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I. Introduction

The U.S. Bureau of the Census redesigns demographic samples every ten years after its
decennial census to reflect the changes in demography and geography. During the redesign phase,
cfforts are made to reduce the potential non-sampling errors. For example, if the same houschold is
selected for interviews for more than one survey, the residents of the household may refusc to cooperate
with the interviewers for the subsequent surveys, This will result in type A non-response and non-
sampling error for the subsequent surveys. When a large number of experienced field representatives
(field reps) are replaced with inexperienced new ficld reps after the redesign, there is no guarantee that
the quality of interviews the new field reps provide is as good as that of the outgoing field reps. In this
workshop, | will deal with some measures we take which help reduce non-sampling errors, but deal with
one interesting procedure, the maximum Primary Sampling Unit (PSU) overlap between 1990 and 2000
surveys extensively.

II Non-Sampling Errors

Sarmple estimates are almost never identical to the population values because of sampling and
non-sampling errors. Sample is a subset of the target population. The error caused by enumerating a
subset rather than whole population is called sampling error. All errors other than the sampling error,
which make the sample estimates different from the parameter is called non-sampling errors, The types
of non-sampling errors can be summarized as follows.
Specification Error - concepts, objectives, data elements;
Frame Error - omission, erroneous inclusion, duplication;
Nonresponse Error - unit, within unit, item, incomplete data;

Processing Error - editing, data entry, coding, weights, tabulation;

Measurement Error - interviewer, respondent, survey instrument, mode of data collection, method of
data capture and setting.

The survey instrument - survey questionnaire and the instructions to the respondents for supplying
requested information.

The respondent in the business survey may rely on the business information system the company
maintains.

The mode of data collection can be telephone, face to face, self-administration, Internet, etc.
—_ 5 —



The method of data capture includes paper and pencil, computer keyboard, telephone keypad, etc.

The interviewer may be a prerecorded voice over the telephone or may not exist for self-administered
surveys or Internet surveys.

I

Unduplicated Sample Selection

If a household was visited by a field representative for an interview which lasted four hours and
is visited again for another interview within a week, there could be many households which do
not want to cooperate with the field representative, resulting in (unit) non-response. Because of
this, the Bureau of the Census try to avoid duplicated selection. Thus, the Bureau coordinates
its sample selection operations among many surveys under its perview and “unduplicates” the
housing units if they are in more than one survey. Note even if PSU’s are not selected by the
Bureau (CE PSUs are picked by the Bureau of Labor Statistics and National Health Interview
Survey PSUs are selected by the National Center for Health Statistics), the unduplication
operation is performed during the Within-PSU sample selection. In sampling process, if a
county is selected in three surveys, such as CPS, NCVS and CE, then CPS selects its sample
first. Selected units are removed from the sampling frame and NCVS selects its sample units
from the remaining units and so on. The sample sclection is computerized in the unit frame and
in the frame software is designed such that housing units which are already in a survey arc
ignored by the next surveys in their sample selection. In the area frame, the person who selects
the sample makes sure that no unit is selected in more than one survey.

However, there are exceptions. The National Health Interview Survey (NHIS) uscs all arca
frame design disregarding whether the selected area is “good address™ area (i.c., its house
number and street name are available) or “bad address™ area (i.c., its house number or both
house number and street name are missing. Rural route and P.O. Box addresses are such
cases). NHIS is used as a screening devise for their subsequent surveys for the National
Center for Health Statistics (NCHS). NHIS gathers information on the respondents’ health
status. When NCHS wants to survey cancer patients, then they pick cancer patients from
among the respondents of NHIS. In order for NCHS to interview the selected, NCHS has to
know their addresses. However, the Census Bureau cannot release their addresses because
they are protected by Title 13 which authorizes the Bureau to conduct the decennial census.
Note the Bureau uses the list of addresses obtained from the Census for selecting their sample
units from the address frame. In order for the NCHS to have addresses of the residents of
sample housing units, the Census Bureau has to list the selected arcas afresh. Because of this,
NHIS uses all area frame design. If a “good address™ arca is selected by NHIS and other
surveys, the other surveys had to use area frame design in that area in order to identify
duplicated units and unduplicate them among the surveys. In the 1990 design, we used such
design. However, in the 2000 redesign, the “other” surveys will let the computer pick sample
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units from address from in the good address areas and NHIS will use area frame to pick their
sample. Because of this difference, we will allow duplicated selection between NHIS and other
SUrveys.

Also the American Community Survey (ACS) will be allowed to pick sample units disregarding
whether the units arc in other survey or not. The reason is, ACS is the surrogate for the Census
sample and Census is always allowed to visit a household irrespective of whether it is in other
survey or not. In addition, there can other types of duplication. For example, the previous
decade’s sample units of the Bureau’s demographic surveys can be duplicated with the current
decade’s redesigned sample units of the Bureau’s demographic surveys. Business and
economic surveys for self-employed and the surveys, which other organizations conduct, can
also be duplicated with the Bureau’s redesigned sample units.

When a PSU is selected by more than one survey, the common area becomes BPC (Basic
PSU Component) as mentioned before. Within this area, unduplication operations are

performed.

Maximizing PSU Overlap

The purpose of maximizing PSU overlap between 1990 and 2000 redesigns is to reduce measurement
errors by keeping as many experienced field representatives as possible.

Iv.1

Overview
IV.1.1 Demographic Survcy Redesign

In 2002, the Demographic Directorate of the Bureau of the Census, coordinating with
survey sponsors, will redesign most of the major Demographic surveys, The redesign
improves the data collected in those surveys by using the new information collected in the
2000 Census to stratify and sample so as to improve estimatcs and reduce variances. In
the first stage of samiple selection, the United States is divided into just over 2,000
geographic areas. Each of these areas will consist of a county or a group of contiguous
counties. For each of those surveys, a sample of these areas is selected across the
country. These areas are referred to as Primary Sampling Units (PSUs). Sampling for the

! The National Health Interview Survey (NHIS) redesign project group is currently

examining whether they want to define PSUs at the Census tract level. If they do so, the procedures
herein for NHIS will be Census tract based vs. the county based process indicated.



surveys then continues by taking a sample of households from within each of the selected
PSUs. We will be sclecting PSUs for the following surveys:

The Current Population Survey (CPS)
The Survey of Income and Program Participation
The National Crime Victimization Survey (NCVS)

The following surveys will be included in the final Post PSU Selection files; however, cither
the PSUs have been selected in the past or the PSUs will be selected outside of this
process:

The Consumer Expenditures Surveys (CE)
The American Housing Surveys (AHS)

The National Health Interview Survey (NHIS)
. PSU Stratification

Before we select PSUs for each survey, they are grouped into strata. The strata arc first
geographically restricted by state or region; CPS and Survey of Income and Program
Participation by state and NCVS by region {(somc groupings of states). Within the state or
region, strata are defined separately for each survey being redesigned. Since population is
always a variable of interest, certain highly populous PSUs in each state or region are
automatically selected for the sample. Each of thesc PSUs is in a stratum by itself. They
are referred to as Self-Representing (SR ) strata. The remaining PSUs in the statc or region
are grouped into strata called Non-Self-Representing (NSR) strata. These strata are
defined by population and by other target variables of interest to that survey. PSUs are
then selected from each stratum. The surveys sclect either one or two PSUs per NSR
stratum. Completion of stratification by all of the surveys marks the start of this PSU
selection process.

. Probability Proportional to Size (PPS)

In the NSR strata, the selection of one or two PSUs, dependent upon the survey, is made
using probabilities proportional to its "measure of size" (MOS). The MOS for cach survey
18 some measure of population or housing units. This approach further tends to reduce the
variance of survey estimates (Cochran 1977, p. 299).

. Maximizing Overiap between 1990 and 2000 Designs
The new selection of PSUs will inevitably mean that some of the PSUs that were in sample

throughout the 1990s will not be in the new sample for the 2000s. Similarly, some PSUs
that were not in sample in the 1990s will be in the new sample. These changes usually
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force the regional offices to release an experienced interviewer who lives in PSUs that are
"dropped" and hire new interviewers in PSUs that arc "picked up.” After the selection of
the PSUs for 2000, the PSUs that were in both the 1990 and 2000 designs are collectively
known as the "PSU Overlap."

Since the 1970 redesign, we have been using techniques to increase PSU overlap, while
maintaining our PPS design. The conditional probabilities of a PSU’s new samiple selection
given each possible prior sample are altered to increase ovetlap, while their joint
"accumulation", the unconditional probability, is kept fixed.

PSU Selection

Using the "conditional probabilities” provided by the maximum overlap methodology, we
then select the PSUs for the new design PPS in each stratum and forward the Post PSU
Selection Files for within-PSU sample selection.

Required Information

The following files of information will be input to the PSU selection process:

5.

1990 Design Information

County/minor civil division (MCD)/Census county division (CCD) level file(s) containing
1990 PSU sampling design and selection information. For all counties/MCDs/CCDs in the
United States, 1t will indicate

the PSU in which it is located.

the PSU’s 1990 stratum for each survey.

the PSU’s unconditional probability of selection (POS) for each survey.
whether the PSU was selected for each survey.

b B —

2000 PSU Definitions Information

County level file(s) containing the 2000 PSU definitions and measures of size for cach
survey. For each county, it will indicate

1. the county’s MOS for cach survey
2, the PSU in which it is located for each survey

2000 PSU Stratification Information
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PSU level file(s) indicating each PSUs’ 2000 stratumn and an MOS for cach survey.

. Sampling Interval Information

The respective design branches will provide the strata sampling intervals (Sls) for CPS,
Survey of Income and Program Participation, NHIS, and NCVS for the strata developed
in the stratification process. These Sls can take the form of a file identifying the SI for each
strata, a file of Sls by state or a single national SL

Pass-along information

The following information is input to the PSU selection for the sole purpose of passing it
along to the Within-PSU stage of the sampling:

Metropolitan Area Definitions File

Consumer Expenditures Surveys (CE) PSU Selection Information
American Housing Surveys (AHS) PSU Selection Information

4. Survey of Income and Program Participation PSU Selection Information

& by e

PSU Selection Methodology

10. Unconditional Probability of Selection

The unconditional probability of selection for each PSU within each survey will be
computed within each stratum using the number of PSUs being selected in that stratum
times the PSU’s MOS divided by the total MOS for the stratum, or

P(PSU, € S) = Min| (#PSUs /stratum) M5
Y MOS,

k=1

For surveys and strata that will select two PSUs per stratum, the maximum overlap
algorithm requires that we calculate an unconditional probability of selection for each pair of
PSUs in the stratum. It will be computed using a formula attributable to Brewer (1963) and
Durbin (1967):



MOS, 1
Let p=——.If max{p.l}< Fa
2
Y MOS,
k1
2p.p. i 1
P(PSU, & § and PSU, € §) = 00 ¥ :
(1+ p—k) 1-2p, 1-2p,
1 1-2py
wherei=1,2,...,n;j=12,...,mi* j.

1
Ifp, 2 5 for some i, that PSU will be selected with probability = 1, and the remainder

of the stratum will be treated as a one-PSU/stratum selection. A more detailed
discussion of on the derivation and properties of these formulas is in attachment A.

11. Rotating PSUs

Saome PSUs have too few housing units (HUs) to provide sample for even one
demographic survey throughout the decade. These PSUs are also geographically large
enough that it would be impractical to combine them with neighboring counties to increase
the number of HUs in the PSU. We call these PSUs "small PSUs." Within a stratum, these
small PSUs will be combined to create a "rotating PSU" cluster. It the small PSUs in the
stratum collectively do not have enough HUs to make up the decade’s sample, the simallest
"large PSU" (by HUs) will be added to the cluster. The PSUs in the cluster will share the
sample for the decade by rotating from one of the PSUs to the next.

