1 - f)'el], (5.14)
for the nested-error regression and random regression

coefficient models. Here, mse(t* (62, y)) is given by (5.7),
with X replaced by x*.

mse[tf(62, y)] =

= 178~
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Turning to the Fay-Herriot model, we get

mse[t{A, ¥)] = gl A + gdA) + 28.(A), (5.15)
where
gulA) = AD(A + D)7, (5.16)
g(A) = DA + D) %(X'V-X)"'x, (5.17)
and
g{A) = DHA + D) *var(A). (5.18)
Furthermore, under normality of {v} and {e}
var(A) = 20-[A? + 245D/t + D], (5.19)

where the neglected terms in the approximation are of
lower order than O(¢~"). Morris (1983) proposed empirical
Bayesian confidence intervals for the mean ; in the equal-
variance situation with D; = D through a slight general-
ization of his previous result (Morris 1981) for the special
case of u; = u + v;. His intervals are given by fi; * z,55;,
where Zan is the upper-af2 point of the N(0, 1) distribu-
tion, & is the empirical Bayes estimator esscnnally cquw-
alent to t{A, y), and s} = g {A) + g.(A) + 2D¥A +
D)~%'(y;, — x;)?, neglecting terms of order o(t™!) in his
formula for s7. It is interesting to note that s reduces to
aild) + g.{A) + g;,(A) to the order of approximation if
we teplace (y; — x/B)? with its average value, (~'3(y; —

x; 8)2. This estimator is equivalent to the estimator of MSE
obtained through our approach if g,{A) is not adjusted for
its bias to O(t'). Morris (1983) gave a heuristic extension
of s} to the case of unequal Dy, but the comparison of his
formula with (5.15) is not clear (although the first two
terms agree).

Following Morris (1983), we propose (6% y) =
Zon[mse(t{ 62, y))]'* as confidence intervals for the nested-
error regression and random regression coefficient models,
and (A, §) = Zan[mse(t{A, ¥))I'? for the Fay-Herriof
model, for nominal level 1 — a. As t — o, ¢ and 4
converge in probability to o? and A, rcsPecnvely, and
hence it follows from Slutsky’s theorem (e. g., see Bickel
and Doksum 1977, p. 461) that the coverage probability
of these intervals tends to the desired level, 1 — @, pro-
vided that the random errors {v} and fe;} (or {e} in the
Fay-Herriot model) are both normally distributed. Morris
noted this asymptotic property for his intervals as well.

6. RESULTS OF A MONTE CARLO STUDY

A Monte Carlo study under the nested-error regression
model with one auxiliary variable, y; = a + fx; + v, +
€;, was conducted to study the efficiency of two-stage es-
timators, the accuracy of the second-order approximation
to MSE, and the relative bias of estimators of MSE. We
used the values @ = 5.5, f = .388, 02 = 292, and ¢ =
64, which were obtained by Battese et al. (1988) as esti-
mates from some data (yy, x;), with y; equal to corn acres
and x; equal to the number of pixels of corn for the jth
sample segment of county i (in lowa) (j = 1, ..., n;i
= 1. ..., 12). In their data set, n, = 1 for three of the

counties. We pooled these three counties, and we in-
creased the number of small areas, ¢, to 20 from 10 by

- duplicating (x;;, n;, X) (reported by Battese and Fuiler).

We then gcnerated 10,000 independent sets of normal vari-
ates g; (j = coanpi =1, 000 W andy; (=1,
, 20) t'rom N(O gt = 292) and N(0, o2 = 64). Using
the given x; values, we then obtained 10,000 sets of {y;;:
j=1,...,n35i=1,...,20} from the model y; = 5.5
+ .388x; + v; + e;. Monte Carlo values of MSE[t(é?
Y], E mse[t{&?, y)], and so forth were computed from
the 10,000 data sets.

Similarly, independent data sets were generated from
the following nonnormal distributions: double-exponential
(symmetric, long-tailed), uniform (short-tailed), and ex-
ponential (positively skewed), such that v; and ¢; have
means O and variances 64 and 292, respectively.

A brief summary of the Monte Carlo results is given in
the followirig, but the details can be found in Prasad and
Rao (1986).

61 Efficiency of Two-Stage Estimators

The relative efficiency of the two-stage estimator £{G?,
¥) under normal errors {v;} and {e,,} ranged from 123% to
184% with respect to the regression synthetic estimator
y{syn) = & + f%;, and from 142% to 174% with respect
to the approxxmately unbiased regression estimator y{reg)
= ¥ + B(X; — T), where & and § are the ordinary least
squares estimators of a and f§, respectively. The relative
efficiency with respect to y{syn) increases as n; increases
from 2 to 6, whereas the relative efficiency with respect
to y;(rcg) exhibits an opposite trend; that is, it decreases
as m; increases.

6.2 Accuracy of the Second-Order
Approximation to MSE

The relative error (RE) of the second-order approxi-
mation to MSE, averaged over small areas having the same
n;value, is small (= 2%) under normal errors {v} and {e;},
and it is not jarge under deviations from normality for {e;}
only (< 7%). Nevertheless, it leads to considerable over-
statement of MSE; RE ranges from 11% to 19% when
both errors are generated from the exponentizal distribu-
tion. In addition, it is not quite satisfactory when both
errors are double-exponential, with RE ranging from 6%
to 14%. Under uniform distribution for both errors, the
approximation leads to a slight understatement.

The accuracy of the approximation depends on the neg-
ligibility of the cross-product term, 2E[t{62, y) — td{o?,
Vilt{o?, y) ~ u]/MSE, which is exactly 0 under nor-
mality. The value of the cross-product term ranged, as m;
increases from 2 to 6, from —5% to —15% under expo-
nential distributions and —4% to —8% under double-
exponential distributions, compared with —1% to —4%
under exponential distributions for {¢;} only and —1% to
~2.5% under double-exponential distributions for {e;}*
only; that is, the approximation is satisfactory when the
random effects {v} are approximately normal.
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6.3 Relative Bias of Estimators of MSE

The relative bias of the normality-based estimator of
MSE, mse[t(G2, y)], averaged over small areas having the
same n; value, is small (< 7%) when both {u} and {e,} are
normal or uniform, or when {v;} are normal and {¢;} are
uniform. Nevertheless, as n; increases from 2 to 6 it
ranges from 3% to 16% under double-exponential distri-
butions and from 2% to 19% under exponential distri-
butions, compared with 2% to 11% under double-expo-
nential distributions for {e;} only, and 1% to 14% under
exponential distributions for {e;} only. The customary es-
timator of MSE, g/(6¢?) + g,(6?%), which ignores the un-
certainty in the estimator &2, leads to severe underesti-
mation of true MSE.

Overall, the Monte Cario study indicated that the two-
stage estimators lead to conmsiderable gain in efficiency
over the customary regression synthetic estimator or the
approximately unbiased regression estimator. In addition,
(5.7) is a reliable estimator of MSE for approximately
normal or short-tailed distributions of {v;} and {e;}, and to
a lesser extent it is reliable for long-tailed or positively
skewed distributions of {e;;} and approximately normal {v;}.

APPENDIX: PROOFS

Al Order of Approximation to the MSE of the
Two-Stage Estimator

We consider the general mixed model (3.1) withy = col,..x(¥),
X = oolizs(X), Z = diagss{Z), ¥ = coligsd{v), and e =
colyzis(e;), where y; and e; are n; X I random vectors, X, and Z;
are (respectively) i, X k and n; x b, matrices of known constants,
v;is a b; X 1 random vector, and n = Zg, is the total sample
size. Furthermore, e; and v, are such that R = diag,;5(R)), G
= diagiss(G), and 8 = (&,, . .., 8,)', where R, and G, are
(respectively) n; X n; and b, % b; matrices depending on 0. In
addition, g, = k/B + mv with m; = col,;,5(6,m,), where &, =
lifi=1{!and 4, = 0ifi # {, k, and m; are (respectively) p x
1 and b; X 1 vectors of known constants, and Bisap X 1 vector
of parameters. '

We assume the following regularity conditions:

1. The elements of X and Z are uniformly bounded such that
XV'X = 0ou".

2. sUpPg M = A; < ® and supg,b; = 4; < .

3. The elements of R; and G, are uniformly bounded and dif-
ferentiable with respect to 0.

4. 8, = y'C;y is a translation-invariant unbiased estimator of
6, where C; is of the form C; = diageslO( V]onn +
[O(t)].a- Here [O(t ")) nxm denotes an m X m matrix with
elements uniformly of order O(r~).

We now state and prove our main theorem, which shows that
the order of neglected terms in Approximations (4.3) and (4.4)
to E[d(0)’(6 — @) is o(t™").

Theorem A.1.  Suppose that the regularity conditions 1-4 hold.
Then, under normality for the random errors in the model (3.1),
E[d(8)'(6 - o)

" = t[(Yb))V(VD,)'E(6 — 8)(@& — 0)'] + a(t™)),
" where Vb = coli,(0b//38,) and b = m/GZ'V .
The proof of Theorem A.1 involves several lemmas,

(A.1)
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Lemma A.l. Let A, and A, be nonstochastic matrices of
order #, and v ~ N0, %), where X is positive definite. Then,

E[s(e’Au)u’] = (ir A,Z)Z + 2XAZ, s =12,

E [H‘ (u’A,u):| = 2tr AZAZ + (tr A Z)(1r A,Y),
and
E [u l_[] u'A,u)u'jl = (tr A, Z)(tr A,Z)E + 2(tr A, Z)XA,3

+ 2(tr A,T)ZAE + 2(tr A, ZA,E)S
+ 43A, AT + 435A,3A5.

Proof. Proof is obtained through direct extension of the re-
sults of Srivastava and Tiwari (1976) for N,(G, I).

Lemma A.2. Letu ~ N0, X), z; = Afn, and ¢; = v'Au

(j=1,...,p), where A; and A; are nonstochastic of order n
X land n X n, respectively. Then,
E{z'(q — EqQ)f = tr .3,

P P

+ 42 DNZAZAZL + MIAZAZA), (A2)
=1 i=l
wherez = (z,,...,%),9=(q:,-..,¢,),and £, and £, are
the covariance matrices of z and q, respectively. )
Proof. The result of (A.2) follows from Lemma A.1, after
noting the following: Eq; = tr A X, cov(g;, q)) = 2tr AZAZ,
and

Elzizi(q. — Eq)(g; ~ Eq))]
= A E[o(u'Aua’Au)u’|A; — (Eg)A Efu(u’Au)u’]A,
= (Eg)M Elu('Aun)n'l\; + (Eg)(Eg)A/ZX,.

Lemma A.3. Let (a) .., = diagea(E), (0) Cuxw =
diag<is{ O] xn + [O(F D] axas (€) T = cOlcyc£0licja, (O(t™1)),
and (d) s; = col,<4<£01 5., (840(1)), where %;is an n; X n, matrix
with bounded elements. Then, the following results hold: (e)
ICZICE = [0t )]uai (f) 5Zs, = O(1); (g) (r + s)' ZCECX(r

+5) = O Y.

Proof. By computing the indicated products using (a)~{d),
results (e)}(g) are obtained.

Lemma A.4. Under the regularity conditions 1-3, letting
d{"(6) be the jth element of d(8) = a(8)/30, we obtain

cov(d!"(@), d“(8)] = [ab!/a6]V[ab;/a6) + O(tY). (A.3)

Froof. Using 3(AB)/36 = (3A/30)B + A(dB/30) and aB-Y/
48 = —B-'(3B/00)B~!, we can write d(8) = (E(/)" + ob!/
dfJu, where w = Zv + e, and

() = @ - mGZ'V-X)X'V-X)-!
X X'(8V-Y38)A — (ab//a6)X(X'V-1X)' X'V,
with A = [ ~ X(X'V-'X)-'X'V-', Therefore,
cov[d[(8, ), d°(0, y)] = (E(/) + abi/36)V(E(!) + ab//a6))".
(A.4)
Now, from the regularity conditions 1 and 2 it follows that the
elements of L(j) are O(t™') and ab//a6;, = [col.(5,0(1)}},
by exploiting the block-diagonal structure of G and Z and
V-f, and then by verifying that X(X'V'X)'X' =

[OU )] XXV'X) X GV-Y0A = [0 Vaxe, and
XX'V-' XY "X'V-!' = [0t )].... Hence by Lemma A.3 (f) the
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desired result (A.3) follows from (A.4), noting that V is the form
2 of Lemma A.3.

