Introduction to &
Analysing spatial point patterns in

2010. 12.

A% illy;

STATISTICS KOREA

Workshop: Analysing Spatial Point Patterns in R Perth 2010

How to install R

Windows users:

1. Download R installer:

o If you're not connected to the Internet:

ask one of the workshop assistants for the USB stick and copy the file
R~2.12.0-win.exe onto your Desktop.

o If you are connected to the Internet:

visit cran.r-project.org. In the box labelled Download and Install R,
click on Windows, then base, then Download R 2.12.0 for Windows. Down-
load and save the file R-2.12.0-win.exe to your Desktop. (Depending on
your browser, you may need to press the control key and click on this link,
or you may have to right-click and select Save target as..)

2. Install: double-click on the file R-2.12.0-win.exe to run the installer. (Agree to all the
default options in the installation).

Mac users:

1. Download R installer:

o [fyou're not connected to the Internet:

ask one of the workshop assistants for the USB stick and copy the file
R-2.12.0.pkg onto your Desktop.

o If you are connected to the Internet:

visit cran.r-project.org. In the box labelled Download and Install R,
click on Mac, then R-2.12.0.pkg. Save the file R-2.12.0.pkg to your Desk-
top. (Depending on your browser, you may need to press the control key
and click on this link, or you may have to right-click and select Save target
as..)

2. Install: double-click on the file R-2.12.0~win.exe to run the installer. (Agree to all the
default options in the installation).

Workshop: Analysing Spatial Point Patterns in R Perth 2010

How to install spatstat

Windows users:

e If you're not connected to the Internet:

— ask one of the workshop assistants for the USB stick and copy the files
spatstat_1.21-2.zip, deldir_0.0-13.zip and gpclib_1.5-1.zip
onto your Desktop.

— Start R.

— Pull down the Packages menu to select Install package(s) from local zip
files... In the pop-up dialogue box, use the browser to select gpclib_1.5-1.zip,
then click Open to install the package. Repeat this for deldir_0.0-13.zip and
finally for spatstat_1.21-2.zip.

o [f you are connected to the Internet:

— Start R.

— Pull down the Packages menu and select Set CRAN mirror... In the pop-up dia-
logue box, select Australia (not Austriall)

— Pull down the Packages menu and select Install package(s)... In the pop-up
dialogue box, select spatstat

o If you are connected to the Internet but the instructions above did not work:

— Visit cran.r-project.org

— In the box headed Source code for all platforms, click on
Contributed extension packages.

— Under Available packages click on the letter S then scroll down to spatstat and
click on it.

— In the page for spatstat, scroll down to the Windows file spatstat_1.21-2.zip
and download this file to your Desktop.

— Repeat this for the packages deldir and gpclib.

— Pull down the Packages menu to select Install package(s) from local zip
files... In the pop-up dialogue box, use the browser to select gpclib_1.5-1.zip,
then click Open to install the package. Repeat this for deldir_0.0-13.zip and
finally for spatstat_1.21-2.zip.

Linux users:

e [f you’re not connected to the Internet:

— ask one of the workshop assistants for the USB stick and copy the files
spatstat_1.21-2.tar.gz, deldir_0.0-13.tar.gz and gpclib_1.5-1.tar.gz
into your home area.

- — Make yourself superuser, and type R CMD INSTALL gpclib_1.5-1.tar.gz to install
the gpclib package. Similarly install deldir and finally spatstat.

e [f you are connected to the Internet:

— Start R.

— Type chooseCRANmirror(). In the pop-up dialogue box, select Australia (not
Austriall)

— Type install.packages("spatstat").
e [f you are connected to the Internet but the instructions above did not work:

— Visit cran.r-project.org

— In the box headed Source code for all platforms, click on
Contributed extension packages.

— Under Available packages click on the letter S then scroll down to spatstat and
click on it.

— In the page for spatstat, scroll down to the Linux source file spatstat_1.21-2.tar.gz
and download this file to your home area.