1.

Small PSUs will be defined separatcly for each survey using a minimum number of HUs
required for sample. These "cutoffs" will be calculated by multiplying the number of
samples to be taken during the decade times the number of HUs per NSR PSU per
sample, dividing by a "buffering” factor like 0.8 or 0.7 and increased to the next 100.
Cutoffs will be calculated by the design branches.

The probability of sclection for the rotating PSU cluster will be the collective size of the
cluster using the Measure of Size (MOS}) chosen for each survey.

The overlap factor in the lincar programming model for any new sample rotating PSU
will be zero, regardless of whether an overlap exists or not.

If a rotating PSU is sclected for sample, the Random Arc Method (RAM) will be used

to determine the order of rotation and the starting point. The details of this method are
in attachment B,



12. PSU Overlap

We will use the procedure based on Emst (1986) to calculate the conditional probabilities
that will be used for PSU selection for CPS, NCVS, and Survey of Income and Program
Participation. NHIS will not use an ovetlap procedure, so the unconditional probability of
selection will be used for selection. The overlap method is the same procedurc used for
CPS and NCVS in 1990. Now that Survey of Income and Program Participation is a
state-based design, the computer memory restriction that resulted in special procedures for
Survey of Income and Program Participation overlap in 1990 will not be necessary in 2000.
A complete discussion of the development of the Emst (1986) algorithm is given in
attachment C.

Each survey-NSR stratum combination will run through overlap calculations separately, as
listed below. To assist in the discussion, here is some notation:

S will represent the stratum being processed.

k=1,2,...,n  will rcpresent the n possible selections in 8. For 1-PSU/stratum
cases, that will just be the n PSUs, For 2-PSU/stratum cases, it
will be the n pairs of PSUs.

i=1,2,...,r will represent the r strata in the 1990 design that contain at least
one PSU that is partially or completely contained in one of the
PSUs within S.

T; will represent the i™ stratum of those 1990 strata.

i=1,2,...,uwill represent the u; possible 1990 sclections in T, in terms of the

PSUs in S only. For 1990 1-PSU/stratum cases, u; will just be the
PSUsin T, * Splus 1 (for other PSUs in T;). For 2-PSU/stratum
cases, u; will be the PSUsin T;* S plus the pairs of the PSUs in T
* S, plus 1 (for other pairs of PSUs in T ).

1. Initial Input Data Preparation - For each survey-NSR stratumn, S, the following input
information will be calculated

1. nis determined as the number of PSUs in S for 1-PSU/stratum cases. For 2-
PSU/stratum cases, n is the number of pairs of PSUs.
2. = .. k=1..n1s the unconditional probability of selection (UPOS) for the n
possible selections. For 1-PSU/stratum cases it is just the UPOS of each of the
PSUs in S. For 2-PSUs/stratum cases it is the joint UPOS for each of the pairs.
r and the T, are determined by comparing 1990 strata PSUs with the PSUs in S.
4. u;,i=1,2,...r arc dctermined as follows:
For 1990 1-PSU/stratum cases, u; will just be the number of PSUs in T; * S plus
1 (for other PSUs in T ).

A



For 1990 2-PSU/stratum cases, u; will be the number of PSUs in T, * S plus the
number of pairs of the PSUs in T; * S, plus 1 {for other pairs of PSUs in T;).

5. p.;,are the 1990 UPOS of the j “ possible sclection in the i th 1990 stratum, T, .

2. Measurc of Overlap - For any combination of the j“ possible 1990 selection in the im
1990 stratum T, and the k * possible 2000 selection in S, wherei=1..1,j=1..u;,
and k=1..n, ameasure of overlap, ¢, will be calculated as is given below,
Because, in general, any stratum could have one or two PSUs in each possible
sclection, we will introduce some additional notation:

1.

Compare counties in each of the PSUs (there may be two ) in the k™ possible
2000 selection in S to each of the PSUs (there may be two) in the j™ possible
1990 selection in the i™ 1990 stratum T,. Let f;;, .y, = the total Housing Units
(HUs) common to the t* PSU in the 1990 set and the h™ PSU in the 2000 set,
divided by the total HUs in all of the j" possible 1990 selection in the i 1990
stratum T.. HU counts for both 1990 and 2000 PSUs used in this calculation will
be from the 2000 Census.

cijsz 1-{111(l—ﬁm)]l:[(l—gpqw{l- 1- qumh)”

¥l 1=1 =1 t=1
q=i

where i, is the number of PSUs being sclected in S and v, is the number of PSUs
that were selected in the 1990 stratum.

However, if the k™ possible 2000 selection in S is a rotating PSU, ¢, = 0.

It should be noted that in a simpler case like the CPS, where both the 1990 and
2000 selections were both done 1-PSU/NSR Stratum, the notation would simplify

to ¢y = 1- (1_ fi}k)n I- g;!pqwquk

q=1
Q=i

However, the above formula may allow a more general programming to handle any
situation.

Linear Programming Solution - Given the input available above, the following lingar

programming (LP) model will be solved by LP software producing the joint probability
values x; |  and the y; "pseudo-probabilities™:

Fouwoon
1. Maximize Z:ZEZCiJ‘kxuk

i=l j=1 k=1
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2. Subject to constraints Y, X5 = Py, and 3 3 X, =7, .
k=t

=1 j=1

4. Conditional Probabilities - Using the output from the LP, y;and x,;,,i=1..r,j=1..
u;,and k=1..n, compute the conditional probabilities,
P(the k™ possible 2000 selection in S is sclected given the 1990 sample that was

2 Xijk
11=1U|,...,1r=1rjr)=2 2%, where the

i=1 Pij

selected) = P(N =N,

I; = 1, represent the actual selections in the r 1990 strata.

13. PSU Selection
PSU selection will be performed for each survey’s NSR strata using a PPS procedure, using
the conditional probabilities discussed above for CPS, Survey of Income and Program
Participation, and NCVS, and using unconditional probabilities of selection for NHIS.

Sampling Intervals

1. Definition
The sampling interval (SI) at any level is the inverse of the sampling fraction. The term
"sampling mterval" comes from systematic sampling, where if you were selecting every 25"
unit for the sample, the sampling interval would be 25.

2. National, State, and Stratum SI
The survey design branch for CPS, Survey of Income and Program Participation, NHIS,
and NCVS will provide the sampling intervals (SIs) for the strata developed in the
stratification process. These Sls can take the form of a file identifying the SI for each strata,
a file of SIs by state, or a single national SI.

3. Calculating Within PSU Sis

The Within-PSU SI for cach PSU in sample will be the stratum SI times the unconditional
probability of selection of the PSU.



each survey-PSU’s stratum identificr
each survey-PSU’s measure of size (MOS)
each survey-PSU’s unconditional probability of selection (POS).
each survey-PSU’s sampling interval information.
a rotating PSU indicator for cach survey-PSU
. an SR/NSR flag
. miscellaneous information and flags needed by the surveys, particularly the CE and
AHS surveys.

—i

A second tract-level PPSF will be created for NHIS. It will contain the same information
related to NHIS only. However, the BPC codes places in this PPSF will reflect the county-
level BPCs developed for the other surveys.

2. Design Branch PSU Files

Files will be created for cach of the surveys separating that surveys information from the
PPSF. These files will be given to the survey's design branch. A copy of the CPS PSU file
will also be given to the Manufacturing and Construction Division for their PSU selection
process.

Sample Verification

In order to minimize the sample venfication time after PSU Selection and before the sample is
forwarded to within PSU sampling, we will add functions to our software to compile statistics
and summaries to aid the design branches in their review. The details of this part of the process
will be defined prior to completion of the specification.

Survey Needs Satisfaction

1. Current Population Survey (CPS)

L.
2.
3.

4.

CPS will stratify NSR PSUs by statc.

CPS will sclect one PSU per NSR stratum.,

CPS will use an MOS of civilian noninstitutionalized population aged 16 or older from
the 2000 Census.

CPS will overlap on its 1990 sample PSUs. However, it may decide not to ovetlap in
some states.

2. Survey of Income and Program Participation

1.

Survey of Income and Program Participation will stratify NSR PSUs by state.



3. Basic PSU Components (BPCs)

1.

Definition

One final component we will define for output is the BPC code. In the output we will
delineate the PSUs that were selected for CPS, Survey of Income and Program
Participation, NCVS, CE surveys, and AHS surveys. PSUs will be further broken down by
counties since the definitions of the PSUs are different across the surveys. Due to these
differences, a single county within a multi-county CPS PSU may be in a CE PSU while the
others are not, as iilustrated below. So, a BPC is defined as each PSU, sub-PSU county
group, or single county within a state that has a different combination of selected survey-
PSUs from the other BPCs in the state. In the simple example below, three BPCs would be
defined: The single common county would be one BPC, the county group with CPS alone
would be a second, and the county or county group with CE alone would be a third.

Methodology

BPCs will be defined and handled the same way as in the 1990 redesign, except for the
special NHIS handling described below. BPCs wilt be defined in relation to three of the
surveys which selected PSUs within this process, CPS, Survey of Income and Program
Participation, and NCVS, and the surveys that were selected elsewherc and provide input to
this process, the CE surveys and the AHS survey. NHIS will not be considered in the
development of BPCs. A five-digit BPC code will be assigned to each county that was
selected for at least one of the surveys. The codes will be made up a two-digit state code
followed by a three-digit sequence number. Each sequence number will define the largest
group of counties in which the same combination of Survey PSUSs has been selected for
sample. A scparate sequence will begin from 001 in each state.

4, Output Information

1.

Post PSU Selection File (PPSF)

County level file(s) containing the 2000 PSU sampling design and selection information for
CPS, Survey of Income and Program Participation, NCVS, the CE surveys, and the AHS
surveys. For each county, it will indicate

the county definition by region, state, and county codes and names
the BPC code

each survey that has selected in that county

the PSU identifier for each survey that selected in that county

= IR



2. Survey of Income and Program Participation will select two PSUs per NSR stratum in
some statcs and one PSU per NSR stratum in others.

3. Survey of Income and Program Participation will use an MOS of housing units from the
2000 Census, which should be limited by excluding institutional group quarters.

4. Survey of Incomc and Program Participation will overlap on its 1990 sample PSUs.

. National Crime Victimization Survey (NCVS)

1. NCVS will stratify NSR PSUs by region (some groupings of states). However, it may
stratify within states that do not have SR PSUSs.

2. NCVS will select one PSU per NSR stratum.

3. NCVS will use a MOS of housing units plus housing unit equivalents from military,
"strect people”, and noninstitutional Group Quarters, all from the 2000 Census.

4. NCVS will overlap on its 1990 sample PSUs.

. Survey of Construction (SOC)

1. SOC will require a file identifying the CPS PSUs selected for sample. At present, this
file will either be the full PPSF or the CPS design branch file.

2. SOC may want the use of some of our code to perform similar processes in their
overlap efforts.

Consumer Expenditure Surveys (CE)

The final PPSF will have CE selection information from the selections done by the Burcau of
Labor Statistics to pass on to within-PSU sclection. No other processes are required for
CE surveys.