Proof of Theorem A.1. The desired result (A.1) is obtained
from (A.4) by first showing that

E[d(8, y)'(B — 0)* = t[A()E® — 0)(D — 8)] + ot
(A.5)

and then using Lemma A .4 to replace A(0) with (Vb/)V(Vh;)'.
Using Lemma A.2 with A} = £{j)" + ab//af; = A{i)' (say),
z=4d(8),X =V, A, =C,and q = 6, we get
E[d(8, y)'(8 ~ O)F = t{A(8)E(® — 0)(6 - 08)']
PP
+ 42 Y [MEYVCVCVAL) + M) 'VEVCVAD]. (A.6)

j=l d=1

Now, noting that A;(f) and C; are of the form r + s and C of
Lemma A.3, it follows that the last two terms of (A.6) are of
order o(t™'). Hence (A.5) is true.

A2 Order of Taylor Serles Approximation (4.2) for the
Fay-Herriot Model

We now show that the order of neglected terms in the Taylor
series approximation (4.2), under the Fay-Herriot model, is o(t"").

Theorem A.2. Let the variances D, satisfy 0 < D, = D; =
D, < wfor all {, and let &, = x/(X'X) 'x; be such that max,, k;
= O(t™"). Then,

E[t{A, y) - A, D = E[(A — A)t{A, §)/3AF + o(t™).
(A.7)
The proof of Theorem A.2 requires the following two lemmas.

Lemma A.5. E(A — A = O(t™) (s = 1).

Proof. Wewrite A — A as
A - A= @~ D75 - xpY

~ (B - B)X'X(B - B) — Z(4 + D)1 - h)]
={t - K)"'[ZU{A + D) — TE(A + D)h), (A8)

where B = (X'X)-'X'y. Furthermore, U, = (§: — x/8)¥/(A +
D) — 1= U - 1, with E(U) = 0 and where the U's are
independent x! variables, and T = (B — B)(X'X)"'(B - B)/
(A + D)h; with E(T) = Oand T = Zt AV/Z} 4, where the
V's are independent x} variables, the 4s are the eigenvalues of
(X'X)"(X'VX), and 24, = Z(A + D)A,. The cigenvalues A, are
bounded, since 4,,, = A + D,.
It follows from (A.8) that

E(A - AP =2(t — k) [E(SU(A + D))
+ ET(S(A + D)hY] = 0@,

since ET? = O(1), 5(A + D)k, = O(1), and E(SU{A + D)y’
= ZEUKA + D) = (A + D,E(U) = O(). Similarly,

E(A - Ay = 2(t — k) 2[EGULA + D))¥
+ ET¥(Z(A + D)h)¥]
=007, s=2,
noting that E(RU(A + D))* = O(r), since E(U) = 0.

Lemma A.6. E(A - A) = O(t) (s = 1) and E[4 - A}
= O ).
Proof. We have

Pr(A <0) = Pr(A — A = - A)
=Pr(|A — A] = A) = E(A - A)MAY

by Chebyshev’s inequality, Hence Pr(A = 0) = O(¢t™") for any
desired /, by Lemma A.5.
It now follows that
E(A - A)* = E[(A - A)¥A = 0]Pr(A = 0)
+ E[(A - A)*|A > 0]Pr(A > 0)
A¥Pr(A =0) + E(A — A)» = O(™),
choosing ! = s and using Lemma A.5. Furthermore, writing (A
— AY = AW, where W = 1ifA =0and W =0if A >0,
from the Cauchy-Schwarz inequality we get E[A — AJ =
[EA*Pr(A < 0)]'* = O(t™"), by choosing Pr(4 = 0) = O(t™)
and noting that EA* = 8[E(A — A)* + AY] = O(1).
Proof of Theorem A.2. By Taylor series expansion of (A,
¥) about the point A, we have
HA ) — (A, 7)
= (A - A)at(A, 7)/3A + KA — AVS(A*, )/aA",
where |A* — A| < |4 — A}. Hence
E[t{A ) — (A, PP = E[(A — A)at{A, 1)/8A) + R, + R,
where
R, = E[(A - A)a{A, V)IA][(A — A)Ydu(A*, §)/aA*]
and R, = E[(A — A){o¥(A*, ¥)/aA*}].
We first show that R, is o(t™'). We have
at{A, ¥)8A = D{A + D) 'a(x!p)/aA
+ D{A + DY Y7, - xB),
where B = (X'V7'X)7(X'V-'y) and o(xip)/3A =
-/ (X'V'X)-(X'V-%i), with & = § — X@. The following ma-
trix result is used repeatedly in the subsequent steps of the proof:
If A and B are nonsingular such that z'Az > z’Bz, then z'A "'z
< z'B~'zfor every z # 0 [e.g., see Graybil! 1969, theorem 12.2.14,
result {5)]. Using this result and the Cauchy-Schwarz inequality,
and noting that @'V~ < u'V~'u, where u = ¥ — XpB, we get
laxi B)/3A] = (x](X'V-1X) k)@ V-5
= (max k)'Y(A + Dy)"*Dp**u'n)'?.  (A.9)

TA

Hence
lae{A, §)/3A| = |a(xiB)/a4| + D;YF ~ x/Bl,
where |3(x!#)/3A] is given by (A.9).
Tuming to the second derivative of #(4, ¥), we get
FU(A, F)I0AY = DA + D) '3%x/P)/9A*
- 2D{A + D) a(xP)aA — 2D(A + D)5 — xiB),
where
Ux!B)OA? = Ix(X'V'X) ' X'V-%
- 25/ (X'VIX) X' VIX(X'V X)XV .
Hence, applying the Cauchy-Schwarz inequality and the matrix

result to the previous two terms, after some simplification, we
get

|o%(xiB)/aA%| = d(max h)"™(A + Do)D" Hu's)'?,  (A.11)

(A.10)

noting that @'V X(X'V-'X)-'X'V-2a = @'V-i, since
VZX(X'V-'X)'X'V- 11 js a symmetric, idempotent matrix with
eigenvalues 1 or 0. Hence using (A.9) we obtain
|#t{A, yHaAY

= 6(max A)"*(A + Dy)?Di¥u'n)? + 2Dy — x.B|.
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Therefore,
fal(A, ¥)/0 A7
= a4 + DY) + o7 — xIB). (A.12)

where ¢, and c, are O(1), noting that { max; ,, = O(1). Fur-
thermore,

(5 — xBY = 2[u? + (x/(B - B
=2[u? + (A + Dy)(¢t max h3Di((1/0Zud)],

by using the Cauchy-Schwarz inequality on (x!(f - B))?, where

4; = y; — x;{P. Therefore, from (A.12) we get R, =< E[¢,(A -

AMA* + DY(1/DZuY) + 26(A — A)ul], where é, is O(1).
Now,

[E(A = A)(A* + Do)(1/)Z@)| < EfA - AJ((1/5)Zu)
+ (A + DyE(A — AY((1/NZud), (A.13)

since |A4® — A < |A — A|. Therefore, by Lemma A.6 and the
Cauchy-Schwarz inequality the first term on the right side of
(A.13) is o(¢"), noting that E((1/0Zu?)? is O(1) because the u’s
are independent N(0, A + D). Similarly, E(A — AYu? = o(t™")
because E(if) is O(1). Hence R, is o(t™").

By again appealing to the Cauchy-Schwarz inequality, it fol-
fows that R, is o(s~') as well, noting that E[(A — A)at{A, 7)/
dAJ is O(~?) using (A.10). )

Finally, the result E[(A — A)at{A,¥)/04) = E[(4 ~ A)at{A,
¥)/OAF + o(t™') follows by using the result E(A — A)* = O(-Y)
and the Cauchy-Schwarz inequality, and writing A - 4 = A —
A+A-A

A3 Order of Approximation to the Estimator of
MSE for the Fay—Hermlot Model

We now show that the approximation to the estimator of MSE,
(5.15), has expectation correct to O(t-') under the Fay-Herriot
model.

Theorem A.3. Let the conditions of Theorem A.2 hold. Then,

E[gi{A)] = gdA) - gu(A) + o(t™Y), (A.14)
E[g:AA)] = g(A) + o(t™), (A.15)

and ’
E(gx(A)] = gulA) + o(t"). (A.16)

Proof. We first consider g,{4) = AD(A + D)-'. By Taylor
series expansion of g,(A) around A, we get
8lA) = glA) + (A - A)giA) + YA - AYgidA)

+ YA - AY{gi(A") - gi{A)), (A.17)
where |A* — A| < |4 - A|. Now, noting that E(A - A4) =
E(A - A)and E|4 — A| = o(t™"), by using Pr(4 = 0) = O(1-)
for any desired / (Lemma A.6) we get [E(A — A)gi(A) =
B{A)EIL — A[ = o(t™"), since gi{A) = DA + D)2 < 1.

In addition, E(A — A) = E(4 — A) + o(t™") = var(A} +
o(r~", from Lemma A.6. Hence

E[{A — AYgiA)] = 1 var(A)gif4) + o)
= —gdA) + o(t),

noting that gi{4) = —2D¥A + D) For the last term of
(A.17), we have

lg4A4*) — gia)]
= 2DHA + D) A* + D)|(A* + DY - (A + DY
S2DIIAY ~ AP + 3(A + D)(A* - A)

Joumnal of the American Statistical Association, March 1990

+ 3(A + DyYA* - Al
<2DY[A - AP + 3(A + Dy)(A - Ay
+ 3(A + DA - Al
Hence
E(A — AYlgi(4°) - gia)l
= 2D{(E|A — AP + 3(A + DYE(A - A)"
+ 3(A + DyYEIA - AP] = o(17),

noting that E(A ~ A)* = O(1) so that E|A — A} = [E(4 -
AVE(A ~ A)]? = o(r"") and E|A - AP = [E(A - AYE(A
— A¥]'? = o(+'). Hence (A.14) is established.

Turning to g,{A), we have

8.(A) — glA)
= DA + D) Ix/(X'V-X)x, - x/(X'V-X)"'x)
+ DIX(X'V-X)"'x[(A + D)2 - (A + D). (A.18)
By Taylor series expansion around A, we get
I = x(X'V-X)x, - x(XV-IX)
(A - A)ax/(X'V-"X)"'x/3A],- -
= (4 - XXV X)XV KX V)

where V* is the value of V when A = A*®. Using the previous
matrix result, we get ||| < DA - A| x(X'V*-'X)-'x,| or

E|l| < Di'(max h)E[|A — A|(A* + D,)]

= % Di'(t max R)[E(A — AYE(A* + D) =o(-Y),
noting that t max; h, = O(1), E(4 — A)* = O("), and E(A*
+ DyP = 2[E(A - A) + (A + D,Y] = O(1). Similarly,
EA + D)2 - (4 + DY,

< DI[E(A = A) + 2(A + DyE|A - A = O(t-),

noting that [E|A — A|P? = E(4 — A). In addition, x/(X'V~'X)"1x,

=(L/0(A + Dy)(tmax, k) = O(t"). It now follows from (A.18)

that E|g.(A) — g.{A)| = o(t"!), so (A.15) is established.
Finally, turning to g,(A) we have

glA) — g(A) = I)DHA + D)4 - Ay
+ 2(A + D)A - A))
+ (2/0)DXNA? + 2AD + LD¥Y)
X [(A+ D)3~ (A+ D)7
=5+ [, (A.19)

say, where D = 5D/t. Hence Ell| < QINDEA ~ AR +
AA + DY)E|A — Al] = o(t7') and

E|lL] < (2/)D;Y(A* + 2AD, + DY)[EIA - AP
+3(4 + Dy)E(A — A) + 3(A + D,EIA - Al] = o(t™),
noting that E[A — A| = O(-"%). It now follows from (A.19)
that E|g:{A) — g{4)| = o(r"), so (A.16) is established.
[Received October 1986. Revised January 1989.]
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BAYESIAN PREDICTION IN LINEAR MODELS: APPLICATIONS
TO SMALL AREA ESTIMATION!