— Repeat this for the packages deldir and gpclib.

— Make yourself superuser, and type R CMD INSTALL gpclib_1.5-1.tar.gz to install
the gpclib package. Similarly install deldir and finally spatstat.

Introduction to R

Introduction to R: 10 Dec 2010, ASC 2010

Martin Hazelton
M.Hazelton @massey.ac.nz

Berwin Turlach
berwin @ maths.uwa.edu.au

1/23

Lecture 1: An R Primer

In this lecture we will look at:

B What is R?

B Basic R syntax

Introduction to R: 10 Dec 2010, ASC 2010

2/23

What is R?

B R is a statistical software system.

B R is a programming language that has many “inbuilt” statistical commands (e.g. to
fit a linear regression).

B R started life as a quasi-clone of commercial package S-Plus (now TIBCO Spotfire
S+), but development of R and S-Plus now slowly diverging.

B Advantages over other statistics packages include flexibility, power, and quality of
graphical display.

B R is open-source software, and part of GNU project. It can be downloaded from
http://cran.r-project.org/ and used for free.

B There are versions of R for all common operating systems — Windows, Linux, and
MacOS.

Introduction to R: 10 Dec 2010, ASC 2010 3/23

Typographical Conventions

B With computer projection, R code (both input and output) will appear as
red text in typewriter font.

B In your course materials, which are reproduced in black and white, this will appear
as grey text in typewriter font.

B With computer projection, computer folder/file paths and http addresses will
appear as blue text in typewriter font

B Menu names and items will appear in typewriter font (but with standard
colour).

B A line of four or five full stops, , in R input/output indicates that material has
been omitted or truncated.

Introduction to R: 10 Dec 2010, ASC 2010 4/23

Starting and Quitting R

B You can start R for the first time via the shortcut on your laptop (if such exists).
B To quit R, either:

O type q() at the R command line; or

O select Exit from the R File menu.

Introduction to R: 10 Dec 2010, ASC 2010 5/23

Setting the Working Directory

B When you quit R you will have the option of saving your work.
B If you choose to save your work, R will retain:

O The R workspace that you have created;

O An R history file, listing of all the R commands that you issued,
B These files are saved in your working directory.

B By default the working directory is something like
C:/Documents and Settings/username/My Documents (Windows XP) or
C:/Users/username/Documents (Windows Vista/Windows 7).

B The working directory can be changed using the Change dir... command
from the R File menu.

Introduction to R: 10 Dec 2010, ASC 2010 6/23

Working on an Existing R Workspace

B The computer should recognise R as the program associated with an R
workspace.

B Double clicking an R workspace will start up R with that workspace loaded, and
with the working directory set appropriately.

Introduction to R: 10 Dec 2010, ASC 2010 7/23

A first dip into R

Elementary commands are either expressions or assignments.

B An expression simply displays result of a calculation; not retained in the
computer's memory.

B An assignment passes the result of a calculation to a variable name which is
stored; result not displayed.

>5 + 2.6

[1]1 7.6

>x <- b5+ 2.6
> x

[1] 7.6

Introduction to R: 10 Dec 2010, ASC 2010 8/23

Syntax for Assignment

B Assignment from right to left can be done by <-. This format is used throughout
these notes.

B A (more confusing) alternative is to use =.

B Assignment from left to right can be done by —>.

>x <=1
> X
[1] 1
>x =2
> X
[1] 2
>3 ->x
> X
[1] 3

Introduction to R: 10 Dec 2010, ASC 2010 9/23

Stored objects

B All assigned variables (or any other R objects) are stored until overwritten or
explicitly removed (deleted) by the command rm().

B To list stored objects type 1s () or objects ().

> x <- 8

>y <~ 3.1415
> 1sQ)

(1] "x" "y"
> rm(x)

> objects()
(1] "y"

Introduction to R: 10 Dec 2010, ASC 2010 10/23

Syntax for R commands

B R commands, e.g. 1s (), rm(), are followed by parentheses which may contain
additional information for the function.