. American Housing Survey (AHS)

The final PPSF will have AHS- National and AHS-Metropolitan Survey PSU selection

information provided by the Longitudinal Surveys Branch of DSMD to pass on to within-
PSU selection. No other processes are required for AHS surveys.
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Attachment A

2000 Redesign - Calculating the Joint Probability of
Selection for Strata Where We Select Two Primary
Sampling Units

Background

For the surveys in the 2000 Redesign, we divide the United States into geographical arcas which
we call primary sampling units (PSUs). Each is made up of one or a group of counties. Highly
populous PSUs are automatically sclected for sample. They are calied Self-Representing (SR)
PSUs. The remaining Non-Scif Representing (NSR) PSUs are put into strata. Within each of
those strata, either one PSLI is selected or two PSUs are selected. To reduce variance, we
perform the selection using probability proportional to size (PPS) with a measure of size (MOS)
based on either the population or the number of housing units within each PSU relative to the
other PSUs in the stratum. If we are selecting only one PSU within an NSR stratum, the
probability of selection for each is just the PSU’s MOS divided by the total MOS for the

MOS,
Y MOS,
MOS, €5
formula for the joint probabilitics of sclection for each pair is not that straightforward.

stratum, or p,; = . However, if we are selecting two PSUs in the stratum, the

Requirements
We will be sclecting two-PSU/stratum samples by assigning joint probabilities, * ; ;. to cach
pair of PSUs and then selecting one of the pairs. We will not be selecting them sequentially,

without replacement. So, what properties do we want the joint probability formula to have?

a. Probability Axioms

Obviously, the formula must comply with the axioms of probability, 0< T, < 1,

Enij=1.

all (i.j}
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b. Maintain PSU PPS

To maintain the PPS design, the probability of sclection for each PSU must still be
proportional to its MOS relative to the other PSUs in the stratum, or

MOS;
Z m,; = constant* = ——.
<, Y. MOS,
MO, €S

Formula #1 - Yates-Grundy Formula

The first, most obvious, approach is to derive a formula based on selecting the first PSU using

MOS, _ _ MOS. D .
P, = —~ . and selecting the second PSU using i _ 3 This would
Y Mo0s Y Mos, 1-p,
MOS, =5 kei

| 1
produce an unordered probability of selection of T .. = P;p j[ p £ 1 ] :
a, Probability Axioms

As long as there are two PSUs with non-zero MOS's in the stratum, 0< R i <1 and

S, ——ZZ pp[ i+1_1pj} Z{p, p; ]

all (i,j) i =i

2
Py P;
=—l1+ - =1.
[ Z -P i l"ps]

k

b. Maintain PSU PPS

p.
However, P(PSU |, is selected) = 2, T, = p;+ D, = # constant *p;.
i AN
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Formula #2 - Durbin-Brewer Formula

A joint probability formula developed by Brewer (1963) and Durbin (1967) for the joint

2pip,; 1 1
probability of selection is 1, i< . + . It is restricted to

a - 2p,
values of p <0.5. Ifany one of the values of pis * 0.5, that PSU is converted to SR and only
one of the remaining PSUs is selected thereafter.

a. Probability Axioms

Under the assumption that cach G< p; < 0.5,* i, 0< 7, <1 and

1 1-p, Py Pi }
= P, + - =1,
2- [1—2& gk -2p, 1-2p,
b. Maintain PSU PPS

P(PSU; is selected) =

2p, 1-p, P P;
T. = . 4 - - = 2p. which
27, P, {1-21:;i E1—2pk 1-2p, | P

maintains PSU PPS.
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Rotating Primary Sampling Units

Background

For each of the surveys, there are some Primary Sampling Units (PSUs) that do not have
enough Housing Units (HUs) to provide samples for the entire decade. Yet, these same PSUs
are physically large enough that combining it with additional adjaccnt counties to enlarge its
sample is not reasonable. The method we use to include these PSUs in our sample selection
without being potentially forced to sample the same HU twice, is the "Rotating PSU."

"Small PSUs"

A PSU is regarded as small for a particular survey if 70%% or 80% (to be determined) times the
number of housing units in the PSU is less than the number of HUs that will be sampled
throughout the use of the 2000 design (or about 10 years). This figure varies from survey to
survey. These will be recomputed for the 2000 redesign, but for 1990 the cutoffs were:

! CPS 1,600 HUs

! Survey of Income and Program Participation 1,200 HUs

I NCVS 2,100 HUs

! NHIS 1,500 HUs

Rotating PSU Clusters

For each Non-Self-Representing (NSR) stratum and each survey, all small PSUs will be
combined into a rotating PSU cluster. If the total HUs for the cluster are still below the small
PSU cutoft, the next smallest PSU in the stratum will be added to the cluster. Thus, across all of
the surveys in the cluster there is enough sample for the survey over the decade.

Sample Selection

In the 1990 redesign, sample selection for the rotating PSU clusters was handled in two ways.
In 2000, we will be using only the second method.

a. One PSU/Stratum. For the survey and stratum in question, if we were selecting only one
PSU, all of the PSUs in the rotating cluster were selected as separate PSUs. If any one of

them was selected for sample, the rotating cluster was selected for sample.

b. Two PSUs/Stratum. If we were selecting two PSUSs for that stratum, the above method
could not be used as it would be possible to select two of the PSUs in the cluster. So, the
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entire cluster was treated as one PSU with its cumulative measure of size used to calculate
its probability of selection.

¢. 2000 Redesign Method. Both methods above are effectively identical. However, only the
second method is useable in both situations. In order to minimize the programming effort,
we will use the second method.

Rotation

It a rotating cluster is selected for sample for a survey, the samplcs through the decade will be
rotated from one of the PSUs in the cluster to another to produce all of the samples necessary.
The next step in the process will be deciding the order of rotation and the number of samples
from each PSU before it rotates out.

Rotation Schedule

The method used for determining the rotation schedule is called the Random Arc

Method (RAM). The method was originally proposed and shown to maintain unbiasness in
Alexander, ctal. (1982). For the survey and rotating cluster in question, perform the following
steps:

a. Step I => Sort the PSUs in the rotation cluster in random order.

b. Siep 2 => For each PSU, A, let * (A ;) = the number of complete samples that could be
taken from A ; for this survey. Lot * (c) =+ ¢ (A ). Conceptually, create a
serics of line segments proportional to cach of the * (A ;) and connect them end
to end in the order determined in step 1.

¢. Step 3 => Bend the line around to form a circle of circumference * (c) with clockwise
orientation,

d. Step 4 => Randomly select a starting point X on the circle.

e. Step 5 => The arc which includes the point X represents the initial PSU in the decade of
samples in the new design. Beginning at point X, number the samples and
identify the sample numbers where a rotation from one PSU to the next PSU in
rotation Occurs.

Example:

Suppose a survey requires 50 HUs per sample in stratum S with 25 samples to be taken over
the next 10 years. Therefore, each PSU or rotating cluster requires at least 1,250 HUs in
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stratum 5. Suppose a rotating cluster of three small PSUs is selected for sample in stratum S.
PSUI has 824 HUs, PSU2 has1,012 HUs, and PSU3 has 1,11 1HUs. Therefore, * (PSUI) =
16, * (PSU2) =20, » (PSU3) = 22, and * (¢) = 58. The random sort in step 1 produces the
order: PSUS3 first, PSU1 second, and PSU2 third. The line of length 58 is created, made up of
segments of length 22, 16, and 20 in that order:

The ling is bent into a circle, and the point X between 0 and 58 is randomly selected with a
uniform probability distribution. Suppose the point is selected is 46.

Then, PSU2 will be the first PSU in the new redesign. It will get sample 1 - 13 (46 through 58
on the line above). Then it will rotate to PSU3, which will get samples 14 - 25 (] through 12 on
the line above). And, PSU1 will not rotatc into the sample.

More than One Survey in a Rotating PSU

It is possible, though extremely unlikely, that two or more surveys could select a rotating PSU,
or one survey could select a rotating PSU and a second survey could select one of the PSUs in
the rotating PSU. Following the procedures used in 1990, we will not make allowances for
these possibilities. Adjustments will be made as part of the Within-PSU processing.
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Primary Sampling Unit Overlap

Background

H

What is Primary Sampling Unit (PSU) Overlap?

For a given survey, all PSUs (or portions of PSUs) that will be selected in the 2000 redesign
which were also in the 1990 design are known collectively as PSU Overlap. Some of this
overlap would happen by design (2000 Self-Representing (SR} PSUs overlapping 1990
SRs) and some by random sclection (the same Non-SR (NSR) PSU selected by chance in
2000) without altering the design process. Starting in the 1970 redesign, the Current
Population Survey (CPS) implemented a design change to increase the expected PSU
overlap, while maintaining each PSU's unconditional probability of selection.

Why Maximize Overlap?

It you look at one of our maps showing the Samptle PSUs for the CPS, you can see the
750+ red arcas indicating the sample PSUs where we conduct CPS interviews and the
1,250+ white arcas where we do not. Those sample PSUs were selected in the early
1990s. In the early 2000s, we will select new PSUs using updated information from the
2000 Census. For every case where we drop an existing CPS PSU and pick up a new
sample PSU, we may have to "release” a trained and experienced interviewer from the old
PSU and hire a new interviewer in the new PSU. We will then have to train the new
interviewer, suffer from the lower response rates, and experience lower data quality that
usually scen with a less experienced interviewer. Maximizing overlap in 1990 prevented
about 100 of these transitions from happening in CPS alone.

What is the "Downside"” of PSU Overlap?

Our methods of maximizing PSU Overlap maintain the desired unconditional probability of
selection (POS) for each PSU. Armed with this information, unbiascd weighted estimators
can be constructed. The POS for any given PSU was selected based on a measure of size
(often population or # of housing units) relative to the other PSUs in the same stratum to take
advantage of the benefits of PPS? sampling. The PSUs were assigned to strata using a
number of stratification variables, grouping PSUs with similar values to take advantage of the

Probability proportional to size




Attachment C-2

variance reduction that can be realized from a stratificd design. So, if maximizing overlap
doesn’t disturb these design considerations, what does it affect?

An assumption of the stratified design is stratum-to-stratum independence. The PSU
Overlap process produces a dependence of NSR strata within the state or region. This
dependence will increase variance, though to date there has been no research into the extent
of the impact.

d. 1990 Overlap Methodology

CPS & the National Crime Survey (NCS)

In 1990, CPS and NCS used the Emst(1986) method. Both surveys selected one PSU
per stratum,

Survey of Income and Program Participation

In 1990, the Survey of Income and Program Participation maximized overlap for the
first time, and selected two PSUs per stratum. Survey of Income and Program
Participation could not use a mcthods similar to those used for CPS and NCS, duc to
the large number of PSUs in some of Survey of Income and Program Participation’s
regional strata. The algorithms caused a computer memory size problem, even in a
mainframe computer. So, a "workaround” algorithm was developed. Even using that
algorithm, a few of Survey of Income and Program Participation’s largest strata still had
to be selected independently due to size restrictions.

e. 2000 Methodology

Fortunately, the size problems with the Survey of Income and Program Participation arc a
nonissue in 2000 for several rcasons:

Computers are exponentially faster and have motc memory,

Linear programming algorithms are much more cfficient.

Survey of Income and Program Participation will be stratifying by state so the sizes of
the strata are greatly reduced.

So, with the size problem eliminated, we can use Ernst(1986) for all of the surveys that are
maximizing overlap: CPS, the Survey of Income and Program Participation and the National
Crime Victimization Survey (NCVS).

Maximizing Overlap Overview



Attachment C-3

a. General Idea

The idea of maximizing overlap between the 1990 design and the 2000 design, without
disturbing the fundamentals of our survey design (too much), is to first regard the two sample
selections as onc big sampling experiment in which the unconditional probabilities for each
design are fixed, but the joint probabilities of selection arc adjusted to improve the chance of
overlap.

b. Simple PSU Overlap Maximization Example - Keyfitz's (1954) PSU Overlap Method

The simplest case for overlap would exist if, for both the old and new designs, you only
selected one PSU per stratum, the PSU definitions did not change (i.c., cach PSU was made
up of the same geographical area in both designs), and stratum definitions did not change
(i.e., each stratum contains the same PSUs in both designs).