By GAURI SANKAR DATTA AND MarLay GHOSH

Unuwversity of Georgia and University of Florida

This paper introduces a hierarchical Bayes (HB) approach for predic-
tion in general mixed linear models. The results find application in small
area estimation. Our model unifies and extends a number of models
previously considered in this area. Computational formulas for obtaining
the Bayes predictors and their standard errors are given in the general
case. The methods are applied to two actual data sets. Also, in a special
case, the HB predictors are shown to possess some interesting frequentist
properties.

1. Introduction. It has been some time now that the government agen-
cies in the United States, Canada and elsewhere have recognized the impor-
tance of small area estimation. Estimation of this type is particularly well
suited in a setting that involves several areas (or strata) with a small number
of samples available from each individual stratum. The estimates of the
parameters of interest (like the mean, variance, etc.) for these areas can
profitably “borrow strength’’ from other neighboring areas.

The appropriateness of model-based inference for small area estimation is
widely recognized. We may refer to Fay and Herriot (1979), Ghosh and Meeden
(1986), Ghosh and Lahiri (1987), Battese, Harter and Fuller (1988), Prasad
and Rao (1990), Choudhry and Rao (1988), Royall (1978) and Lui and Cumber-
land (1989), among others. The methods that have usually been proposed use
either a variance components approach or an empirical Bayes (EB) approach,
although the distinction between the two is often superfluous [Harville (1988,
1990)]. Both these procedures use certain mixed linear models for prediction
purposes. First, assuming the variance components are known, certain best
linear unbiased predictors (BLUPs) or EB predictors are obtained for the
unknown parameters of interest. Then the unknown variance components are
estimated typically by Henderson’s method of fitting of constants or the
restricted maximum likelihood (REML) method, and the resulting estimated
BLUPs (also referred to as empirical BLUPs) are used for final prediction.
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BAYESIAN PREDICTION IN LINEAR MODELS

Although the above approach is usually quite satisfactory for point predic-
tion, it is very difficult to estimate the standard errors associated with these
predictors. This is primarily due to the lack of closed-form expressions for the
mean squared errors (MSEs) of the estimated BLUPs. Kackar and Harville
(1984) suggested an approximation to the MSEs [see also Harville (1985, 1988,
1990) and Harville and Jeske (1989)]. Prasad and Rao (1990) proposed esti-
mates of these approximate MSEs in three specific mixed linear models. The
work of Prasad and Rao (1990) suggests that their approximations work well
when the number of small areas is sufficiently large. It is not clear though how
these approximations fare for a small or even a moderately large number of
strata.

Ghosh and Lahiri (1989) proposed a hierarchical Bayes (HB) procedure as
an alternative to the estimated BLUP or the EB procedure. In a HB procedure,
if one uses the posterior mean for estimating the parameter of interest, then a
natural estimate of the standard error associated with this estimator is the
posterior s.d. The estimate, though often complicated, can be found exactly via
numerical integration without any approximation.

The model considered by Ghosh and Lahiri (1989) was, however, only a
special case of the so-called “nested error regression model.” A similar model
was considered by Stroud (1987), but his general analysis was performed only
for the balanced case, that is, when the number of samples was the same for
each stratum. Battese, Harter and Fuller (1988) first considered the nested
error regression model in the context of small area estimation and performed a
variance components analysis.

The objective of this article is to present a unified Bayesian prediction
theory for mixed linear models with particular emphasis on small area estima-
tion. A general Bayesian normal theory model is presented in Section 2 which
can be regarded as an extension of the HB ideas of Lindley and Smith (1972) to
prediction. Most of the models considered by earlier authors can be regarded as
special cases of our model, and certain specific illustrations are provided. Also,
in this section, we have provided in a very general framework the posterior
distribution as well as the resulting posterior means and variances of the
unobserved population units given the sampled units. The proof of the main
result of this section is given in the Appendix. For nonnormal HB analysis, one
may refer to Albert (1988) or Morris (1988).

In Section 3, we discuss the computational issues related to the estimation
of parameters of interest with particular emphasis on the estimation of
population means simultaneously for several small areas. Closed-form expres-
sions cannot usually be obtained for the posterior means and s.d.’s of such
parameters, and numerical integration becomes a necessity. For very high
dimensional integrals, direct numerical integration is often unreliable, and
sometimes even impossible to execute, and some of the recently advocated
Monte Carlo integration techniques may be of help. We shall indicate in
Section 3 how the Gibbs sampling technique introduced by Geman and Geman
(1984), and more recently popularized by Gelfand and Smith (1990), works in
some important special cases of our general framework. The related substitu-
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tion sampling algorithm of Tanner and Wong (1987) and the traditional
importance sampling technique will also be discussed very briefly.

However, in small dimensions, it is often easier to perform direct numerical
integration than to use any Monte Carlo numerical integration method. For
instance, if the integrand is a very complicated function and cannot be
approximated very accurately by a simple smooth function, the importance
sampling technique can at best result in a slow convergence of the desired
integral. The Gibbs sampling is usually very slow, and for evaluation of small
dimensional integrals, any simplicity of this approach cannot adequately com-
pensate for the enormous computing time needed for the method’s successful
execution.

For the sake of illustration of our methods, we have thus used in Section 4
direct numerical integration methods for data analysis. Two examples are
considered in this paper. The first example given in Section 4.1 requires
numerical evaluation of two-dimensional integrals, while the second given in
Section 4.2 requires evaluation of one-dimensional integrals. The data set
considered in the first example pertains to the Patterns of Care Studies, a
study involving the quality of treatment received by cancer patients having
radiation therapy as the primary mode of treatment. The present data form a
subset of a much larger data set analyzed in Calvin and Sedransk (1991). We
have considered a stratified finite population from which samples are drawn in
two stages using simple random sampling at each stage. The HB estimator of
the population mean is compared with an EB estimator proposed in Ghosh and
Lahiri (1988), a design unbiased estimator given in Cochran (1977), page 303,
an expansion estimator, a ratio type estimator and another estimator proposed
in Royall (1976). The HB estimator has the smallest average mean squared
error among these six and the improvement over all but the EB estimator is
quite substantial.

The second example is related to the prediction of areas under corn and
soybeans for 12 counties in North Central Iowa. The problem was originally
considered by Battese, Harter and Fuller (1988) using a variance components
method. We have used this example to illustrate how a naive EB approach can
sometimes grossly underestimate the associated standard error of an EB
estimator. In this particular example, the posterior s.d.’s as obtained by us are
slightly smaller than the ones of Battese, Harter and Fuller.

In Section 5, we have considered a special case of the general HB model and
have provided the posterior distribution of the unobserved population units
given the sampled units. In this special case, the HB predictors of the linear
parameters of interest are shown to be the best within the class of all linear
unbiased predictors under the assumption of finiteness of second moments.
For a class of spherically symmetric distributions including but not limited to
the normal, the HB predictors are shown to be optimal within the class of all
unbiased predictors. Optimality properties of this type extend the earlier work
of Henderson (1963) and others on the prediction of real-valued parameters to
the prediction of vector-valued parameters. The proof of the main result of

‘Section 2 is deferred to the Appendix.
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2. The description and analysis of the HB model. Consider the
following Bayesian model:

(A) Conditionalon b = (by,...,5,)", A =(Ay,...,4,)7 and r, let
Y ~ N(Xb, r~}(¥ + ZD(A)Z7)),

where Yis N x 1.
(B) B, R and A have a certain joint prior distribution proper or improper.

Stage (A) of the model can be identified as a general mixed linear model. To
see this, write

(2.1) Y =Xb+ Zv + e,

where e and v are mutually independent, with e ~ N(0, r~!¥) and v ~
N(0, r~'D(A)), where e is N X 1 and vis ¢ X 1; in the above X (N X p) and Z
(N X q) are known design matrices, ¥ is a known positive definite (p.d.)
matrix, while D(A) (¢ X ¢) is a p.d. matrix which is structurally known except
possibly for some unknown A. In the examples to follow, A involves the ratios
of the variance components. Sometimes we will denote D(A) by D when A is
known.

In the context of small area estimation, partition Y, X, Z and e, and rewrite

the model given in (2.1) as
Z(1) e
Z(z’)v v (e(z’)’

Yo X
(2.2) (Y‘z’) = (X‘Z))b +
where YV and e are n x 1, X" is n X p and ZV is n X g. Also, Y® and
e®are (N —n)x 1, X?is (N — n) X p and Z? is (N — n) X g. We assume
for simplicity that rank(X") = p.

In the above YV is the vector of sampled units from m small areas, while
Y is the vector of unsampled units. It is possible to partition YT into
YT = (YT, YIT), where Y{(n, X 1) is the vector of sampled units for
the ith small area. Similarly, Y®7 can be partitioned as Y@T =
(Y{P7,...,YPT), where Y®((N; - n,) X 1) is the vector of unsampled units
for the ith small area.

Following the model-based approach in survey sampling, one of the primary
objectives of this paper is to find the conditional (predictive) distribution of Y2
given Y = y®, The analysis will be done in two stages. In the latter part of
this section, we derive the predictive distribution of Y@ given Y¥ putting
independent uniform prior distributions on B and gamma distributions on
R,AR,...,A,R.

Before finding the conditional distribution of Y® given Y, we identify
some of the existing models introduced for small area estimation by several
authors as special cases of (2.2). In what follows, we shall use the notation L,
for an identity matrix of order u, 1, for a u-component column vector with
each element equal to 1 and J, = 1,1%. Also, let col,_,,(B,) denote the
matrix (B, ..., B7)” and let ®7_,A; denote the matrix [A‘ N }

0 - A,
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First, consider the nested error regression model
(2.3) Yl-j=xf:,-b+vi+eu, I 22 Vs pgllyy = Do

The model was considered by Battese, Harter and Fuller (1988). They assumed
the v,’s and e,,’s to be mutually independent with v,’s iid N(0, (Ar)~ 1), and
e;;'s iid N(O,r~'). In this case, X" = col; oo mleol; ;o (x])), XP =
coly cigmleol, 1 onXIN, ZM = ® 1, and Z® = &7 1y, ¥ =1,
t=1, A=A and D(A) = A7'I_. In the further special case of Ghosh and
Lahiri (1989), x,; = x; for every j=1,...,N,, i =1,...,m. Note that A =
V(e;;)/V(v;), a ratio of the variance components.

The random regression coefficients model of Dempster, Rubin and
Tsutakawa (1981) [see also Prasad and Rao (1990)] is also a special case of
ours. In this setup, X, X ¥ and D(A) are the same as in the nested error

regression model, but

m It
ZD = iejl [C0115j5n,-x:% vy B i% [colnt_ﬂsjsNi x|
The models given in Choudhry and Rao (1988) are special cases of our general
model as well.

It is possible also to include certain cross-classification models as special
cases of our general linear model. For example, suppose there are m small
areas labeled 1, ..., m. Within each small area, units are further classified into
¢ subgroups (socioeconomic class, age, etc.) labeled 1,.. ., ¢. The cell sizes N;
i=1,...,m, j=1,...,c, are assumed to be known. Let Yipr B=Lyu oy Ny
denote the measurement on the kth individual in the (i, j)th cell. Conditional
on b, r and A, suppose

_ T
Yiju=x5b+ 1+ 0 +y; + e,

2.4
(2.4) k=1,...,N;i=1,....m,j=1,...,¢,

3

with 7,’s, n,’s, v;;’s and e;;,’s mutually independent with e;;x’s iid N(O,r=1),
v:;8 did N(0,(A;r)™"), m’s iid N(O,(A,r)~Y) and r’s iid N(O, (A,r)7h).
Special cases of this model have been considered by several authors. Lui and
Cumberland (1989) [also Royall (1978)] considered a model where 7;'s and vy;,’s
are degenerate at zeros. Also, they assumed the variance ratio A, to be known
in deriving their estimators and did not address the issue of unknown Ay
appropriately.