B Writing a command name without parentheses returns the R source code for the

function.
> rm(y)
> rm
function (..., list = character(0), pos = -1, envir
inherits = FALSE)
{
names <- sapply(match.call(expand.dots = FALSE)$.....
if (length(names) == 0)
names <- character(0)
Introduction to R: 10 Dec 2010, ASC 2010 11/23

Creating vectors in R

B The command c () (for concatenate) creates R vectors.

> x <- ¢(2.3,1.2,2.4)

> x

[1] 2.3 1.2 2.4

> ¢(x,9.0,x)

[1] 2.3 1.2 2.4 9.0 2.3 1.2 2.4

B Expression 1:n denotes the sequence 1,2,...,n.

B seq(i,j,by=k) is a sequence from ¢ to j in steps of £.
> 1:5
[11] 12345

> seq(3,10,by=2)
[1] 3579

Introduction to R: 10 Dec 2010, ASC 2010 12/23

R vector arithmetic

B Ruses +, -, * and / for the basic arithmetic operations, and ~ for exponentiation
(raising to a power).

B Vector operations are done element by element, with recycling of short vectors
if required.

> x <= ¢(2,3)

>y <- c(1,4,5,6)
> 2%x

[1] 4 6

> 2 + x

[1] 4 5

> yT2

[1] 1 16 25 36

> x + y

(11 3779

Introduction to R: 10 Dec 2010, ASC 2010 13/23

Types of vector

B All the vectors we have seen so far have been numeric.
B R also understands vectors of:

O characters
O logical values TRUE and FALSE; abbreviations T, F OK.

O factors (i.e. categorical variables)

> mywords <- c("This","is","a","character")

> mywords

[1] "This" "ig" "an "character"
> ¢(F,T,F,F)

[1] FALSE TRUE FALSE FALSE

> factor(c("Low","Low","Medium","High","High"))

[1] Low Low Medium High High

Levels: High Low Medium

Introduction to R: 10 Dec 2010, ASC 2010 14/23

Logic Operators

B R understands logical comparisons <, >, <=, >= which are applied elementwise.

B Logical equality is == and inequality is ! =, while & is ‘logical and’, and | is ‘logical
or.

> (1:5) == (5:1)

[1] FALSE FALSE TRUE FALSE FALSE

> (1:5) > (5:1)

[1] FALSE FALSE FALSE TRUE TRUE

> ((1:5)==(5:1)) | (C (1:5)>(5:1))
[1] FALSE FALSE TRUE TRUE TRUE
> ((1:5)==(5:1)) & ((1:5)>(5:1))
[1] FALSE FALSE FALSE FALSE FALSE

Introduction to R: 10 Dec 2010, ASC 2010 15/23

Indexing vector components

B Toindex components of a vector x, use the formx[...].
B Square brackets can contain:

O numeric vector specifying elements;

O logical vector (only TRUE elements required).

> x <- ¢(1,3,4,7)
> x[c(2,4)]

[1] 37

> x[-2]

[11 147

> x[x > 3.5]

(1] 4 7

> which(x > 3.5)
[1] 3 4

Introduction to R: 10 Dec 2010, ASC 2010 16/23

Data frames

B A data frame is a collection of column vectors each of the same length.
B The vectors may be numeric, factor, or whatever.

B Each particular column and row of a data frame is given a name which can be
chosen by the user, or assigned a default by R.

Introduction to R: 10 Dec 2010, ASC 2010 17/23

A Simple Data Frame

> cartoon <- c("Dilbert", "Wally", "Catbert", "TheBoss")
> role <- factor(c("Engineer","Engineer","Manager", "Manager"))
> x <- c(8,1,NA,-2)
> dilbert <- data.frame(cartoon, role, competence=x)
> dilbert
cartoon role competence
1 Dilbert Engineer 8
2 Wally Engineer 1
3 Catbert Manager NA
4 TheBoss Manager -2

Introduction to R: 10 Dec 2010, ASC 2010 18/23

More About Data Handling

B The variables (columns) of a data frame cannot be accessed by name until the
data frame has been attached with attach ().