I Given an NSR stratum in CPS, we’ll do the same thing we did in the example above:
Set up a matrix with the probabilities of selection for the initial sample as the marginal
sums of the rows and the probabilitics of selection for the new sample as the marginal
sums of the columns, This will eventually be the matrix of Joint probabilitics for old and
new PSU selections. Example®:

" Suppose we have a simple stratum with three PSUs.

Let the unconditional probabilities of selection in the initial sample be 0.36, 0.24, and

0.40 for PSUI1, PSU2, and PSU3, respectively.

Let the unconditional probabilities of selection in the new sample be 0.50, 0.30, and

0.20 for PSU1, PSU2, and PSU3, respectively.

So the matrix would look like:

Table 1. Joint Probabilities

New PSU
Oid PSU 1 2 3
1 0.36
2 0.24
3 0.40
0.50 0.30 020

3 Example is taken from Draft Technical Paper 63, Appendix A.
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! From there, it is fairly casy to arrange for the maximun probabilities to be on the
diagonal, where overlap will occur, and yet still have the rows and columns sum to their

required marginals.

Table 2. Joint Probabilities

New PSU
Old PSU | 2 3
! 0.36 0.36 0 0
2 0.24 0 0.24 0
3 0.40 0.14 0.06 0.20
0.50 0.30 0.20

! Finally, we compute the conditional probabilitics for cach ncw PSU being selected given
that a specific old PSU was in sample by dividing by the marginal probability for that old

PSU. In the example:
Table 3. Conditional
Probabilities

New PSU
Old PSU | 2 3
l 036 1 0 0
2 024 4] 1 0
3| 040 | oss | o1 | o
0.50 0.30 0.20

I We then note which PSU was actually selected in the initial sample and then use the
conditional probabtlities in that row to select the new sample. So, in the cxample, if old
PSU #3 was selected in the initial sample, the 3rd row of probabilities (shaded above)

will be used to select the new PSU.
c. The Linear Programming General Solution - One PSU Per Stratum

Unfortunately, some surveys select two PSUs per stratum and stratifications do change (a
lot), so the simple method above needed to be generalized. That is where the Causey et
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al.{1985) method came in. It is a linear programming solution to the above problem only
generalized so it is applicable to selection of more than one PSU and to the case where
stratifications change.

This method is similar to the technique used above by Keyfitz (1954), only it is generalized
to cover situations with fewer assumptions. As with Keyfitz, it scts up a matrix with initial
sample selection cascs as rows and new sample selection cases as columns. However, it
does so in a more general approach using linear programming to solve for the joint
probabilities in the matrix.

For one specific survey, focusing on a single stratum, S, in the new sample and the PSUs in
that stratum:

I Create a joint probability matrix, Each row is a possible combination of those PSUSs that
could have been selected in the old sample. Each column is a possible combination of
those PSUs that could be selected in the new sample.

I Enter the known marginal probabilities for each row and each columm.

Set up a "transportation problem" to be solved using transportation problem-specific
software or a general linear programming program.

Z= 2 2 8, % that we want to maximize, subject to constraints,
rl -l

2 LT J =1,2,... n* (columns surn to the marginals); and

=1

2 % = % i=1,2,.,.,m* (rows sum to the marginals),

where x; ; , are the unknown joint probabilitics that the software will solve for us, and ¢; |
« = # of PSUs that overlap between old sample selection j and new sample selection k,
so Z is the expected number of overlaps.

! Calculate the conditional probabilities for each row by dividing by the marginal total.

Then, use the row of conditional probabilities that correspond to the combination that
actually was selected in the old sample to select for the new sample.

Example: Consider the simple
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1990 Strata 2000 Stratum

Tl Sy 524 54, 54

Sy | 81 82. 85, 8

T, Ss, Sgs S7, Sy

Assuming this is a two PSU per stratum design in 1990 and 2000, then it is possible that s,
51, S5, and s, were selected in 1990, because of the shift in strata definitions and contents,

So, tl{le iossible sets of PSUs in stratum S, that were sclected for sample in 1990 would be,
2 3t
1™

‘?}-{‘s}*‘i‘%‘{‘v‘:}* {]‘l"sa}(l:{‘v‘s}’{‘?"5}-{‘:‘%}-{‘5-‘6}'{‘l"z"s}'{‘l“i"‘}'

{‘p‘s-‘j- £, 85, 0l 4811 84, 85, 8cr, making 16 possible sets.

And, the rossible sets that could be selected in 2000 would be,
£

{‘1-‘2}! t-‘s}-{‘v‘s}-{’:"s}n{‘z"s}-{‘s-‘s}-

I Construct a matrix for joint probabilities with the 1990 selection choices as the rows and
the 2000 selection choices as the columns, noting the overlap values:

Table 4. Joint Probabilities
2000 PSU Selections

1 2 3 4 5 6

1990 PSU Selections 8.8t | Y51850 | 161.8a] | {8ves) | %405 S5, 5g

1 ) P Xy X2 X3 Xis X5 X6

¢1=0 =0 ¢y5=0 ¢1~0 =0 =0

2 { ‘|} 3] Xz Xy X3 S¥ Xas5 X,
= cy=1 ¢y =1 ¢y =0 ¢y =0 ¢y =0
1
3 {‘:} 151 X3 X3 X1y X34 X35 X34

C31=1 C32=0 C33=0 C34:1 C35:1 C3f,=0
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1990 PSU Selections | {&).50} | {s3.56} | {556} | {55} | {ep.0g} |
cy=0 | cio=1 Cq5=0 €441 €450
5 { 9‘} Ps s Xs3 X3 Xs4 Xss X5
Cs5=1
6 {sl.sg} Ps
7 {‘1-’5} P
8 {SI,G‘} Py
9 {‘2-‘5} Py
10 {‘2.“} Pra
1t {:5,5‘} Py
12 {‘l"‘z-‘s} P12
13 {‘1-‘:-‘5} P13
14 {Sl.ﬂs.ﬁs} P14
15 {‘2-‘5-‘:} Pis
16 {‘l-‘:-‘s-‘s} Pre
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1990 PSU Selections | {sy.e0} 1 {sp.se} | {o5¢h 1 {egue} | enongh | {ucosg)

. . . [ . .
1 2 3 4 5 6

I Now we have to fill in the marginal probabilitics. It's here that stratum-to-stratum
independence comes in. The way we've selected PSUs, we know the probabilities of
the selections in a single stratum in 1990. However, to compute the marginat probability,
p1» we have to compute the probability that s, and s; were selected in T, and s, and s, m
T,. If we have stratum to stratum independence, we just multiply the probabilitics. If
not, we may not be able to compute p,.

I We now set up a classic transportation problem:

Z= ﬁ 2 0% that we want to maximize, subject to constraints,
1 i

i % =Py i=1,2,...,6(columns sum to the marginals); and

1l
i: X * :r,j,j =1,2,..., 16 (rows sum to the marginals}.
[
And, solve it to compute the values of x; ;.
I So, the solution to the transportation problem will produce each of the x; ; in the joint

probability matrix. As with the Keyfitz procedure, we then compute the conditional
probabilitics by dividing by the row totals:
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2000 PSU Selections
| 2 3 4 5 6

1990 PSU Selections {sl.sg} { £, ‘s} {:l .s‘} 4 t. ‘5} { £, =‘} { ss.s‘}

1 1%2] [} X0/ X2/py X13/P X14/P X15/Dy X1/

2 ’{ ‘1} P2 Xo1/Pa X22/P: Xo3/P2 X24/Ps X35/P2 Xa6/P:

3 { ‘2} D3 Xa1/P3 Xofpy | K9Py | Xs/Ps X35/Ps | Xa/Ds

4 { ‘S} Pa X41/Dy X2/ P Xa3/P4 Xo/Ps Xa45/Da X4o/Pa

5 { =‘} Ps Xs1/Ps Xs2/Ps Xs4/Ds X54/Ps Xs5/Ds Xse/Ps

6 {sp.s] P | e | xepe | %o | mepe | %o | eolpe

7 '{ £ ss} p- Xaips X72/P X79/P- X747 X25/Ps X6/

8 {ersgd | pe ] ol | x| e | xepe | x| s

9 { ‘)-55} Po Xa1/Py Xo2/ Py Xo3/Py Xa4/ Py Xo5/Py X/ Py
10 { ‘3"‘!} P 1 XoPo | XePio | X107/Pis | %i0sPio | XiosPro | Xi06/Pro

11 {‘S*‘g} ' p“ | x‘“’{p" anfpll j?:’;_i'izzzfpii xm}’{Pu ;-?'C.nslz"[.}n_ 1 ?:11.16/1311 '
12 {‘1-5:- ‘5} Pz X2 | xi22Prz | Xi2/Pi2 | X2e/Piz 1 Xis/Pr2 | Xiae/Priz
13 {‘p‘)a “} P13 Xi/Prs | Xin/Prs | Xia/Pis | XuaePu | XosPis | Xise/Dis
14 {‘1-‘5-“} Pis | Xia/Pus | XKiao/Pra § XasPra | XKaaPrs | XiasPrs | Xuao/Pra
15 {‘2.55.35} Pis | Xis/Pis | Xis/Pis | XisafPus | XisePis | Xissis | Xise/pus
16 {cl.s,. §s, bg Pie | Xia/Pis | Xie/Pis | Xiea'Pre | XiaPis | X165Pio | Xioo/Pie
. ., ., ., ., .,

Let's say that we check the old sample and find that {%,:4} were selected from T, and {:s,s‘ll
were selected from T,. This corresponds to row #11, so we would select the new sample wit
If there is an entry of 1 in the row, we pick the combination of

those conditional probabilitics.
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PSUs corresponding to the column. If there is more than ong non-zcro entry, then we have to
generatc a random number to pick one of the combinations of PSUs. This suggests we do not
necessarily pick the combination which has the highest conditional probability.

This methed is optimal and easy to implement, but the independence assumption was not met by
CPS in almost any redesign. So, a variation had to be created that did not need the
independence assumption, Ernst (1986).

Ernst (1986) Overlap Algorithm
d. The Problem with the Causey et al. (1985) Method

Ernst( 1986} method sacrifices some of the optimal overlap characteristic in order to be able
to deal with the independence problem. The lack of independence in the initial sample makes
it at best extremely difficult to compute joint probabilities across strata and at worst
impossible. This method attempts to maximize overlap with less information: the
unconditional sample probabilities within each of the initial sample's strata.

Suppose we had the simplistic case illustrated below.