Next we show that the two-stage sampling model with covariates and m
strata is a special case of our general linear model. Suppose that the ith
stratum contains L; primary units. Suppose also that the Jjth primary unit
within the ith stratum contains N;; subunits. Let Y, ;& denote the value of the
characteristic of interest for the kth subunit within the Jth primary unit from
the ith stratum (k =1,..., ipJ=L1...,L,i=1,...,m). From the ith
stratum, a sample of /; primary units is taken. For the Jth selected primary
unit within the ith stratum, a sample of n, ; subunits are selected. Without
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loss of generality, the sample values are denoted by Yij "
J=Lysaugloy b= Lisss,
Assume conditional on b, r and A:

E=1,...,n

Ly

_ Y[-J-k=x§;.b+§i+nu+eu,e,
' k=1,..,N;,j=1,...,L,i=1,....m,

where ¢,'s, m;;’s and e; ;,’s are mutually independent with ¢,’s iid N(0, (A;r)™h,
n;;'s 1id N(O,(Ayr)™1), e, ;,'s iid N(O, r~1). Let

YO = ol [ col { col (x.jk)}],

l<i<m | l=jsl,; l<k<n

Y® = ool [ col { col (Y,-jk)}],

l<i<m|1<j<L;\u;;sk<N,
ul-j=1+nijI[vali],l=1,...,m.
T
v=(s"wlwl), s= col (), w,= cd ( col (n,-j))
l<i<m l<i<m ‘l=j<l!;

and

= 1scioglm (£‘-+1(:2}5L,-(mj))'

Also, let e*) be defined similarly as Y, i = 1,2. Then (2.5) can be written
as (2.2) with appropriately defined XV, X®, Z® and Z®. Note that here ¢ = 2,
A=A, A)T, ¥ =1, D\) = Diag(A;'I,,A; ;) with N = Eﬁ1£f’i1MJ-
The ideas can be extended directly to multistage sampling. We may mention
here that Bayesian analysis for two-stage sampling was introduced first by
Scott and Smith (1969) in a much simpler framework. A multistage analog of
their work was provided by Malec and Sedransk (1985).

Next, in this section, we provide the conditional distribution of Y@ given
Y™ =y, The following nomenclature will be used to label certain known
distributions. A random variable Z is said to have a Gamma(e, B) distribution
if it has pdf f(z) = [exp(—az)aﬂzﬁ"l/F(B)]I[D0]. A random vector T =
(T,..., 1, )T is said to have a multivariate ¢-distribution with location parame-
ter pu, scale parameter ® and degrees of freedom v if it has pdf

—(v+p)/2

(2.6) g(t) o 1972w + (¢ — ) @1t - )]

[see Zellner (1971) page 383, or Press (1972) page 136]. Assume v > 2. Then
E(T) = p, V(T) = (v /(v — 2.

We assume condition (A) given at the beginning of this section. In stage (B)
of the model, it is assumed that

(2.7) B, R,A,R,..., AR are independently distributed

with B ~ uniform(R*), R ~ Gamma(3a,, 1g,), a,> 0, g, 2 0, A;R ~
Gamma(za;, 1g,), i = 1,...,¢ with @; >0, g, 20,i=1,...,¢ In this way,
some improper gamma distributions are included as a possibility in our prior.
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Before stating the main result of this section we need to introduce addi-
tional notation. We write ¥ = £(A) = ¥ + ZD(MZ7, partition T into £ =

[2“ 2‘2] and define %55, = X,y — 2, 3'% .

To Xy
Also, let
(2.8) K=} - ZXOXOTEIXO)TIXOT -1
(2.9) M = 2, K + XP(XOTE1XW) " 'xry 1
-1
G=Z2p,+ (X(z) - Emzl—llx(l))(X(i)Tz;llx(l))
(2.10)

X(X® — 2, 251X®)T,

The posterior distribution of Y® given Y = y*¥ is given in the following
theorem in two steps.

THEOREM 1. Consider the model given in (2.1) [or (2.2)] and (2.7). Assume
that n + Li_og; — p > 2. Then, conditional on A =\ and YV =y, YO jg
distributed as multivariate-t with degrees of freedom n + Lt o8& — p, location
parameter My and scale parameter

¢
ag+ ) a;r + yOTRy®V|G.

i=1

v fas]”

i=0

Also, the conditional distribution of A given YOV = y® pag pdf

t
[N ®) a2y ROz 0] [T
i=1

(2.11) ]—[n+2f-gg,'—P]/2

5
X [ao + ), aA; + yOTRy®
i=1

The proof of Theorem 1 is deferred to the Appendix. Using the moments of
a multivariate-t distribution, it follows now that if n + Yi o8 > p + 2 then
(2.132) E[Y®|y™M] = E(Mly®V)y®,

¢ -1
V{Y®[ym] = V(My®ly®) + (n+ ¥ g, —p - 2)

i=0

(2.13)

1
y()

¢
XE[{GO + ) e+ y(l)TKy(”}G

i=1

Using (2.12) and (2.13), it is possible to find the posterior means and
variances of £(Y",Y®) = AY® + CY®, where A and C are known matrices.
The Bayes estimate of £(YV, Y®) under any quadratic loss is its posterior
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mean, and is given by

(2.14) ealy®®) = [A + CE(Mly )]y
using (2.12). Similarly, using (2.13), one may obtain
(2.15) VI{E(YD, Y?)y®] = CV(Y®|yD)CT.

Note that when A = @717 and C = & 1% _, , £Y®, Y®) reduces to the
vector of population totals for the m small areas. Computational issues related
to the simultaneous estimation of several small area totals will be addressed in
Section 3.

3. Numerical computations. It is evident from Theorem 1 that the
conditional distribution of Y given Y¥ cannot usually be obtained analyti-
cally because of the complicated posterior pdf of A given Y® = y® [see
(2.11)]. As mentioned in the Introduction, Monte Carlo numerical integration
is a distinct possibility, particularly when the dimension of A is large. One may
think of the importance sampling method as a natural candidate for such
purposes. To implement such a procedure, we write f(Aly™") given in (2.11) as
f(Ay®D) = ck(x,y?), where the norming constant ¢ has to be numerically
evaluated. Now, for any real-valued function A(A),

[ [ R0 My ) d

_ 5 TRV {E(A YD) /g (My ™) g (My ) d A
5 ol yP) /gy ) e(Ay®P)dr

where g(Aly") is some “standard” pdf from which a random sample can
easily be generated. Hence [5 -+ [oh(M) f(Aly'D) dX can be approximated by

5 h(A9) {k(h(“, y(l))/g()\(i)[ y“))}
£i (XD, y D) /g (XO]y D) i

where the number of replicates is very large, and A‘”’s are generated from
g(Aly™).

Unfortunately, finding g(Aly”) in the present context can be quite form-
idable. Even when A is one-dimensional, f(AlyY) may turn out to be multi-
modal, and thus defy any simple approximation. One such example appears in
Ghosh and Rao (1991). In such circumstances, it is natural to seek other
Monte Carlo integration methods.

The recently advertised Gibbs sampler bears some interesting promise at

least in the special case when ¥ = I and D(A) = Diag(A] s KL,
where ¥_,q; = q. We shall write W, = RAt, and correspondmgly w; rA
t=1,...,t. We aSSIgn a uniform (RP) prior for B, a Gamma(3a,, 2g(,) prior

for R and Gamma(za;, 38;) priors for the W,’s, where B, R, Wi,..., W, are all
independently distributed.
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We shall write v = (v],...,v]), where v, has dimension ¢,. Based on the
model introduced at the beginning of Section 2, the joint pdf of
YO Y®O B v RW,...,W is

f(y(l),y(z),b,V, FyWiy-.-, w‘)
a rn/? exp[— rly® - XOp — Z(l)vuz]r(N—n)/z
Xexp[ — %r" y(2) — X3p - z(z)v“2]
(3.1) t
x 1 {wfi/z eXP(“%winvfﬂg)}exp(—%aor)rgﬂﬂ_l
i=1

¢
X T] {exp(—%a,-wi)wf"/z"l}.
oy

Then the required conditional distributions are given by

(32) Bly®,y®,v,r,w,,...,w, ~ N[(X"X) 'X"(y - Zv), m}XTX) ],
¢ -1

vy, y® b, r,wy,...,w, ~N (ZTZ + 16_91 r‘lw,Iql) ZT(y - Xb),

(3.3) ; -1
r"l(ZTZ+ @ T'&lwqu,) )
=1
Rly(]-), y(2)’b)v1 wls kExg wt
(3.4) ) 2 ;
~ Gamma(}{[ly — Xb - Zv|® + a,}, }(N + g,)),
“fily(l)sy(z)’ b’ v, T, W;, .] * 1
(3.5)

~Gamma(%(llvillz+a£),%(qi+g£)), i=1,...,¢,
(3.6) Y®lyD b, v, r,wy,...,w, ~ N(X®b + Z®v, r i y_,)-

Gelfand and Smith (1990) have pointed out that it suffices to know (3.2)-(3.6)
to find the joint distribution of Y®, B, v, R, W,,..., W, conditional on Y =
y‘1. Also, they have provided the recipe of finding the Monte Carlo approxima-
tion to the posterior pdf of Y® given Y = y on the basis of these
conditional distributions. However, the procedure requires p+g+1+t+
N — n random variate generations to complete a cycle. If we run m sequences
out to the ith iteration, a total of mi (p + ¢ + 1 + ¢ + N — n) random variate
generations are needed, and we need a great deal of total computing time. The
substitution algorithm of Tanner and Wong (1987) requires even ( p+gq+
l+¢+N-n)(p+q+t+N—n)random variate generations to complete
a cycle in as much as other conditional distributions involving subsets of the
random variables given in (3.2)-(3.6) are needed. Clearly, if the dimension of A
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is small, it is much simpler to execute direct numerical integration using one
of the available packages. To carry out direct numerical integration, we have
written our programs in the FORTRAN language, and héave used the IMSL
version 9.2 subroutine packages. A microvax computer was available for
execution of our programs.

4. Data analysis. We now turn to the actual data analysis. The first set
of data relates to the quality of radiation therapy care for cancer patients,
while the second set of data relates to the prediction of areas under corn and
soybeans for 12 counties in North Central Towa.

4.1. Radiation therapy data. The data were collected with the primary
objective of comparing the quality of radiation therapy for cancer patients
among subpopulations of a population of facilities where radiation therapy was
practiced. We have, however, used the data primarily for the comparison of
several estimators of the finite population mean when two-stage sampling is
performed. Our finite population of units is actually the sample units arising
from a 1978 survey of patients suffering from cervical cancer. For conducting
this survey, radiation therapy facilities were grouped into several strata that
were thought to be relatively homogeneous in the quality of care that patients
received. The five strata considered in this paper correspond to strata 1, 2, 4, 5
and 6 of Calvin and Sedransk (1991) who have provided a more detailed
description of what these strata actually are. The number of facilities con-
tained in these five strata are 10, 15, 11, 30 and 11, respectively, and are
treated as primary sampling units (PSUs). Among these PSUs, we have
selected a 3 simple random sample resulting in the selection of 3,5, 4, 10 and
4 PSUs from the five strata. From each selected PSU, with p patient records,
a simple random sample of size [3(p + D] is selected, where [«] denotes the
integer part of w.

The present analysis considers “pretreatment’ scores for each patient. For
a given patient, for each disease site, a committee of experts identified a set of
services and procedures (S/P’s) that were thought to be of prime importance
for a complete pretreatment evaluation and for planning and monitoring
therapy. The committee also assigned weights (0.5 to 4.0) to these S/P’s to
indicate their relative importance. Then, for each patient, a score is defined by
LW*Z,/Y. W*, where Z, =1 if the ith S/P is performed, while Z, = 0
otherwise; W;* is the corresponding weight. The larger the score, the closer the
patient’s care conforms to acceptable standards of care,

Let Y;;, denote the score for the kth patient in the jth facility within the
tth stratum. Although the Y;.’s lie between 0 and 1, these are weighted
averages of independent Bernoulli variables, and a normal approximation due
to the CLT is not totally out of the way.

We assume the model given in (2.5) with b = p, the general effect, and
X;; = 1. As described in Section 2, from the ith stratum, a sample of /; (< L,)
primary units is taken, while for the Jth selected primary unit within the ith
stratum, a sample of n ;i (<N, ;) subunits are selected. We denote the sample
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observations by Y, k =1,...,n,, j =1, ...,ll, i=1,...,5. Also, let y* be
the vector of sample observations, ¥;; = n Zk ik BU- Ag/(Agy + 1y ),
=Y 1 - B,J)yu/zf - B, ) ay = 1/()\ + AL (1 -B,), §=
2?=1(1 —a)yt/f_', l(1 a 3 fip= —n;;)/N;;. Then the HB predictor of
= E A Uk/ZJ iN;;, the population mean for the ith stratum, is
given by
_1 L

E E Ni_j(]' _fijBij)yij
il

+ 2 NijfijBij}
j=1

X{(l —a;)y; + ai?}

(£

L;
(4.1.1) +{( > N

J=11+1

1
v |.