1990 Strata 2000 Stratum

T, 51y 83, 83, 84

S, 15,85 85, 5

T2 SS! Sl‘n S'h SS

Further suppose that we selected one PSU per stratum in 1990 and we are selecting one
PSU per stratum in 2000. The possible combinations of the PSUs from the 2000 stratum,
{S1. S2, Ss. SgJ, that could have been in sample in 1990 arc * , {s,}, {s>}. {85}, {Se}. {51,
S5} {512 8¢} {52, S5}, and {s,, s¢}. If we wanted to use the straightforward Causey, et al
(1985) method to maximize overlap, we would have to know joint probabilities of selection
across the 1990 strata, T, and T, for each of them. For example, the probability that {s, }
is in the initial sample is the joint probability that s, is sclected from T; and neither {s;} nor
{s¢} is selected from T,. If the 1990 sample selection were performed such that each
stratum was independently selected, then these joint probabilities could be calculated easily
by multiplying the probabilities. However, the sampling of T, and T, in 1990 was not
performed in a manner making the stratum independent of each other. The only information
that is available to us are the probabilities of sclection within each 1990 stratum.,
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e. Partitioning The Joint Space
Since we know the probabilities of selection within each individual stratumn in the initial
sample, the solution presented in Emst (1986) is to partition the initial sample space by
stratum. To do that, he sets up a new step to the overall joint process: the random selection
of onc of the stratum from the initial sample. So, the simple 1 PSU/stratum case above
would become the following 3-dimensional table of joint probabilities:
Table 6. Joint Probabilities
2000
i 2 3 4
Stratum {5} 15:} 185} 15}
11 ® YiPu Xinl X2 X3 Xid
T 12 is11 ] yipe X121 X122 X23 Xz
; 13 182} YiP1: X131 X132 X133 X34
9 21 * Yoo X2 Xa12 X313 X4
0 T, 22 {ss} YaP22 X221 KXoz KXoz X224
23 {86} Y Xaay X3z X733 Xo34
] 1 L] 2 » 3 L ] 4
where y, and y, are the probabilities of sclection for the two stratum, and p;; are the
probabilities of selection for cach of the PSU possibilities given the selection of the stratum.
f  Assumptions

As with Causey, Cox, and Emst (1985), we focus on each of the new sample’s strata, onc
atatime. Let's call it S. To construct the process, we define our selection process as three
steps:

! We note which strata in the old sample (1990 in our case) contain one or more PSUs
that arc also in the new sample stratum. Call them T,. Then we will randomly select
one of those strata. Each of the stratum in the old sample that contains one or morc

i 35_
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PSUs in the new sample stratum will be assigned a probability, as determined by our
linear programming solution, Call the selected stratum T.

We then note which PSU or combination of PSUs was selected from stratum T.

We then select our sample PSU or PSUs from the new sample stratum, S, conditioned
on the results of the first two steps.

g Formulation

Our linear programming problem now becomes:

Maximnize Z = 2 i 2 B,;x Tjx Under constraints

el pl kel

2 i iy = Ty.k=1,2,...,n and

‘The index i represents each of the r strata in the old sample that have onc or more PSUs
in the new sample stratum, S.

The index j represents each of the w; sets of PSUs that are in both the new sample
straturn and the old sample stratum, T; (one of the r strata discussed above). For 1990
1-PSU/stratum cases, u; will just be the PSUs in T, = S plus 1 (for other PSUs in T ).
For 1990 2-PSU/stratum cases, u; willbethe PSUsin T, * S plus the pairs of the
PSUsin T;* S, plus | (for other pairs of PSUs in T ).

The index k represents each of the possible selection scts of PSUs that could be chosen
for the new sample.

As before, *  is the unconditional probability that the k™ possible new sample selection
set of PSUs is, in fact, selected.

¥, is the probability of selecting the * stratum in the old sample.

The definition of ¢, ; , gets a little more complicated. As before it is the expected
number of overlaps given that the i" old sample stratum was chosen, that the j** PSU set
in that stratum was selected for sample, and that the k™ new sample PSU set is chosen
for the new sample.

Using notation where Ny, is the H" PSU inthe N, PSU set,h=1,..., me, then

c,Jk=§ PN, € 1) T=T, L=, N=N,)

Those probabilities come in three forms:

N 1 BN € T| T T RN ) 1
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if Nyy € TNL BN, € I} T=T, L =L, N=N,)=0
if Ny € Ty, PNy, € 1| T=T, L =L, N=N, ) =F{N,, € I

In the third one above is wherc we may lose optimality if there is a lack of independence
in the initial sample. If (N, ,, * 1) is comelated with (T = T;, [, = ;;), the probability we
use in our object function will not be accurate. This means that we may not be optimal in
maximizing overlap.

BUT, we do maintain our constraint probabilities, so there is no bias due to inaccurate
weights, computed from inaccurate probabilities of selection,

h. Example Consider the same example as before.

Assuming this s a two PSU per stratum design in 1990 and 2000, then it is possible that s,,
8, S, and s, were selected in 1990, because of the shift in strata definitions and contents.

So, the possible sets of PSUs in stratum S, that were selected for sample in 1990 would be,
from T, @ , {5, »‘{‘1}-{‘1“1} and from T, @ -{’s}s{‘:}-{‘s-‘s}-

And, the possible sets that could be sclecied in 2000 would be,
{sl,sg}. f;.ss}. {sl,:‘}, {:2.‘.'5}, {:;,, :s}, {‘s-‘s}- We define

Pl P, [T =100
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Table 7. Costs for stratum T1

2000 PSU Selections

k=1 k=2 k=3 k=4 k=35 k=6

1990 PSU {‘l"ﬁ} {‘l-‘s} {sl.c‘} {z._,,ss} {::,s‘} {‘s-‘s}

Selections

{ ¢ l} Celi 113 Ceil 114 Ceit 113 Cell 116
Cii3= Cia= Pay Crs= P | Crs=pat
1+pss P

{ 52} : 122 15

Cra=Put

T

{5 _ : 134

Crin=Put

1y

{@ } 2 143 146

Cras =P

2N,

e 38_
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Table 8. Costs for stratumT2

2000 PSU Selections
k=1 k=2 k=3 k=4 k=3 k=6
1990 PSU {‘1-‘:} {‘1»‘5} {:1 ,:‘} {sz,zs} {cg, s‘} {‘s-‘s}
Selections
{ [ S} Cell B, Cell 212 Cetl 243 Cell 214 Cell 213 Cell 214
Cin=pnt cp=1 Cris= Py cr=1 = Poa cr=1
P + Py tp;s
{‘ ‘} Cell 224 227 233 224 225 236
crp=put | en=pu Yem=1+ | co=pr | €= 1+ Cran=1
P Pii Py
{‘S' f.‘} 234 232 233 234 233 230
Cry=put | =it ¢ =1t ST Crps=1+ Cysp=2
Pz P P P2 P
{@ } 244 242 243 24 245 246
Cra=Put § CrxTPu Cria=Pu Crai=™Pi2 Cras=P Cris=0
J2FA

I Construct a matrix for joint probabilities with the 1990 selection choices as the rows and
the 2000 sclection choices as the columns, noting the overlap values:

I Now we have to fill in the marginal probabilities. It's here that stratum-to-stratum
independence comes in, The way we've selected PSUs, we know the probabilities of
the selections in a single stratum in 1990. However, we do not have stratum to stratum
independence

! We now sct up a classic transportation problem:

Z = i i: i 815z that we want to maximize, subject to constraints,
1l 1 k1
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2 4= Py, i 1,2;j:1;2: 4; and
k=1 rht o

ii X = xy.)1=1,2,3, . ,6 (column sums).

1l 1
Note y,= P(T = T; ), solve it to compute the values of x; | ,.
So, the solution to the transportation problem will produce each of the x; in the joint

probability matrix. As with the Keyfitz procedure, we then compute the conditional
probabilitics by dividing by the row totals:

Table 9. X;.’s which Maximize Z

(i) k=1 k=2 k=3 k=4 k= k=6

(1.1)={s} LI

(1,2)={s,}

(1.3)={e.84}

P IR e

(1,4)={e} Xy43

Lh

(2,1)={ss)

2,2)={sg)

(2,3)= {‘S"‘.} X235'

(=B IS e

(2.4)=(e)

In the above x;' are specific values maximizing Z, objective function.
Conditional probabilities are calculated using the following formula.

PO =N, [L=1,, . L=ly L=L,)=) 9
N =N [ D=0y To Dy, L=1) = 2 v
by

Note the above can be proved using the Laplace’s rule of succession, which is

P(F|F,) = z‘; P(F|F,E) NE,|F,)
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In Table 1, {g;} is a combination of{g; .84} and {¢,,8,} . This is because it is a two PSUs
per stratum design. In this Table, {®} mecans {s5,5,} . Similarly, in Table 2, {g5)is a
combination of {s5,8,) and {¢ s} , and {®}is (84,5} .

In calculating conditional probabilities, all possible realizations in 1990 design should be
taken into account. That is, in Table 3, (row 1, row 3), (row 1, row 6), (row 1, row 7),
(row I, row 8), (row 2, row 5), (tow 2, row 6), (row 2, row 7), (row 2, row 8),

(tow 3, row 5), (row 3, row 6), (row 3, row 7), (row 3, row 8), (row 4, row 5), (row 4,
row 6), (row 4, row 7) and (row 4, row 8),

Suppose in the old sample {gq,8,) was selected from T, and {s5.8¢} was selected from T,
This corresponds to {row 4, row 7}, so we would select the new sample accordingly, Row
4 correspondents to i = | andy =4 and row 7 to i=2 and §; =3, the conditional probability
will be, when k=1,
4
P(N' =Nll Il =Ill"12‘=1237> &= #*-r_j—_—ail_.
P4, P2

For all k, thc above probabilities are computed. If there is an entry of 1, we pick thatk, It
there is more than one non-zero cntry, then we have to generate a random number to pick
one of the k.

Note this method is not optimal because the stratum to stratum independent selection

assumption is not met by any redesign. So, a variation had to be created that did not need
the independence assumption, Emst (1986).

__41__
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After the Linear Programming Solution

Oncc the above linear programming solution is derived, we have the values for the x array
and the y vector. The next step is to compute the conditional probability associated with the
1990 actual sample selection. That is done with the following formula:

roxX.
L= Lyl = L, )= 3

P(N=N, »
i1 Pij,

3. Changes in PSU Definitions

d.

Overview

The final adjustment that must be made to the algorithms is to account for changes in PSU

definitions between 1990 and 2000 designs. The PSUs are defined in terms of counties

(and in some cases minor civil division or Census county division). Thosc definitions change

for a variety of reasons:

! The survey goes from a regional design to a state design (c.g., Survey of Income and
Program Participation)

! A PSU is found to be poorly defined from a logistical sense

! States change county definitions

Because of these changes, the algorithm for the measure of overlap, ¢ ;, is no longer as

simple as the definition above. Now we have to change the definition to account for partial

overlap.

New Overlap Definition

The term "PSU overlap" was originally defined to be the expected number of NSR PSUs
that are in both the new and old designs. Since we now have to account for partial overlaps,
we have to decide what measure we will usc to compute the amount of overlap.

The original purpose for increasing overlap was to minimize interviewer changes. In a partial
overlap, a reasonable measure would be the probability that the existing interviewer in the
1990 design PSU is also in the 2000 design PSU. To estimate that probability, we will use
the number of Housing Units (HUs} in the partial overlap arca divided by the HUs in the
1990 PSU. These counts will be from the 2000 Census.
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Procedure

Unfortunately, the formulas are not that simple due to the fact that we could have two PSUs
per stratum. Here’s the development:

For any combination of the j ™ possible 1990 selection in the i 1990 stratum T, and the k ®
possible 2000 selection in S, wherei=1..r,j=1..u;,and k=1..n, a measure of
overlap, ¢ will be calculated as follows. Because, in general, any stratum could have one
or two PSUs in each possible selection, we will introduce some additional notation:

Compare counties in each of the PSUs (there may be two ) in the k™ possible 2000
selection in S to each of the PSUs (there may be two) in the j* possible 1990 selection
in the i® 1990 stratum T,. Let f,;,,, = the total Housing Units (HUs) common to the t
" PSU in the 1990 set and the h™ PSU in the 2000 set, divided by the total HUs in all of
the j™ possible 1990 selection in the i 1990 stratum T,. HU counts for both 1990

and 2000 PSUs used in this calculation will be from the 2000 Census.

=8 1= 0= I [ % 11 - ]

k1 =1 q=1
q#i

where m, is the number of PSUs being selected in S and v, is the number of PSUs that
were selected in the * 1990 stratum.
However, if the k™ possible 2000 selection in S is a rotating PSU, ¢, k=0

d. Formula Brealdown

Vi

I1 ( L= £, ) 3 the conditional probabiliy given T=T; and I, =L that no 1990
=1
sample interviewer from a PSU in T, resides in N .

I u, Vi

That is multiplied by H [1-— Z pqw{ |— H (1 = qutkh)” , which is the
g1 w=1
i

t=1

unconditional probability that no 1990 sample interviewer in any PSU in the other r - 1
strata besides the i one resides in N ;..

So, one minus those two multiplied together gives the probability that at least one
interviewer from a 1990 PSU resides in N ,,, giventhat T=T, and I, = L.

Finally, that probability for each of the N , s (there could be two) is added together to
produce the overlap figure,



v Equivalency of Two Cost Formulae

V.1 Introduction

Emnst’s algorithm for maximizing PSU overlap between two redesigns involves linear programming and
thus costs. In the case of 2 PSUs/stratum, the cost can be calculated using joint probability of selection
in light of 2 PSU per stratumn design. Or it can be computed as if it is a 1 PSU/stratum design but
incorporating the fact that 2 PSUs are picked from the stratum. The former formula is quite involved
because it uses Durbin’s formula for joint probability of selection. However, the latter formula is simple
as it does not use Durbin’s or any other complex

formula. This memorandum shows that they are in general equivalent.

Maximizing PSU overlap between redesigns involves maximizing

2525 IR

Fl 1 k-1 — T

where g = P@T = Ty, = IuN = Ny,
and
nik = 2. pihH

where
Pga is the conditional probability that Ny was in the 1990 sample given that T= Tjand

L=l

h denotes the PSUs in Ny, .

m is the number of PSUs in Ny, £™ possible outcome for the set of new sample PSUs in S.

pfil:h” can be evaluated as follows;

1, if el

" if Nl

Ban .
O, if NHETI-I.‘ .......... (2)
Pu.’ , otherwise.

Note p“’ is the unconditional probability that Ny, was in the 1990 sample.
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Note this formula can be used for deriving costs for both 1 PSUrstratum and 2 PSUs/stratum design.

V.2  Two Approaches of Computing Costs for 2 PSUs/Stratum Design

We will develop cost formula for 2 PSUs/Stratum design. Two approaches can be taken for computing
costs.

Approach 1.

Let 8 ={#.8...,5), where g, is a single PSU in the straum. Let g, = P(s,). which is the probability
of sclecting one PSU with the probability proportional to size (PPS). That is,

_ Mos@)

7 Y Mose)y

MOS(s,)
Thusplh’ in equation (2) becomes 2pyy,, where pyy, = z== The other elements in
: MOSG,0

equation (2) remain the same. i
Approach 2.

This approach takes into account the fact that we arc dealing with 2 PSUs/stratum design from the
beginning. In this approach, Fn.’ is expresscd as

By s PAHY+PEAG Y (3)
i’ in kb 'Y is a joint cvent between h and another PSU other than PSU j which was in the same initial
stratum k but not in the initial sample. In equation (3) we assume two PSUs (h and j) were in the initial
sample and in T,. If there is only one PSU in a jointset  SaT; , then equation (3) would become
2Py, just like in Approach 1.
Theorem. The Costs Derived from Both Approaches Are Identical.

There could be two scenarios. That is, the number of PSUs inSaT,, ie., n{SaT;} is 1 or 2*

Case 1. n{ 8aT, }=2 for a stratum.
In this case, P(h "y = 2py, = Plhy,, ). Thus following the equation (3), By, reduces to 2py.

* When n{ SaT; }= 0 all strata, PSUs will be selected independently from1990 design. Thus
no cost is involved.
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This gives the same cost as Approach 1.
Case 2. n{SaT;} =1 for a stratum.
In this case Peh’) = 2p,, . Thus again this gives the same cost as Approach 1.

Example 1.

1990 Strata 2000 Stratum

T, 81, 83, 83, 84

Sq | 8182, 85, 8

T2 83, Sés 85, SS

1990 strata T, and T, have two sample PSUs each. Thus this example belongs to Casc 1.

The costs are in Tables below, ignoring prime and double prime, They are derived as follows.

For convenience we define @, = 2P(s)) fori=1,2,5,6. Note in this definition of p,, the fact that we are
dealing with 2 PSUs/stratum is incorporated. Thus the multiplicr 2 is involved. Using approach 1, we

have the following.

Approach 1.

Table 10. Costs for stratum T1
2000 PSU Selections

k=1 =2 k=3 k=4 =5 k=
1990 .
1 {‘l} Cell 112 Cell 113 Celt £14 Cell 115 Cell 116
Ciip= 14ps | ¢1ia= 1+pe | Cria=Ps Cis=Ps | Cue™PstPs
2 {gl} Cell 121 122 123 124 135 176
cin=1 Cin™ Ps Ci13=Pe | Craa= +ps | C12s= 14pg | Cra6™PstPs
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1990 {‘1-‘;} {31.55} {‘1-“1 {: § } {: i } {ss.s
{‘l" ;2} 134 132 133 134 135 136
Cas=1+ ps
{01
Table 11. Costs for stratumT2
2000 PSU Selections
k=1 k=2 k=3 k=4 k=5 =6
1990 PSU {:s,n‘} {:5.5‘} {:5.52} {sﬁ,si} {:‘. s;,} {sl.sz}
Selections

{ss}

Cell 5,

Cell 212

Cell 213

Cell 214

Cell 215

Cell 216

¢ =1

¢ =1+ p

cip=1 +p,

€= Py

Cris— P

Che™Pi HP:

Clell 221

222

223

225

226

Cin=1

Cla=11py

Cs=1+ p,

Ci=Pi1H

231

234

235

236

C3=2

¢3a=14p,

Cys=1+p;

C=P T

241

244

245

246

1 =0

Approach 2. 2 PSUs/stratum approeach

Cras=Pi+D;

Using the same notation as in equation (3}, we have the following,
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Table 12.

Costs for stratum T3

2000 PSU Selections
1 Cell 112 Cell 113 Cell 114 Cell 115 Cell 116
Crp= 1+ = 1t fope™past | Cis=Paw | Cue=Pase
P25 Dase P26t Pzss Pzse i p20T2 Pass
P2se

2 122 |34 125 126
Cip= Past Cra= 1+ Cips= 1+ | Cype=Past
Pase D25 +P2se P2eTP2s6 | P2et2 Pase

3 1312 (34 136
Ci32=11Pas Cru=14pas Ci36=Pa2s™
" TPase ' TPase +tPase Pae T2 Pas;

4 142 143 144 146
Cly=Past | C1a7Pas T | C1a7P2s | Cis=Pae T | Cra=Past

Note in the above tabic, pzs’is the probability of selecting 85(note the second subscript 5 in 155' is the
same as the subscript in 8. The first subscript 2 represents the tact that it is from the second initial
stratum in the old design) in the context of 2 PSUs/stratum. Also pysg is the probability of selecting
sgand g, Jomtly Usmg the definition of pg in the statement right after the tables which defines 8, T,

and T2 925

= 2pysg . Incell 112, the cost thus will become 1+ pg - 2p25‘+

=1+

Pg. This is the same as the costincell 112 in Table 1. Similarly in cell 126, px Pg ~ 292“

Thus By = Bys’ *+ Pag’ * 2Pasg
=@ = Prsg * Bg ~ Pasg T 2Pyg = Ps T Pg. Which is again the same as the one in Table 1.

Tabic 4 equivalent to Table 2 can be created similar to Table 3.
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Small Area (Domain) Estimation: with Emphasis on Estimation of

the Mean Squared Error

Hyunshik Lee

1. Imtroduction

Most sample surveys are designed to produce reliable estimates for the whole
population and for some large subpopulations. However, users of the survey data often
wish to have reasonable estimates at much smaller subpopulations (domains). These
small subpopulations may be small geographic areas (e.g., small cities, Goon) or small
demographic groups (e.g., 30 years old male with computer engineer’s degree) for
household surveys or small sectors of industries {e.g., detailed industrial classifications)
for business surveys. Techniques of small area or domain estimation have been motivated
for estimation of demographic variables for actually small geographic areas. However,
demand for such estimates have been expanded to general small subpopulations, which
include both small areas as well as small domains, which are not necessarily related to
small areas. Nonetheless, the term small area estimation is still in use to mean the
estimation problem for any small domain regardless whether the small domain is related
to a small geographic area or not. In this note, a small area and a small domain are used
interchangeably.

The “smallness” is a relative term in the small area estimation. A large area can be
a small area for estimation if the sample at hand does not support the usual estimates that
would be used when there is a large sample base. The flip side is also true; a small area
can be a large area when there is a large enough sample base for reliable estimation for
the domain, Therefore, a small area estimation problem arises when the sample design
was not intended to produce reliable esttmate for a certain domain but a request for such
estimate comes after the fact. If such request is not temporary but will be repeated in a

continuous survey (e.g., labor force survey), then it would be advantageous to take that



into consideration in the redesign of the survey as shown by Singh et al. {1992} If a small
fraction of the sample size is redistributed to the planned small areas, the ability to
produce good small area estimates can be greatly increased without a substantial loss of
precision for the large areas the survey originally designed for. Therefore, if small area
estimation 1s planned In advance to produce on a continuous basis, a serious
consideration should be given to incorporate such plan in the design or a redesign of the
survey.

Small area estimation 1s one area in survey sampling, where the classical model
based statistical theory and traditional design-based methodology intertwine. This 1s so
because the purely design-based methods of estimation, which are sometimes called
“direct estimation methods™ fail to produce reasonably acceptable estimates, simply
because there 1s no sample base large enough to produce such estimate or sometimes no
sample data at all for some small areas. Therefore, it i1s necessary to borrow “strength”
from outside of the small area. Borrowing strength is usually achieved by using some
model. The strength borrowed may be in the form of prior knowledge about the small
area and thus, Bayesian theory plays a prominent role in small area estimation in order to
incorporate the prior knowledge in estimation. Good quality auxiliary data provide a
large amount of strength, in which a relatively simple model coupled with such quality
auxiliary data can produce good small area estimates. Administrative data collected for
administrative purposes, census data although may be old but available at the very small
arca level, other area data collected in the same survey for the same characteristic, and
data collected for the same variable by a different survey, all are potentially useful
sources of data for small area estimation. It i1s not an overstatement to say that the more

available useful auxiliary data are, the better job for small area estimation can be done.

2. Small Area Estimation Models

Because of the heavy use of auxiliary data in small area estimation, it is not a
coincidence that most models used for small area estimation are special cases of the



generalized linear regression model (Marker, 1999). Small area estimation requires
pooling of data from outside of the small area. The first idea of doing this was to use a
large area regression model assuming that a large area regression model holds for the
small area as well, and then a small area estimate is obtained by applying the large area
regression equation estimated using the large area data to the small area auxiliary data.
That is, the small area estimate is obtained by synthetically combining the large area
regression equation and small area auxiliary data. Early small area estimators were
mostly of this form.

Let the underlying regression model is expressed as
yy=x;B8+e,, (2.1)

where y, is the j-th unit in #-th small area, j=12,. N, i=12

e B )

m, x, 1s the /j-th

' i

auxiliary vector of p dimension, and e, is the error term with £(e,)=0, I"(eg):crz.