The posterior pdf of A given in (2.11) simplifies in this case to

m m i -1/2
f(Al:A2|Y(1)) o (I;I I;I 1/2)(}:[1&}/2)(,\1 Y (1- ai))

i=1
m
(4.1.2) X8 +ag+ad; +ah, + ) Ky
i=1
9 —(n..+go+tg,+g2—1)/2
m m
_(ZKm') /(ZKH)) ’
f=d i1
where m = 5, s = EE“=1£§"=1EZE—11(J’zjk ~ ¥, Ky =A{1 —a;), Ky, = 1(1

a)y, Kz = A[EY (1 - B )FE — (1 - o )E’ 1(1 — Bu)y ] and n.
LI L iy ij- In ﬁndlng the HB predictor, we have used (4.1.2) with ao
80=81=82=0, a; =a, =0.0005, and have carried out two-dimensional
numerical integration.

An alternative estimator of v, is due to Ghosh and Lahiri (1988) which uses
estimates of B;;’s and a,’s rather than assigning any prior distribution on R
and A. The resulting EB estimate of v, is given by

L, o
= (Z Nu) [E N,(1 - £,B4)3
j=1 =1
(4-1.3) { 2 N + Z fij-gij}
f=I;+1

X{(l — &;)¥; . + &J*}],
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where B, =(1+24;'n, )7, & =4;'A7' +A7'Ch 1 - B, 5, =
L1 - Bij)jij/ij; L1 = Bij) if Ayl =0 andaj,-,,= =1, 'Ll_,5,,, otherwise.
Similarly, y, = L1 ,(1 -@)y /L1 -a)if A]'+# 0and 5, =m~'L™ 7,
otherwise. The estimators A; ! and A; ! are given by Ghosh and Lahiri (1988),
pages 205-206.

Four other estimates of vy, are given below. These are:

L
Z ijij)/
Jj=1

L, -1 L, ng L
ep = (2 Nu) ) Fipp T 2. (M‘j_nz’j)j’z‘j
- Jj=1lk=1 j=1

: L, -
(4.1.4) ey, = (—l—) ) Nij) (a design-unbiased estimate),
i j=1

j=1
4.1.5
( ) 2 L B
+| X N;;¥:; 3 N;; ( h» NU)
j=1 J=1 Jj=l+1
(the ratio-type estimate),
Ll -1 [i Rij
35= ( NU] E Ey:_;k
Jj=1 j=1k=
4.1.6
( ) L i 1,— £,
+(): Ny — ) n:‘j)( T ) nyj
Jj=1 j=1 =it j=1
(the expansion estimate),
L; oL ony L
€Rro = ( 2 Nij) [ X Vit L (N —nij)¥:;
ji=1 j=1k=1 j=1
(4.1.7)

(Royall’s estimate) .

L, L,
+( yij/l:‘)( 2 N;;
Jj=1

j=l+1

The estimates ey, e, and epy are all based on predicted values of the
unobserved units on the basis of the sampled units. However, in contrast to
the present model, they can possibly be justified on the basis of some other
models as given for example in Royall (1976). Table 1 provides the true
population means as well as the six different estimates for each stratum.

The average absolute biases of the HB estimate, the EB estimate, the design
unbiased estimate, the ratio-type estimate, the expansion estimate and Royall’s
estimate for the given data set are given respectively by 0.03102, 0.03158,
0.12932, 0.06277, 0.06009 and 0.04844. Thus the HB estimate has a slight
edge over the EB estimate and much greater edge over the others in terms of
average absolute bias. Also, the total sum of squared deviations of the HB
estimates from the true means is 0.0085. The corresponding figures for epg,
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TasLE 1
The true means v;'s and the estimates

i i i i i i
¥i €HB €gR €y €r €y €Rro

L 1Y

0.73326 0.79789 0.80314 0.71201 0.91849 0.92190 0.93210
0.76149 0.76357 0.76442 0.91002 0.77214 0.76815 0.75043
0.74482 0.76778 0.76844 0.78208 0.78382 0.78299 0.75043
0.68333 0.75057 0.74971 0.89651 0.73864 0.74003 0.71533
0.74549 0.74130 0.74181 0.98056 0.71313 0.72653 0.71998

[0 I < ' I R

€y, €g, €y and epq turn out to be 0.0091, 0.1211, 0.0391, 0.0400 and 0.0409.
Thus the percentage reduction in the total sum of squared deviations for the
HB estimates is 6.6 in comparison with the EB estimates, 93.0 in comparison
with the design unbiased estimates, 78.3 in comparison with the ratio-type
estimates, 78.8 in comparison with the expansion estimates and 79.3 in
comparison with Royall’s estimates. An EB point estimator is usually on par
with the corresponding HB point estimator. So the small improvement of the
HB estimator over the EB estimator in reducing the total sum of squared
deviations is not so surprising. However, the improvement of the HB estimator
over the other four estimators is indeed startling. One possible explanation for
this fact is that many of the other estimators are optimal under models which
do not take into account variation in the primary sampling units. Our model
accounts for this extra source of variation in producing more reliable esti-
mates.

We also mention in passing that the posterior s.d.’s associated with the HB
estimates in the five strata are given respectively by 0.050, 0.036, 0.043, 0.030
and 0.039.

4.2. Prediction of areas under corn and soybeans. Next, we analyze a data
set where the objective is to predict areas under corn and soybeans for 12
counties in North Central Iowa based on the 1978 June Enumerative Survey
as well as LANDSAT satellite data. The data set appears in Battese, Harter
and Fuller (1988) who conducted a variance components analysis for this
problem. The background of this problem is as follows.

The USDA Statistical Reporting Service field staff determined the area of
corn and soybeans in 37 sample segments (each segment was about 250
hectares) of 12 counties in North Central Iowa by interviewing farm operators.
Based on LANDSAT readings obtained during August and September 1978,
USDA procedures were used to classify the crop cover for all pixels (a term for
“picture element” about 0.45 hectares) in the 12 counties. The number of
segments in each country, the number of hectares of corn and soybeans (as
reported in the June Enumerative Survey), the number of pixels classified as
corn and soybeans for each sample segment and the county mean number of
pixels classified as corn and soybeans (the total number of pixels classified as
that crop divided by the number of segments in that county) are reported in
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Table 1 of Battese, Harter and Fuller (1988). In order to make our results
comparable to that of Battese, Harter and Fuller (1988), the second segment in
Hardin County was ignored.

Battese, Harter and Fuller (1988) considered the model

(4.2.1) Y, =0+ byxy; + boxy; +u; + €ijs

where [ is a subscript for the county and j is a subscript for a segment within
the given county (j = 1,..., N,, the number of segments in the ith county,
t =1,...,12). Here Y;; is the reported number of hectares of soybeans and
xy;; (xg; J) is the number of pixels classified as corn (soybeans) for the _]th
segment in the ith county. They assumed (in our notatlon) E(v,) = E(e ;)=
Viv,)) = (Ar)~ 1, V(e )= r-!, cov(u,, e; ) =0, cov(y, v;) = 0, i # i
cov(eu,e-f =0 if (i, J) + (i, j'). Flrst assummg A and r known, these
authors obtamed BLUPs  of ,u,l bo + b1X 1y, + boXoypy T U, E=1,...,12,
where %, =N LY x,; a=1, 2 Then, using Henderson’s method I11,
they obtained estlmates of the variance components, and their final predictors
involved the estimated variance components. [For details, see Battese, Harter
and Fuller (1988).] Henderson’s method being an ANOVA method could lead
to negative estimates of A~1. If this were the case, Battese, Harter and Fuller
set it equal to 0. This phenomenon is likely to happen, particularly when the
number of small areas or strata is small.

In this particular example, we have t =1, A, = A, DA) =A"1_, ¥ =1 N
Then X, = Diag, +A~'d,,...,I, +A7'J, ) so that |211| = I'[j“ AA +

n;)/A}). Also, wrltmgx =n7'EM X, 0= 1, ..."m, one gets
m m
XOTEIX®O = 3 3 x;. x5 — ¥ n¥(n, + A) 'x,x7
(4.2.2) i=1/=1 i=1

= H(A) (say).

Next, writing 7, = n; 'L 7%y, ;, one gets

Lo

m m
YOTRyD = 3 ¥ (3, - 7) + A Y nin, + 1) '5?
i=1j=1 i=1

n; T
- { X X xij(yij —n(n; + A)—lyi)} H™'(A)

(4.2.3) S

x{f

xij(yij = nyn; + f\)_lfi)}
i=1j-1

= Qo(A) (say).

-196-



G. S. DATTA AND M. GHOSH

The conditional pdf f(Aly"’) given in (2.11) simplifies to

A |
F(AMy®) o Am+20/2=1 TT (A + n,) Y3 H(A)[ T
(4.2.4) i=1

X(@g + ah + Qy(A)) TETETRT

The posterior means and variances of the finite population means are now
obtained from (2.8)—(2.10), (2.12)-(2.13), (4.2.2)-(4.2.4) and using the formu-
las for iterated conditional expectations and variances,

ReEMARK 1. Let Vi(y™) and V,(y‘"") denote respectively the variance of the
conditional expectation and expectation of the conditional variance of the finite
population mean. A naive empirical Bayes procedure effectively ignores V, and
can lead to serious underestimate of the variance. A HB procedure on the
other hand rectifies this deficiency. Battese, Harter and Fuller have a frequen-
tist approach which also incorporates the uncertainty of estimating the vari-
ance components into account.

We find the posterior means and variances of the population means for the
12 counties. Our approach eliminates the possibility of obtaining zero esti-
mates of the variance components. The improper prior with aqe = a; = 0.005,
&o = &, = 0 is used for predicting areas under soybeans.

Table 2 provides the HB predictors (e ), the EB predictors (egg), the BHF
predictors (epyp) and the associated standard errors syp, sgp and 5 BHF
respectively. Note that the EB predictors are obtained by replacing A with its
Henderson’s Method III estimate in E[N; 'L Y, Jly™, Al Also, we provide
the V; and V, values to demonstrate that V, can sometimes contribute
significantly toward the posterior variance.

As one might anticipate, ey and epy are extremely close as point predic-
tors; epyp differs from egy because it uses a different estimate of A, and

) TABLE 2
The predicted hectares of soybeans and standard errors

County €HB €ER €BHF SHB Sgg  SpyF Vi Vs

Cerro Gordo 78.8 78.2 71.5 11.7 11.6 12.7 7.67 128.59

Franklin 67.1 65.9 64.8 8.2 7.5 7.8 11.94 54.92
Hamilton 94 4 94.6 95.0 11.2 11.4 12.4 1.97 123.61
Hancock 100.4 100.8 101.1 6.2 6.1 6.3 1.35 37.59
Hardin 75.4 75.1 74.9 6.5 6.4 6.6 0.37 41.84
Humboldt 81.9 B0.6 79.2 10.4 9.3 10.0 22.62 85.40
Kossuth 118.2 118.2 120.2 6.6 6.0 6.2 7.99 36.23
Pocahontas 113.9 113.7 113.8 7.5 7.5 7.9 0.06 55.98
Webster 110.0 109.7 109.6 6.6 6.6 6.8 0.64 43.91
Winnebago 97.3 98.0 98.7 7.7 7.5 79 4.11 55.70
Worth 87.8 87.2 86.6 11.1 11.1 12.1 4.06 118.17
Wright 1119 112.4 112.9 7.7 7.6 8.0 1.62 57.48
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thereby leads to slightly different predicted values. It is important to note that
the difference between epyp and either egy or eyp is much more pronounced
than any difference between ey and egp.

The naive EB estimator, in general, underestimates the standard error in
comparison with the HB estimator. With the exception of Hamilton County,
sgp 18 always smaller or equal to syp. The difference can be significant as
evidenced from the figures given in Humboldt County where sgg is about 10%
smaller than syp.

However, syp and sgyp are both very good as estimates of standard errors.
In this example, while sgyp is never smaller than sy, by more than 6.1%, it
can exceed syp by about 9.7%.