Suppose that we are interested in estimation of small area population totals. The synthetic

estimator for the total, ¥ of small area 7 is then given by

¥i=x'p (2.2)
where x, = Z;,, x, and A is the usual estimated regression coefficient obtained from the
large area. Model (2.1) is given at the element level, which is applicable when the

auxiliary variable is available at the element level. However, the model can be written as

an area level model as follows:

Y =x;f+e, (23a)



which is applicable when the auxiliary variables are available at the small area level
Under the superpopulation framework, ¢,’s are independent and with zero mean and a

variance, which approaches to zero as n, — ¥, . Under the finite population context, Y.is

the true i-th small area population total without error and thus, we may write
Y,=x'8 and ¥ =¥ +e =x'B+e, (2.3b)

where };, 1s the direct estimator and e, is the sampling error with mean zero and sampling
variance,

The estimator given in (2 2) is based on the assumption that model (2.1) or (2.3a
or b) holds for all small areas. This assumption, however, does not hold almost always
and the synthetic estimator given in (2.2) can be severely biased. The bias can be even
dominating in the mean square error (MSE) of the synthetic estimator. The synthetic
estimator brings the stability but also the bias, while the direct estimator is unbiased but
too unstable. Therefore, a natural way of addressing the bias problem is to compromise
between bias and variance, in which, to reduce the bias of the synthetic estimator, the
unbiased but highly variable direct estimator is brought back to form a convex linear
combination of the synthetic and direct estimators. More about this estimator called the
composite estimator, will be discussed later,

Another way, which is more flexible to incorporate small area differences. is to
include an area-specific random effect term in the model. Fay and Herriot (1979) first
considered the use of such random effect model for small area estimation, by which they

opened a new chapter in small area estimation. The random effect model is given by
; (2.4)

where the z,’s are known constants and #, s are independently and identically distributed

(iid) random variables having E(v,)=0 and V() =0} . Also, b.’s are often assumed to



follow the normal distribution N(0, o)) . Through this model, it is possible to incorporate
the between-small area variance in the estimation.

~

If there is a direct estimator Y, available, it can be written as
Y =Y +e, (2.5)

where the e, ’s are the sampling errors independent of 4,’s and with E(e, |¥,)=0 and

Vie,1Y,)=c. Combining (2.4) and (2.5), the small area leve! random effect model is

given by
Y=x'f+zb+e, i=12 ..m (2.6)
The element level random effect model is usually given in the following form:

yﬁ:x;ﬁ+b,+efj, fz | Bttty = B o

o 27)

TR

where the 6, °s are the same as before and e,’s are iid random variables that are

independent of the 5,’s and have E(e,)=0 and V(e,)=0; =c,o.. This model is a

nested regression model, which was employed by Battese et al. (1988).
3. Small Area Estimators

The composite estimator mentioned above is defined as a linear {convex)

combination of the synthetic estimator and the direct estimator as shown below:

YE =y ¥ +(1-y )", (3.1)

— By =



where 0 <y, <1. The optimal weighting factor y, is given by

jo - MSE() (3.2)
" OMSE(F)+V(F)’ '
which can be estimated by

¥ -7 )

However, it is not stable and there are various methods proposed to get a stable factor
{e.g.. Shaible, 1978; Purcell and Kish, 1979), some of which lead to the James-Stein
estimator.

Simpler factors that depend on the sample size have also been proposed and used
in actual surveys. For example, Drew et al. (1982) proposed the following sample size

dependent weighting factor:

. {1, if N> 6N, 3.3)

* IN,/(8N,), otherwisc

where & is a constant subjectively chosen to control the weighting factor. A value of 2/3
has been used for the Canadian Labor Force Survey. Sarndal and Hidiroglou (1989)
proposed a different sample size dependent factor.

The optimal factor y, can be obtained using the theory for the random effect
model given in (2.6) (or (2.7)). For the formulation of a small area estimator using the
random effect models given in Section 2, there are three basic approaches. The first
approach, which Fay and Herriot (1979) first employed 15 the empirical best linear
unbiased prediction (EBLUP). The name EBLUP was not coined by Fay and Herriot but



by Harville (1991). This approach is also called the variance components approach. The
second is the empirical Bayes approach, which is based on the theory developed by
Morris (1983). The third approach is the hierarchical Bayes approach (HB). These will be

discussed in more detail in the following
3.1 Empirical Best Linear Unbiased Prediction (EBLUP) Approach
The model given in (2.6) or (2.7) contains fixed effects as well as random effects.

The small area parameter of interest (e.g., population total) can be expressed as linear

combinations of the fixed and random effects (i.e, x| #+z,b,), which can be estimated

by the best linear unbiased predictor (BLUP) as derived by Henderson (1950). Under the
model (2.6) the BLUP estimator for the i-th small area is given by

P =y ¥ +(l-y,)x B (3.1)

where ¥, is the direct estimator as before and x’# is the synthetic estimator with the best

linear unbiased estimator (BLUE) 3 given by

T -1 ~
o X.X. x ¥
= Bl | B (3.2)
o,z +o, o,z +o

and
Vi :O'bzzaz/(o—bzzinro'ezz)' (3.3)
This factor determines the weights given to the synthetic part and the direct estimator, If

the between-area variance (the modeling variance) oz’ is large relative to the total



variance a,z; +o, then more weight is given to the direct estimator. Otherwise, more
weight is given to the synthetic estimator. This estimator is design consistent since y, — 1
as the sampling variance o — 0 and applicable for general sampling designs because it
is modeled at the small area level not at the efement level. An excellent summary and
applications of the BLUP theory was given by Robinson (1991).

The BLUP estimator is /inear in y-values; unbiased in the sense that its expected
value is equal to the expected value of Y,; best since it has minimum MSE among all
linear unbiased predictors. It has become customary to say that fixed effects are estimated
and random effects are predicted. Since the small area parameter contains the random
effect, it is predicted rather than estimated as the distinction goes.

To obtain the MSE of the BLUP estimator, write

Y- =y ¥ +(0-y x'B-¥,
=y Y+ (-y )X B-F, + 1=y )x] (f - B)
=y, (] Bt zb+e)+(1-A)x" B~ (xT f+25)+ 1~y X[ (B - f)
=y, +(r,~Dz,b,+(1-y)x" (B - f)

(3.9)

and note that

Covlye, + (v, ~)z,b, X" (B - B)}=Covly.e, +(, ~V)z,b,, x"

= -
” T Ll Y
T XX X
=Cov yiej+(}’i_l)zibr’xf Z 2 5 : 2 Z 2 21 : 2
izt O, Z; +O’e’ 10,2, +0,,

. -1 -1
S T
o XX o XX
_ ' e 2 T i 2o 22 2
- }’sz [Z 22 2 ) xfo-ef _(1_},})!; [ 2 2 Qj xxo-b"f (o—b‘r +Crer')
110, Z, +O-ei =10, Z; +O—er

Then, using (3.4) and (3.5), the MSE of the BLUP estimator can be written as in Prasad
and Rao (1990) as



M, @) =EF" -¥) =g,0)+g,(8) (3.6)

where 8 = (o, ,02),

2

8. =E[ye +(r, -0z} =0} e PR (3.7)

ozl +ol

and
r 1
PP CONE S (U =
2,:(0)=( {gggz;m;} X, (3.8)
Note that
B -1
m X X
= P
ao.z  +o

which was used to derive g,,(¢) in (3.8). It is usually assumed that the sampling
variance component o, is known, which can be too restrictive for some applications. For

now we assume that o’ is known but o; ts unknown and thus, only o} has to be

estimated. Various methods have been proposed, among which are the maximum
likelihood (ML) estimator and the restricted maximum likelihood (REML) estimator

assuming the normality, the method of fitting constants, and the method of moment. For
example, using the fact that E[Z:"l(l}j fxfﬁ)z/(crfzf +o’ )]: m— p, Fay and Herriot
(1979) used the method of moments estimator ¢, , which can be obtained by solving the

equation



S X B) (ol voly=m-p (3.10)
i=1

iteratively with J given in (3.2). If there is no positive solution, then we set 67 =0.

These estimators are asymptotically consistent.
Let ¥, be obtained by plugging in (3.3) one of those asymptotically consistent

estimator &; mentioned above. With this #,, we get a small area estimator for ¥, given

by
Y =7 ¥ +(-7)xp. G.11)

This estimator is called the empirical BLUP or EBLUP estimator (Harville, 1991) and

Kackar and Harville (1984) showed that it is unbiased if &} is an even function of f’,’s,
translation-invariant, and the distributions of & and e, are both symmetric {not

necessarily normal). This assumption of symmetry is critical and is not always true.
However, if b, and e, are not only symmetric but also normal, Kackar and Harville
(1984) also showed that the MSE of the EBLUP estimator can be written as

M, (@) =EF" =YY =EF" -y Y +EF" YT =M (0)+EFXT -Y7) (3.12)
2 i i i i i i 1 l§ i

The second term is in general not tractable and using Taylor series expansion, they
obtained a second order approximation (¥* —¥*)? = [fH(é) ﬁf’;H(B)]? ~ Li(ﬂ)r (6 —9)]2

where d(8) = é?f": “(8)/¢6 and based on this approximation they proposed

Ela@y é-o0)f ~ula@ré-exo-6y], (3.13)



where A(#) is the covariance matrix of d(#). Prasad and Rao (1990) obtained a further

approximation to (3.13) and gave an approximate expression for the second term in
(3.12) as follows:

g (ol)=0lz (o}l +0l) V(6]), (3.14)

where V(3;) is the asymptotic variance of &, , which is given by

V(62)= 230l +02 122 (3.15)

m i1

Recently, other tighter expressions of 7(6;) have been proposed (Rao, 2001).
The MSE of the EBLUP estimator is often estimated bth(é) (ie, M, (G})
since o, is assumed known), which is given by (3.6) with o, replaced by &; . However,

it can severely underestimate the true MSE and the bias is approximately g,.(c,) in

(3.14). Prasad and Rao (1990) also showed that

E[gn (5’)]= £,(8) - g5,(8)+o(m™), (3.16)

and from this, they obtained an approximately unbiased estimator of the MSE of the

EBLUP estimator ¥/ with expectation correct to o(m™') as given b
; P g Y

mse(};‘H):gl,(é)+g2f(é)+2g3r(é), (3.17)

Lahiri and Rao (1995) showed that this estimator is robust against violation of the

normality assumption of 5,’s in model (2.6).



3.2 Empirical Bayes Approach

This approach is based on the Bayesian theory. Assuming first that the model
parameters are known, the posterior distribution of the small area parameter given the
sample data is obtained and then estimated model parameters are used to obtain an
estimated posterior distribution.

Under the model (2.6) with the normality assumption of the errors, the posterior
distribution of ¥,’s given ¥, 8, and o, is normal with mean ¥ and variance g, (¢) as
given in (3.7), where

}f:ff :?’;}Ayi +(1—y1)xfﬁ, =12, ....m, (3.18)

and y, is given in (3.3). Y% is the Bayes estimator of ¥, under quadratic loss. Replacing

the unknown parameters f# and o, by their estimates (from marginal distributions), we
obtain the empirical Bayes (EB) estimator

}/EB:}’/‘

=gl (-7 X[ B, i=12,.,m. (3.19)
This is identical with the EBLUP estimator ¥ when the same estimates for £ and o

are used. Moreover, if the frequentist framework is used to measure the uncertainty of the
EB estimator, the MSE is the natural choice and then the EBLUP and EB estimators are
essentially the same. Therefore, all discussion for the EBLUP concerning the MSE
applies to the EB estimator.

However, from Bayesian perspective, inferences are made using the posterior
distribution of ¥,’s given )::’s with E(¥, |¥) and V(Y | Y) where f:(ﬁ,...,fm )" . When

estimates for f and o, are used, then ﬁ”zE(Kl?,ﬁ,é) is a reascnable



approximation to ¥” but gh([)‘,é):l-”(}’,ﬁ;, ﬁé?) underestimates F(Y |? ). This

becomes clear if we write
V(Y| ¥) = K V(Y |7, B0+ V5 [EW, | Y, B,0)]. (3.20)

The problem is, however, that this expression in (3.20) cannot be evaluated without
having the prior distribution of £ and €, which is not specified in the EB approach. Note
that gh(ﬁ‘, 6) = VY |¥, 3.8) is a good approximation to the first term of V' (¥, |¥) only
in (3.20) and thus, the naive MSE estimator can be severely biased by missing the second
term. Some methods are available to overcome this problem; the bootstrap method of
Laird and Louis (1987) and the method using an asymptotic approximation of F(Y, l}’} )

proposed by Kass and Steffey (1989). Another natural solution to this problem is to

specify the prior distribution of # and 8, which will be discussed in the next subsection.

Morris (1983) provided an excellent account of the EB approach and its

applications.

3.3 Hierarchical Bayes (HB) Approach

As explained in subsection 3.2, by specifying the prior distribution of # and o

(still assuming that &’

. is known), a small area estimate are obtained from the postenor
distribution of ¥, given ¥ as its mean and its uncertainty is measured by the posterior

variance. The approach often involves high dimensional integration and thus
computationally intensive. However, modern advances on computational equipments and
techniques make the implementation of the approach easier.

Besides the usual EB assumption of normal errors under model (2.6), we assume
first that the unknown 4 has a noninformative uniform prior over R” to reflect the
absence of prior information on B and also that o, is known. Then we can get the joint



probability density function f(¥,Y,8) of ¥ =(¥,.¥,,..¥,), YT =(¥,,¥,...,Y,), and
B . Integrating this density function aver 2, we obtain the joint density function f(¥.¥)

and the posterior distnibution f (YU; ). Under this setup, the HB estimator for the i-th

small area and its variance are given by the posterior mean and posterior variance as

follows:
EF D) =7 Y, +(-y)x B=F", V(¥ |7)=M,=MSEF"-1). (321

Therefore, the HB estimator with the non-informative prior on £ and known # is
identical with the BLLUP estimator.

When o is unknown but o’’s are known, then the posterior distribution is
conditional on o as well, that is, f(¥|¥,c.). Ghosh (1992) derived a closed form

posterior distribution f{c, |¥) assuming a non-informative prior on o, over (0,x).

With this, we obtain
FEID =[S, |17, 00)flo} |¥)do}. (3.22)

More generally when & = (0,0 ) is unknown, the posterior distribution of ¥, given Y

is given in the following form:

fEN=[fE|7.0)f©|T)do. (3.23)

When we compare the HB approach with the EB approach, the small area point
estimators are similar but their vanance estimators are markedly different because the
naive EB estimator of the MSE does not account the uncertainty of &, used to define the

estimator. The HB approach has a clear edge on this regard. However, the posterior



distribution f(&| Y ) does not have a closed form in many cases, for which we can use a

numerical method but it is computationally intensive. The computational difficulties can
be overcome by using the Gibbs sampler (Gelfand and Smith, 1990), which is based on
the popular Markov Chain Monte Carlo (MCMC) simulation method. This is also
computationally intensive but can be applied to a general problem and once a computer

system 1s setup, we can proceed routinely. To illustrate the Gibbs sampling idea, let
0=(p,1.5,..Y,.0) =6,.6,,..,6,,,) . Starting with arbitrary initial values
8 = (6,6, .,8,)", we generate the /th simulated sample 8 =(8",..689.)",

6" from f(8,|Y,6™,..89Y) and 8% from f(6,|7.67",6¢", .69}, and so on.

Under some regularity conditions, the simulated sample converges to f(&| Y ) in
distribution as / — oo . Thus, after a large enough burn-in period, we obtain a sample of
£’s of an appropriate size (say, J) from an approximate distribution of f(8| )4 ). We can

use the sample to calculate the posterior mean and variance to get the HB small area

estimator and its variance estimator as follows:

~ ~ S oa 5
e = B | Dy S0y =,
71

, Sr N (3.24)
LALRED XU NI AR A §

where (£(1),6(2),...,6(J)) 1s the Gibbs sampling set, );,(j) is f’:H in (3.21) with 8(}j),

and g, (£(/)) and g, (6(/)) are given in (3.7) and (3.8), respectively, with 8(;).

3.4 Jackknife MSE Estimate for the EBLUP Estimator

Jiang and Lahin (1999) proposed the jackknife MSE estimate for the EBLUP
estimator. The advantage of the jackknife method and other replication/resampling

method is that we do not need to derive tediously a closed form formula. Jackknife



replicates are created by deleting one small area at a time and m replicates are created

each corresponding to m small areas. With the full sample and m replicates, the model

parameters, o, and J, are estimated using an appropriate method (e.g., the fitting the

constant method, the method of moments, ML, etc.) . Here again crf, is assumed to be

known,

Step 1. Calculate &, and ﬁ with the full sample, and & (k) and [}(k) deleting
k-th area data, k=1,2, ..., m;

Step 2. Let 7, =z6,(z]6. +al) ', 7,(k)=6 (k)1 (62 (k)zt +52)". Calculate
V=78, 7)x] B and T (k) = 7,00, + (1= 7, ()] Bk

Step 3. Calculate m,,, = g,,(67)~(m - D37, [gh (67 (k) - gh(&j‘)]z/m .

Step 4. Calculate m,, = (m - I)Z:’il[ﬁh’ y=TA ]2/m :

Step 5. Let the jackknife MSE estimate be mse ,(F" ) =m, +m

VL
3.4 Bootstrap Method

Recently, Pfefferman and Tiller (2001) proposed a bootstrap MSE estimation
method for a state space time series model, which is also applicable to the small area
estimation. In their paper they particularly dealt with the problem of MSE estimation

using the bootstrap method, which proceeds as follows:

Step 1. Generate a large number (B) of bootstrap samples {};f”) i=12,..m forb
=1, 2, ..., B from the model (2.6) with an estimated unknown model

parameters &

— 66 —



Step 2. For each bootstrap sample, re-estimate the unknown model parameters
using the same method used for @ with the original sample. Let the A-the
bootstrap sample parameter estimate be é“’);

Step 3. Calculate an EBLUP estimator ﬁH {6) using the b-th set of estimated

model parameters from Step 2 and then calculate

(3.25)

where m, (@) is the naive MSE estimator obtained from (3.6) with the

replacement of & by 6

Step 4. Estimate the MSE of the EBLUP estimator by

mse,, =m, (6)+m’ 7, (3.26)

The bias of this estimator is Q(m ™).

3.5 When the Sampling Variance Is Unknown

So far, it has been assumed that the sampling variance ¢ is known but often in

reality it is not known. One approach to handle the problem is to model the sampling

variance as done by Arora, Lahiri, and Mukherjee {1997) using the gamma distribution.

Such approach was also used by the U.S. National Resources Inventory survey (Nusser

and Goebel, 1997). However, Wang (2000) found that the modeling approach is not

always satisfactory and proposed an EBLUP estimator with directly estimated sampling

error and a corresponding MSE estimator under model (2.6) with normal errors.



He proposed estimators for the unknown model parameters, which are different
from usual estimators, except the sampling error, which is estimated individually and
directly from the sample. However, this is possible only when the small area sample sizes

are not too small. Without loss of generality it is assumed that z, =1. He further assumed

that

d —= ~du s (3.27)

for some degrees of freedom d, . Other model parameters are estimated as follows:

=1 o .
5 = [Z]’Vimxrxfj Zu)imxiyr
= = (3.28)

5t =maxf0. S, [0, -xt 7 - 2]

with suitably chosen weights w, ’s and positive constant ¢, ’s such that > ¢ _=1.

i=1 " m

Note that &, is a truncated estimator, and thus, it is positively biased. With these

estimated model parameters, the EBLUP estimator is defined in the usual way, namely,
Y=g f + (-7 )x B (3.29)
with
7 =6;/(6, +62). (3.30)
He derived a large sample MSE expression and its estimator. The approximate MSE is

given by



MSE(F" - ¥,)=E(Y" -T,)
=y,02 + (1=, Y X/ V(B)x, +(o} +a2 W (7)) (3.31)
=8, 1tg, +&s
where
= m ~ -1 m "
V)= Swxsl | Swiioivatial(Smanal )
i=l i=1 il

V()= (0l +ol) olalid +V(eD) (332)

V(67) =23 c2 (o} +ol).
i=1

For large o, the naive estimator 7,42 for g, =y.0; underestimates and Taylor

correction gives
8, =7 OLH(G +ELW (). (3.33)

The second term g, in (3.32) is estimated by simply substituting unknown parameters

by their estimates as given by

&= (-7, xV(B)x, (3.34)
and similarly the third term by

&, = (G +GLW (7). (3.35)
The resulting MSE estimator is then given by



mse](ﬁH _Yx) :glf +§21’ +§31‘

. 5 . (3.36)
=7 6u+ (=7, ]V (B)x, + 26, +5, (7).
The V'(&5,) that appears in ¥ (7,) and given in (3.32) is better estimated by
Peh=seler-o2)-oif, &= -xBf, (337)
i=l m-

than the one with direct substitution of estimated parameters. The drawback of the MSE
estimator given in (3.36) is that it overestimates sometimes severely when o} is small
because the first and the third terms (g, and g, ) are overestimated. Wang (2000)

provided an improved MSE estimator by using better estimators for these terms. He used

the following estimator for g,;:

=2 TR0 A By RSy <~y 2
= (O—b +O—ei)o-bo-2i+o-el'pr (0-.5)+0-b l (Crej)
L o ~ S Doy n -
’ (G, +6,) +V (G;)+V (G.)

(3.38)

Noting that ~ [()7', —y. )b, +e,)2]z (o] +02)F(7,), he obtained a better estimator for the
third term by a  numerical  integration g,  that  approximates
E[(fj —y ) (b +e)| o-f,oj}]. Then the improved MSE estimator is given by the sum of

these terms as follows;
mse, (V¥ V) =g, +&,,+ &, (3.39)

He showed by simulation that the improved estimator is superior to the MSE estimator

given in (3.36) especially when o, is small.



4. Concluding Remarks

Small area estimation is a growing area of research. In this paper, we briefly
reviewed some small area estimators that are formulated under the random effect area
level model with emphasis on the estimation of mean squared error of a small area
estimator. Although mentioned briefly at the beginning, we did not cover small area
estimation methods based element level models. This review is far from complete and is
no way to compete with excellent review papers by Ghosh and Rao (1994) and Rao
(1999). 1t is simply intended to provide some forum for discussion and to bring out some
newest developments such as Pfefferman and Tiller (2001) and Wang (2000).

Wang (2000) provides an EBLUP estimator and its MSE estimator, which can be

used for the most general setting in the sense that all three model parameters, 3. ;. and

o’ are unknown. Wang’s proposed improved MSE estimator is a closed form formula,
although fairly complex, and shown to be superior to the less complex one he also

derived, especially when o is small relatively to o . The overestimation problem under

this situation is common to all other MSE estimators for the EBLUP estimators and
Wang’s estimator provides a significant improvement even though it still somewhat
overestimates. He also provides a unifying theory for benchmarking of the small area
estimates to the large area direct estimate, which is sometimes required and/or helpful to
reduce the bias problem of small area estimates.

Replication and resampling methods for the MSE estimation are also promising
techniques. The jackknife technique has proved to be a really versatile tool for many
statistical problems and the MSE estimation problem for small area estimates is not an
exception as shown by Jiang and Lahiri (1999). As for another resampling method, there
are several bootstrap estimators proposed, among which the one by Pfefferman and Tiller
(2001) is the newest and seems the most promising since it has a lower order of bias than
other proposals. Although computer intensive, these methods are general and can be

implemented easily in a computer system, which can then be routinely used. However,



more research is needed to understand their properties and performance in various

estimation environments.
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