One may wonder whether the proposed HB predictors which perform so
well conditionally enjoy any frequentist properties. To answer this, we under-
took an extensive simulation study using the BHF model. The detailed results
are not reported in this paper, but our findings indicated that the simulated
mean squared errors for the HB predictors were matching those for the BHF
predictors up to the fifth decimal place, while (1.96) s.d. coverage probabilities
turned out to be slightly bigger for HB than BHF, both being very close to 95%
under all circumstances.

5. The HB predictor in a special case. We consider in this section the
special case when A is known, while B and R are independently distributed
with B ~ uniform(R?) and R ~ Gamma(3a,, 3g,). We are still interested in
finding the posterior distribution of Y® given Y® = y»), Recall the notation
K, M and G given in (2.8)-(2.10). Since A is known in this case, we have the
following Theorem 2 instead of Theorem 1.

THEOREM 2. Assume that n + g4 > p + 2. Then under the model given in
(A) and (B) with A known, and an independent uniform (RF) prior for B and
a Gamma(3a,, 3g,) prior for R, the conditional distribution of ¥® given
Y =y is multivariate-t with location parameter My, scale parameter
(n + gy —p) " Hay + yYVTKyD)G and degrees of freedom n + g, — p.

The proof of Theorem 2 is similar to the proof of the first part of Theorem 1
provided in the Appendix and is omitted. Using the properties of the multivari-
ate-t distribution, it is now possible to obtain closed-form expressions for
E[£(YD, Y®) YD = yD] and V[EYD, YO) YD = y®] where &Y, Y®) =
AY® + CY®. In particular, the Bayes estimate of &Y™, Y®) under any
quadratic loss is now

(5.1) e3(y”) = (A + CM)y®.

We may note that the posterior mean given in (5.1) does not depend on the
prior distribution of R.

There are alternative ways to generate the same predictor e%(Y®) of
E(YD, Y®). Suppose, for example, one assumes only (2.1) or (2.2) with b
known (r may or may not be known). Then the best predictor (best linear
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predictor without the normality -assumption) of &Y™, Y®) in the sense of
having the smallest mean squared error matrix is given by

E, [g(Y(lJ’ Y @) lyu)]

(5.2)
= C[ZZ'YD + (X® - £, S IXD)b] + AYD  (ae. YD),

where 08 = (b7, r)T.

[We say that E < F for two symmetric matrices E and F if F — E is
nonnegative definite (n.n.d.).] If b is unknown, then one replaces b by its
UMVUE (BLUE without the normality assumption)

(x(l)T El_llx(l)) - 1x(l)i" E[}Y‘”.

The resulting predictor of &Y™, Y®) turns out to be e%(Y™). In this sense,
e((Y™) is also an empirical Bayes predictor of £(Y™,Y®), Harville (1985,
1988, 1990) recognized this for predicting scalars.

We shall now discuss some frequentist properties of e%(YV). First, we
assume the normal model (2.1) or (2.2) with A known. No prior distribution
for B and R is assumed, and 6 = (b7, r)T is treated as an unknown parame-
ter. We prove the optimality of e%(Y?) within the class of all unbiased
predictors of £(Y™,Y®). This result is then used to prove the optimality of
e%(Y™®) once again within the class of all unbiased predictors of £(Y™, Y®)
for a class of spherically symmetric distributions of Y including but not limited
to the normal distribution.

We start with the following definition.

DEFINITION 1. A predictor T(Y") is said to be a best unbiased predictor
(BUP) of £Y1,Y®) if EJT(Y®) — &(YD,Y®)] = 0 for all 6 and for every
predictor 3(YD) of &YV, Y®) satisfying E,[8(YV) — £(YD, Y®)] = 0 for all
0, VR[T(Y™) — &(YD,Y®)] < Vo[8(YD) - (YD, Y?)] for all 8 provided the
quantities are finite.

The following theorem is proved.

THEOREM 3. Under the model (2.1) or (2.2), e%(Y®") is the BUP of
g(Y(l)’ Y2,

Proor. Write Hy = A + CX, 21" and U = C[X® - 3, 3'XD]. Then,
from (5.2), E[£(YD, Y®) Y] =H,Y® + Ub ae. (Y®). For an arbitrary
predictor 8(Y®) of £(YM, Y®), write

B(Y®) — (YD, Y®) = [3(Y?) - (H, Y™ + Ub)]

(5.3)
+[(HoY® + Ub) - (YD, Y?)].
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Then, from (5.2) and (5.3),
E,[(3(Y®) — §(YV,Y®)H(a(YD) - 5(¥Y®,Y®))"]
~ E,[{(3(Y®) ~ HyY®) - Ub)
(5.4) X{(3(Y®) - HyY®) - Ub)]
+ B[ (HoY® + Ub - (YD, Y®))

X {HoY® + Ub - £(Y®, Y))T].

Hence minimization of the left-hand side of (5.4) wrt 8(Y®) amounts to the
minimization of the first term in the right-hand side of (5.4) wrt 5(Y™). Since
YD ~ NX®b, r7'E,)), from the classical theory of least squares it follows
that the first term in the right-hand side of (5.4) is minimized wrt 8(Y®) if
and only if 8(Y®) — HY® = UXDT E7IXD) - IXOTS 1YW 5 o (YD), that
is, 5(Y™M) = (A + CM)Y? = e%((Y™®) ae. (YD), The proof of Theorem 3 is
complete. O

ReMark 2. It follows from the proof of the theorem that the BUP of
E(YD, Y?®) is unique with probability 1.

ReMARK 3. It is possible to generalize Theorem 2 for a more general class
of distributions of Y. Suppose that conditional on R = r, Y ~ N(Xb, ro13),
while marginally R has any proper distribution. The objective is once again to
minimize the left-hand side of (5.4). We achieve this by first computing this
expectation conditional on R = r. We may note that E[£(Y(D,Y®)[YD = yO)
R =r]=Hyy" + Ub does not depend on r. Hence we obtain an identity
similar to (5.4) conditional on R = r, and as in the proof of Theorem 3,
conclude that e%(Y™) is the BUP of &Y™V, Y®),

Next we dispense with any distributional assumption in (2.1) and show that
e((Y?D) is the BUP of £(Y®,Y®) within the class of all linear unbiased
predictors. A predictor 8(Y) is said to be linear if 8(Y®) has the form HY "
for some known u X n matrix H. If, in addition, E3(YD) — g(YR Y®)] = 0
for all 6, we say that 5(Y") is a linear unbiased predictor (LUP) of £(Y V), Y®).
We now introduce another definition.

DEFINITION 2. A LUP PY® of £(Y®,Y®) is said to be a best linear
unbiased predictor (BLUP) if for every LUP HY™ of &Y™, Y®), V,(HYD —
EYD, YD) — V,PY®D — (YD, YY) is n.n.d. for all 8 '

We now prove the following theorem.
THEOREM 4. Consider the model (2.2) and assume that Ele] = 0, E)[v] = 0,

Ejev™] =0, E,[eTe] < = and EvTv] < . Then ex(YW) is the BLUP of
g(Y(l), Y @),
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~ Proor. Suppose WYY is an unbiased predictor of £(Y®,Y®). Then
EJWY® — (AY® + CY®)] = 0 for all 0, which is equivalent to (W — A)X®
= CX® = CMX® from (2.8) and (2.9), that is, (W — A — CM)X‘V = 0. Next
write

WY — £(YD, Y®) = WYD — e% (YD) + eX(YD) — £(YD, Y®)

N = (W—-A-CMY® + C(MY® - Y®),
Observe next that since MXV) = X,
E,[C(MY® - Y®)((W — A - CM)Y®)” |

= E[C{M(Y® — E((YD)) — (Y® - E,(Y®)))

XYWT(W— A - CM)”|

= E,[C(MZ,, — £,,)(W - A - CM)7|.
But, using (2.8) and (2.9),
(5.7)  MEZ, — 2, = (XP — T, SIXO)XOT R IX®) T XOT,

Since XVT(W — A — CM)7 = [(W — A — CM)X®]T = 0, it follows from (5.6)
and (5.7) that the left-hand side of (5.6) is 0. Now, from (5.5),

. E,[{WYU) ~ E(YD, YO)YWYD — g(Y(].)’Y(g))}T]

(5.6)

= E,,[{WY(U — e5(YO) WY ® — e;;(ym)}‘f‘]
+ By [e5 (YD) - (YD, Y®) {ep (YD) — £(YOV, YD)}

> B[ {e5(Y®) — 6D, YD)} e5(YV) - 5(¥YD,Y))"]

with equality if and only if WY® = e%(Y™) a.e. (Y?™). The proof of Theorem
4 is complete. O

APPENDIX
Proor oF THEOREM 1. Under the assumptions of the theorem, the joint pdf
of Y, B, R and A is given by
f(yv b, r! A) ’
a r¥/3 2|7 exp| - $r(y — Xb)TE"}(y - Xb)|exp( -~ saor)rée/ !

t £
X exp(—%r a:"\'i) H (Ai")gi/z—lrt
(A.1) i=1 =1
¢
= |z~ /2 eXP[-%f{(.V —Xb)"2 Yy -Xb) +a,+ ¥, a;-f\f”
i=1

/

¢

N+ILi_ogn2—1 i /2-1

% pl 08 I‘IIA{;/ .
z=
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Now
(v — Xb)"Z-!(y — Xb)
— T
(A.2) = b - xT2x) XTI Y] (xTEOIX)
x[b - (XT=71X) 'X"E Y] + y7Qy,
where Q =X7! - T7IXXTE-IX)"1XTE-1 From (A.1) and (A.2), one gets
the joint pdf of Y, R and A given by

f(Y: r, A) o IEI_1/2|XT2—1X|__1/2r(N+zf‘-ogf—P)2—l
(A.3) P
X exp|[ —ir(a, + T ia;, + yTQy)] [TA7271,

i=1
Now, integrating wrt R, one finds the pdf of Y and A given by
t —(N+X{_08i—p)/2
f(yr)\) & |E[—1/2|XTE_1X|_1/2 ag + Z a;A; + YTQy
(A.4) : i=1
x [ ]Ag/2-1,
=1

i

Now, using a standard formula for partitioned matrices [e.g., Searle (1971),
page 46], we have

(A5) yTE ly = yOTEIyD + (y@ - Emzﬁlym)TEEzl.l(Y(z’ - 220y Y).
Similarly,
yTz-IX — y(l)Tzl-llx(l)
(A-6) +(yP = By, Brly D) BL (XO — 5, 35X 0)
=t{ +t; (say),
XTE—IX = x(l)Tzl—llx(l)
+(X@ - Ezlzl—llx(l))Tzz_zli(x(z) - 22 XY).

Using the matrix inversion formula [see Exercise 2.9, page 33 of Rao (1973)],
we have from (A.7) that

(XTE-1x) '
= (XOTEIX®) 7 (XOTEIX®) THx® - zmzl—fmﬂf
% {Epy + (XD = Tpy THXO)(XOTEIXD) 7

(A.7)

X (x(z) = 2212511x(1))T} -
X(X® - 3, EXO)XOTy X ®) !
- (X(I)Tzl‘llxu))_l - (X(”TE;IIX(”)_I(X@) _ 221};;11);(1))'*”(;—1

X (X@ — 2212;11}((1’)(X(I)Tzl‘llx(”)—1 by (2.10)
=M, - M, (say).

(A.8)
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From (A.6), (A.8) and (2.8)-(2.10), we get after simplifications
- yTE IX(XTE1X) XTE Ly = ¢TM,t, — tTM,t, + tTM,t,

- thztz + 2tT(M1 - Mz)tz’

(A.10) t{Mltl = y(l)T(El_lI - K)y(l),
(A.11) th2t1 = (My(l) - 2"2121-11.'.9"(1))T(;f“I(MY(” - 22121_113’(1)),

- T — _ -

thﬂ:z = (Y(z) - 2"21}-311137(1)) [2221.1(;2221.1 - 2221.1]
X (y(z) - 2212:1_115’(1))v
M,t, = (y(z) - Ezlzflly(l))T
X [22—21.1(;2521.1 - 2%, + G_ll(ym - 22y "),

(A.14) tTMﬂ"z = (Myu) - 22121—113,(1))7"2;21-1(37(2) - 22121_111](1)),

- T = _
tTMztz = (Mym - Emzulym) [2221.1 -G 1]

X (y(z) - 22121_113’{1)),

(A.12)

ts
(A.13)

(A.15)

Using the same definition of Q, it follows from (A.5)-(A.15) with some
algebraic manipulations that

(A.16)  yTQy = yVTKy® + (y@ ~ My?) G I(y® — My®).

Combining (A.4), (A.16) and (2.6), one gets the first part of Theorem 1.
Now to find the conditional distribution of A given YV = y one can have
as in (A.4) that the pdf of Y and A is given by

_ _ 172
f(ym’ A) a |2y, lﬂlmeznlx(l)l
(Al?) ¢ —(n+Liaogi-pP)2
X Qg + Z ail\i + y(l)TKy(l) HA€E/2_1.
i=1 i=1

Since f(Aly™) a flyD, A), (2.11) follows from (A.17). O
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1. Introduction. In recent years. Empirical Best Linear Unbiased Prediction (EBLUP)
approach has received considerable importance in producing small-area statistics. This is really
a special case of Empirical Best Prediction (EBP) approach which can be applied even when
we do not have mixed linear model need for EBLUP approach. The main {ocus of this paper
is to develop a general theory for EBP approach.

We develop a suitable jackknife technique to estimate the MSE of EBP of any general
mixed effect for a general model. The proposed jackknife method is very simple to implement
and does not require the derivation of different derivatives needed in the Taylor series method.
Thus the method should be very attractive to the practitioners. The general model we consider
covers not only the mixed linear model but also many complex models like generalized linear
mixed model. So long as one can get expression for EBP, our method can be applied. For
example, we no longer require the assumption of normality to estimate the MSE of EBLUP
given in Prasad and Rao (1990) - we just need the assumplion of peslerior linearily (see,
e.g., Ghosh and Meeden 1997) which is needed anyway lo justily ithe use of EBLUP (which
is identical with linear empirical Bayes (LEB) estimator). In addition, the proposed jackknife
method will work for a general M-estimator of the model parameters (which includes ML,
REML and ANOVA).

The properties of the jackknife estimators have been studied extensively in the literature
(see, e.g., Shao and Tu (1995)). However, the problems discussed in the paper are not currently
available in the literature. First, onr main interest is not in the estimation of a fixed parameter
but in the prediction of a random vector which may be associated with unknown parameters.
This is, of course, a more complicated problem. Secondly, even for estimating the fixed param-
eters, our jackknife estimator is not based on i.i.d. ohservations and it is not associated with
the regression estimator. Furthermore, since we consider a specific class of estimators, namely,
the M-estimalors, the conditions under which the asymplofic results hold will be easier o
verily. As will be seen, the asymplotic unbiasedness of the jackknile MSE estimnalor is proved
essentially under some moment conditions. Thirdly, our M-estimators are more general than
those considered by Reeds (1978) in the sense that ours also include the modified profile MLE
(e.g., REML estimators), penalized MLE, or M-estimators not associated with a maximization
process (e.g., the method of moment estimators).

Section 2 discusses the model and the proposed EBP. In section 3, we propose a jackknife
method to measure the uncertainty of the proposed EBP. The asymptotic properties of our
jackknile MSE esiimalor are also slated in this section. The mixed linear models and mixed
logistic models which are important special cases of our general model are discussed in seclions
2 and 4, respectively. Due o lack of space, we refler Lo Jiang, Lahiri and Wan (1998) flor prools
of all the technical results.

2. Empirical best predictor. Let Yj,...,Y,, be independent (vector-valued) observations
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whose distributions depend on a vector ¢ = (@i)1<kcs Of unknown parameters. We are in-

terested in predicling an unobservable random vector § = (f;)1<1<s based on Y = (Y)1<J<m

Supopose that, when ¢ is known, the best predictor in terms of MSE is § = E@)Y)=n(Ys;¢) =
(7 (¥s; ))15153, where 5 is a subqet of {1,...,m} and Ys = (Y¥;);es. For example, in small-area
estimation, one is interested in predicting a mixed effect 0 = &'+ M'v, where h and A are known
vectors, J 1s a vector of unknown fixed effects, and v is a vector of unobservable small-area
specific random effects. In particular, a mixed effect associated with the 2th small-area is of
the form & = A'8 + v;. Assuming that the random effects corresponding to the small-areas are
independent, the best predictor of 8 is of the form #(¥;; ¢). where Y; is the vector of abservations
associated with the ith small-area, and ¢ is the combination of 8 and a vector 9 of variance
components.

Since ¢ is usually unknown, il is naturally replaced by an estimator, qS The resulting
predictor, § = #(Ys; ¢) is called the erpirical best predictor of 8. The estimator ¢ of particular
interest in this paper is an M-estimator (Huber (1981)), which is associated with a solution
QS (ék)KK, to the following equation:

(¢ Zf_,(qﬁ))+a( = 0. (1)

In the above, f;(#;Y;) = (fix(#; Yj))1<k<s are vector-valued functions such that Ef;(¢;Y;) =0
when ¢ is the true parameter vector, and a(¢) is a vector-valued function which may depend
on the joint distribution of ¥ = (¥))1<j<m. When a(¢) # 0, it plays the role of a modifier or
penalizer.

Example 1. (ML estimator in mixed linear models) Consider a mixed linear model

Vi = Xif+Zivi+e., t=1,...,m, (2)

where X; (n; x p_) and Z; (n; X b;) are known matrices, v; and e; are independently distributed
with w (0,G,) and e w (0, Ri), + = 1,...,m. Assume that G; = G;(¥) (b x b) and
R; = Ri() (n: x n;) possibly depend on % = (#)1)1<i<q, @ g X 1 vector of variance components.
The ML estimator of ¢ = (§' ') is defined as solution to the ML equations. Note that this
definition does not require normality, i.e., the ML equations are used even if the data is not
normal (Jiang (1996)) It is easy to show that the ML estimator of ¢ is solution to (1) where
a(8) = 0, (is(é. Y)herss = XJE7' ()Y — X;8), where Z,() = By() + ZG;(4)Z} =
Var(Y;), and for 1 <l<gq

AL,
Y

pr+!(¢: ) Y X 19) EJ_ ('»b) ( iy

P

) e - X, - s (5700 32
Example 2. (REMI, estimator in mixed linear models) Similarly, the REMT. estimator 4 of 10
is defined as solution to ‘rhe REML equaflons (Jiang (1996)), and the REML estimator of
as the EBLUE § = (X'E~ () X)T X8 ( )Y, where X = colicicm(Xi), ¥V = cohicicm(¥5),

L(¢)=R+2ZGZ. Z = = diag; ;m(Zi), G = = diag) i cm(Gi), and R = diag, ;. (). Again,
this definition does not require normah’cy By the identity (e.g., Searle et al {1092), page 451)
E =T X(X'ET X)X BT HA(A'ZA) T A which holds for any N x(N—p) matrix A of full
rank (& is the dimension of V') such that A’X = 0, it is easy to show t.hat the REMIL estimator
of ¢ is solution to (1) where the f;’s are the same as in Example 1; a{é) = (ar(¢))1<r<prq With
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ar(¢) = 0,1 <k < pand

a%;

, <[]<qg.
dl/)r) LEMSy

apri(d) = Ztr( )X (XS () X) T XIS

In seneral, ¢ may not always exist: or even if it does, may fall outside the paranicter space.
Of course, the MSE of ¢ also may not Therefore, we consider the following truncated version
of go Let @ be the parameler space for ¢. Lel ¢* be a lixed vector in @. (In praciice, ¢* may
be a reasonable guess of the true ¢ ). Let é be the solution to (1) if §uch a solution exists and
lies in @; otherwise, let ¢ = ¢*. Deline the estimalor r,i: as follows: ¢ = ¢ if |¢I < K(log m)™;
and qS @" otherwise, where K and e are positive (known) constants. It is clear that such a
truncation will not affect the asymptotic properties such as consistency and efficiency of the
estimator.
3. Jackknifing MSE of EBP. The main interest of this section is the estimation of the MSE
of the proposed EBP, MSE(H) E(|9 — #]*). We propose to do so by the Jackknife method.
For such a purpose, we define (he M- eslimalor b-; after deleting Lhe ith observalion, i.e., ¢_;
1s obtained likewise from (he solution <p_l {o the equation:

Fi($iYa) = Y filiY) +ai(d) = 0, (3)
J#E
where Y_; = (¥]),2:. Note that a_;(-) may not be the same function as a(-). Observe that

MSE() = E(|0—01%) + E(|6 —6") = MSAE(f) + MSE(d) , (4)

where MSAE stands for “mean squared approximation error” (1o {he best, prediclor). A Jack-
knife estimator of the first term on the right side of (2) is given by

where 0_; = W(Y:g;q%_.,'). Note thal we keep Y5 the same (i.e., nol aflecled by deleting the ith
observalion) in all #_;s. As for the second term, it is often possible Lo obtain a closed form
expression which is a function of ¢. Suppose MSE(f) = b(¢). Then, a Jackknife estimator of
b(¢) is given by

m

Z ~) = b(¢)]. (6)

MSE() = b(é) —

Therefore, the Jackknife estimator of the MSE of 4 is
MSE(d) = MSAE(d) + MSE(S) . (7)

It can be shown that under cerfain regularity conditions, the bias of M?E(é) is of the
order o{m™'). As a by product, we also obtain the asymptotic unbiasedness of MSE(¢).
4. Mixed logistic models. Suppose that, conditional on Pij, Y51 <1< m, 1 <j<n; are
independent Bernoulli random vaniable with P(Y; = 1lpe;) = iz Furlhermore: suppose Lhal
conditional on the random eflects e, . .., am, logil(p,;) = mfjﬂ T, where a; = (045 )1<k<p 18
a vector of known covariates, 4 is a vector of unknown regression coeficients, and logit(t) =
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log(t/(t —t)). Assume the a’s are independent and distributed as N(0,0?). Then, (5.1} is a
special case of the generalized linear mixed models which have received considerable attention
(e.g., Breslow and Clayton (1993), Lee and Nelder (1996)). Such models as (5.1) have been
used in small-area inference with binary variables (e.g., Malec et al (1997}).

Suppose that one is interested in predicting a (possibly nonlinear) mixed effect § =
hi(3, a;). For example, § = «; or, il the covariates take values from a finite set {z),....zx}.
= Zflmklovit_l(miﬂ + a;), where wy, 1 < k < K is a set of weights, and logit™!(u) =

e*/{1 +e).
Jmng and Lahiri (1996) derive the best predictor of £ as

Ehi(B,a8) exp(i( Ve, o€, 3))
Eexp(i(Y;., €, 0))

where ;(k,u,v) = ku — 377, log(1'+ exp(zhv + u)), Yo = Y51, Y5, ¢ = (B o), and the
expectations are taken over £ ~ N(0,1). It is also shown that MSE(§) = Eh}(5,0€) —
Eily 1r2(k &)p:(k, ) bi(¢), where pi(k,¢) = P(Y.. = k). The empirical best prediclor is
given by é = wil Ve c,‘b)

As for the M-estimators, we consider the method of moments (MM) estimators of Jiang
(1998). The MM estimator for ¢ is the solution to the following system of equations:

zzxijkyzj = szkaEéyu 1 1<k < P, (g)

0 = E(8]Y) Ti{Yi. ¢) . (8)

3

i=1j=1 i=1
ZZK}'Y;; = ZZE‘;&Y;J'Y;: . (10)
=1 A i=1

Note that EyY;; = Elogit“(m B + o), EY;;Yy = Elogit™ (! B + of)logit ™' (24,8 + £),
7 # 1. Jiang and Lahiri (1998) showed that, under suitable COIldlthIlS the MM estimators are
consistent uniformly at rate m~? for any d > 0. It follows can be shown that EMSE((-)) =
MSE(8) 4+ o(m=17¢) for any 0 < € < 1/2.
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Accounting for Uncertainty About Variances in Small Area Estimation
William R. Bell, Room 3000-4, U.S. Bureau of the Census, Washington, DC 20233-9100
wbell@census.gov

1. Introduction
The model of Fay and Herriot (1979) for small area estimation can be written

v = Yi+e; i=1...., m (1)
= (xB4+w) e (2)

where the y; are direct survey estimates of true population quantities Y; for m small areas, the e;
are sampling errors (of the y;) independently distributed as N (0, v;), the u; are small area random
effects {(model errors) distributed i.i.d. N(0,02), the x! are 1 xr row vectors of regression variables
for area 7, and @ is the corresponding vector of regression parameters.

From (2), letting 32 = diag(c2 + 1;), B can be estimated by generalized least squares (GLS):
B = (X'=-1X)"'X’'S-1y with Var(8) = (X'=-1X)"", where y = (y1,...,¥m)’, and X is m x r
with rows x|. Then the best linear unbiased predictors (BLUPs) of the Y; can be formed and their
error variances obtained from

hivi + (1 — hi)xB (3)
a2(1 = hy) + (1 — hy)?x!Var (B) Xi (4)

o~

I

i

Var(Y; — ¥3)

Il

where h; = 02/(c2 + v;). From (3), the smoothed estimate ¥; is a weighted average of the
regression prediction x:f'} and the direct estimate y;. The first term in (4), a2(1 — &;), is the
inherent prediction error variance that would result if all model parameters were known. The
second term in (4) accounts for additional error due to estimating 8. Given the v;, (4) can be
augmented to reflect uncertainty about ¢? using asymptotic formulas (Prasad and Rao 1990,
Datta and Lahiri 1997) or a Bayesian approach (Berger 1985, pp. 190-193). When only point
estimates y; and variances v; are available, uncertainty about sampling error variances is generally
ignored, though Bell and Otto (1992) address this problem for a time series application via a
Bayesian model-based approach.

This paper considers different approaches to dealing with uncertainty about ¢ in the context
of a particular application: estimating annual poverty rates of school-aged (5-17) children for the
states of the U.S. using data from the Current Population Survey (CPS). For this problem Fay and
Train (1997) developed a Fay-Herriot model for each year where, for each of m = 51 “states” i (in-
cluding the District of Columbia as a “state”), y; is the direct CPS estimate, Y; the true poverty
rate, and x; includes a constant term and three variables derived from administrative sonrees.
(Actually, ratios differing slightly from true poverty rates were modeled.) U.S. Internal Revenue
Service income tax return files supplied two variables: an analogue to state child poverty rates and
also state rates of nonfiling for income taxes. Data from the U.S. Department of Agriculture were
used to develop a variable reflecting state participation rates in the food stamp poverty assistance
program. In addition, x; includes the residual from regressing 5-17 state poverty rates from the
previous (1990) decennial census on the other regression variables for 1989 (the census income
reference year). The v; were obtained from a sampliog error model of Otto and Bell (1995) that
involved fitting a generalized variance function (GVF) to five years of direct variance and covari-
ance estimates for each state produced by Fay and Train (1995). This application is an important
component of the Census Bureau’s Small Area Income and Poverty Estimates (SAIPE) program.
For information, see the SAIPE web site at http://www.census.gov/hhes/www/saipe.html.

Section 2 of this paper examines, in the context of the Fay and Train (1997) model, different
approaches to dealing with uncertainty about o2 (given the v;) and their effects on prediction
error variances. Future work will explore a Gibbs sampling scheme to also recognize uncertainty
abont sampling error variances using the model of Otto and Bell (1995).
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2. Accounting for Uncertainty About the Model Error Variance (72)

Three estimation approaches are considered here: maximum likelihood (ML), restricted ML
{REML}, and the less-familiar mean likelihood (MEL). A Bayesian analysis is also explored. First,
note REML maximizes the restricted likelihood (Harville 1977, p. 323)

L(e?) |27 XS IR o XAVE - ()
where 8 = ﬁ[ni) is given by GLS. Omitting the term |X’E“Xjfl/2 from {5) gives the concen-
trated likelihood (for #2) maximized by ML, Also, (5) normalized to integrate to 1 is the Bayesian
posterior density of #2 under the flat prior p{8,42) = constant {Berger 1983, p. 192). The
corresponding posterior mean of 2 is the same as the mean likelihood estimate (Barnard 1949).

For the Fay and Train (1997) model of U.S. 517 year-old state poverty rates, Table 1 shows
the three estimates of o2 for 1989 1893. Focusing first on the left half of Table 1, note that the
ML and REML estimates are both zero in the first four years.

Tablel. Alternative Estimates of gZfor Five Years
Updating v; to Convergence No Updating of v;
year ML REML MEL ML REML MEL

1988 0O 0 1.7 4.6 4.9 6.1
1890 O 0 2.2 1.9 2.5 3.7
1891 0 0 1.6 0 0 16
1992 0 0 1.6 0 0 14
1993 4 1.7 3.4 3.3 21 3.6

Having Eﬁ = ( has several unreasonable implications. First, it implies that if the Y; were observed
(if the CPS were a complete census every year), then the model would fit this data perfectly. (Note:
The 1990 census data are not the Y; for 1989 because of CPS-census measurement differences.)
Second, since 2 — 0 implies h; = O for all i, (3) implies that each ¥; is just the regression
prediction, x;,@; the direct estimates y; get no weight. Third, Ei = 0 implies that the first term
on the right hand side of (4) is zero, and the prediction error variance comes entirely from the
error in estimating 3. These results tend to look unreasonable, as will be seen later in Table 2.
Getting ?}3 = 0 for ML could motivate consideration of REML. which is intended to remove the
downward asymptotic bias of ML (Datta and Lahiri 197, p. 8). Table 1 shows that in this applica-
tion, however, REML is of little help. The mean likelihood estimates, or Bayesian posterior means
of 03, look more reasonable. (These were computed for Table 1 as [ o2 L{02)do?/ [ L(o2)do?,
with the integrations done numerically by Simpson’s rule over 100 equal subintervals of o2 € [0, 20],
an interval judged from graphs to contain essentially all the posterior probability for o2 for all
years.) The reason for the differences between the estimators of o2 is easy to see from graphs
(not shown) of the marginal posterior density (L(e2)/ [ L{r2)da?), which reveal a long right tail
in all years. Since the marginal posteriors are not concentrated near o2 = (), the posterior means
substantially exceed the posterior modes (mean likelihood estimators exceed REML estimators).
The estimation scheme used by Fay and Train (1997) involved iteratively updating the »; given
each new estimate of (3.02). If superscript (k) denotes the kth iteration, the update of v, used

y (K =
was u‘m = wi(o) [xf/ﬂ( )(1 —xif3 ))}/[yi(l — ;)] where v,@) are the original estimated u; from the

sampling error model of Otto and Bell {1895). The idea was to adjust the u; at each iteration
to be consistent with the current estimate x/8. To find fa“‘) and 72 the rfk—]) were used.
Convergence was effectively achieved in two iterations. For comparison, the right half of Table 1
shows the estimates of o2 without updating the v;. The results are different in some cases, though
some zero estimates for o2 still occur. For the remainder of this paper, results from updating v;
to convergence are used.

Tables 2 and 3 show some alternative prediction error variances for 1992 (when &2 = 0 for ML
and REML) and for 1993, respectively. Also shown are CPS sample sizes n, (number of households
in the March CPS sample). CPS direct poverty rate estimates y,, and direct sampling variance
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estimates v,(-"). Results are shown for four states in increasing order of vfn) : California {(CA), the
largest state with the largest sample size and lowest direct variance; North Carolina {NC}; Indiana
(IN); and Mississippi (MS). The tables show variances (ML!, REML!, and MEL!) obtained by
plugging &‘3 (and corresponding fully updated ;) into (4) for 33 given by ML, REML, and MEL.
For ML and REML the tables also show prediction error variances (ML? and REML?) augmented
as in Datta and Lahiri (1997) to asymptotically account for error in estimating #2. The tables
also show two “Bayesian posterior variances” described later.

Table 2. Alternative Prediction Error Variances for Four States for 1992
state ni oy ou® ML' ML?2 REML' REML? MEL' Bayes' Bayes?

CA 4,927 209 19 13 36 1.3 2.8 1.5 14 14
NC 2,400 230 55 6 20 6 1.2 1.6 14 2.0

IN 670 11.8 93 3 14 3 6 1.8 1.6 17
MS 796 206 124 28 3.8 28 3.0 4.1 3.9 4.0

Table 3. Alternative Prediction Error Variances for Four States for 1993
state  m; oy v ML! ML? REML! REML? MEL! Baves' Bayes?

CA 4,639 238 23 15 32 1.6 22 1.7 1.7 1.7
NC 2,278 170 45 1.0 24 1.7 22 22 2.0 2.0
IN 650 10.3 8.5 £ 19 18 2.2 29 2.7 3.0
MS 747 305 136 3.2 43 4.2 4.5 5.2 3.0 5.1

First consider ML' and REML! in 1992, which are the same since 5> = 0 for both. When
02 = 0, (4) reduces to Var(Y; — ¥}) = xiVa.r(E)xi, and variation in (4) over states results solely
from variations in the regression variables x;. Hence, the small values for NC and IN. despite
their having smaller sample sizes and higher sampling variances than CA. In fact, many other
states have values for (4) lower than that for CA. While these results would not be unexpected if
we really believed 02 = (), since 2 = (} seems questionable so do these prediction error variances.
Now comparing the ML resnlts from 1992 and 1993, we see substantial increases in 1993 for NC
and IN. Similar large increases occur for many other states. In general, the differences between
the ML! results in the two years secem overly large and not very plausible (suggesting problems
particularly for 1992). The REML' results for 1993 show even more dramatic increases due to the
larger REML cstimate of 72 = 1.7 for 1993, and in contrast cast doubt on the 1993 ML! results.

Augmenting the ML and REML prediction variances as in Datta and Lahiri {1997) to reflect
error in estimating o (ML? and REML? results) yields large increases, suggesting that ignoring
this term can significantly underestimate prediction error variance. Note the largest contribntions
- from estimating o2 go to the states with the lowest sampling variances. This makes some sense as
the lower ; is the more weight goes to the direct estimate y; in (3) when o2 > 0, so uncertainty
about o2 means more to states with fairly precise direct estimates. However, this also means that
the unappealing pattern of many states having smaller prediction error variances than CA persists
in ML? in both years and REML?2 in 1992

Plugging the much larger mean likelihood estimates of 72 into (3) produces much larger pre-
diction error variances than these from ML' and REML! for NC, IN, and MS (and for many
other states not shown). It also yields a more intuitively appealing pattern with prediction error
variance increasing with sampling variance.

Bayesian posterior variances can be computed as

Var(Yily) = E[Var(Yily,03)] + Var[E(Yiiy. 02)] (6)

where the outer expectation and variance on the right hand side are taken over the marginal
posterior distribution of 2. These were computed by Simpson’s rule in the same manuner as the
posterior means of o discussed above. Bayes! in Tables 2 and 3 denotes E{Var(Y|y,o2)], while
Bayes® denotes Var(Y;]y). (The results shown are still conditional on the sampling variances v;,
set at their fully updated values from the mean likelihood estimation.) Note that Bayes' is fairly
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close to MEL', i.e.. averaging Var(Y;ly,o2) over the posterior of a2 gives about the same result
as cvaluating Var(¥ily,02) at the posterior mean of o2, Given this, Var[E(Y;|y,02)] = Bayoes?—
Bayes' can be thought of as accounting for uncertainty about #2, and as a Bayesian analogue to
the term augmenting (4) to account for error in estimating 2. For most states Var[E(Y|y, 02)]
is quite small, so Var(Y;|y) is close to E[Var(Y;ly, o)}, and to MEL'. Note, however, the large
difference between Bayes! and Bayes? for NC in 1992. This arises becanse the regression prediction
for NC in 1992 (which varies little over the different estimates of a2) is x!B = 17.7, which differs
substantially from the direct estimate y; = 23.0. When such large differences between the direct
estimate and the regression prediction occur, the conditional mean (E(Yily,o2) as given by (3))
is sensitive to variation in 72, Hence, the posterior variances reflect this. A similar, though less
pronounced effect occurs for IN in 1993 when xﬁ,@ = 13.3 versus y; = 10.3. Such occurrences are
rare in this example, and when xiﬁ and y; are close, Var[E(Yi|y,#2)] is close to zero. Note the
difference in this result from the frequentist results, which do not depend in such a direct way on
the realized data values.

Without overinterpreting the results from this particular example, they nonetheless show the
potential difficulties for the frequentist approaches when the model error variance is estimated at
or near zero. By averaging over the posterior of #2, the Bayesian approach avoids unreasonable
results from fixing o2 at a single value near 0, and gives more intuitively plausible results.
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