> rm(cartoon,role,x)

> dilbert$competence

(1] 8 1 NA -2

> role

Error: Object "role" not found

> attach(dilbert)

> role

[1] Engineer Engineer Manager Manager
Levels: Engineer Manager

> detach(dilbert)

Introduction to R: 10 Dec 2010, ASC 2010 19/23

Importing Data

B Data can be read in from text files with scan () for a single vector of data, and
read.table() for a data frame.

> ibm <- scan(file="C:/Documents and Settings/..... /ibm.txt")
Read 250 items
> ibm

[1] 64.37 62.50 63.50 63.37 63.12 67.37 65.37

[239] 68.12 66.50 67.87 68.00 68.37 67.50 66.37

> life <- read.table(file="C:/..... /life.txt", header=TRUE)
> life

Country LifeExp People.per.TV People.per.Dr
1 Argentina 70.5 4.0 370
40 Zaire 54.0 NA 23193

Introduction to R: 10 Dec 2010, ASC 2010 20/23

Importing Data (cont.)

B On Windows, you can also read data in from the clipboard
> test <- read.table(file="clipboard", header=TRUE)

B For data sets with missing values, it is best to use the Comma Separated Value
(CSV) file format
> 0zl <- read.csv("data/0z1.txt")

NOTE: read.csv () has header=TRUE by default.

Information on the CSV file format can be found at:
http://en.wikipedia.org/wiki/Comma-separated_values
and
http://www.creativyst.com/Doc/Articles/CSV/CSVO1l.htm

Introduction to R: 10 Dec 2010, ASC 2010 21/23

Editing Data

B Vectors of data or data frames can be edited by reassigning values to individual
elements.

B On some platforms either of the commands edit (), data.entry() orde ()
starts up a (basic) spreadsheet for data manipulation.

> ibm[5]
[1] 63.12
> ibm[5] <- 65.12
> life[2,]
Country LifeExp People.per.TV People.per.Dr
2 Bangladesh 53.5 315 6166
> life[2,4]
[1] 6166
> life[2,4] <- 7166
> life <- edit(life)

Introduction to R: 10 Dec 2010, ASC 2010 22/23

Some R Functions to Get You Started

B 7 accesses R’s help system; e.g. 71s.

B mean(), sd(), min(), max() and range () give mean, standard deviation,
minimum, maximum and range respectively for a vector argument.

B var () returns variance of a vector argument, or the covariance (dispersion)
matrix for a matrix argument.

B summary () returns summary information dependent on argument type.

B plot () produces a plot on the current graphics tool. The type of plot depends on
the type of argument. Simplest is plot (x,y) which produces a scatter-plot of
vectors x and y.

Introduction to R: 10 Dec 2010, ASC 2010 23/23

AUSTRALIAN STATISTICAL CONFERENCE 2010

INTRODUCTION TO R
FREMANTLE, 10 DEC. 2010

Computer Laboratory 1

Getting Started:

Some tips and hints when typing in R code:

e R is case sensitive (so LM() and 1m() are not equivalent).
e R is tolerant to the use of spaces, so x <- 1 and x<-1 are equivalent.

e You can use the arrow keys to speed things up. The ‘up’ arrow gives you the previous command
that you typed.

e The usual prompt sign for R is >. If you get a + prompt sign instead, it means that R is awaiting
the completion of the previous command that you typed in. This can happen because you have
forgotten to close parentheses, for instance. Just type in the remainder of the command.

Exercise 1: R as a Calculator
Use R to compute the following:
1. 98765 — 43210
2. 12.34567897

3. /(1.23 +4.56) x (7.8 +9.0)

Type the following expressions into R, and check that you understand the results.
1. 3+4x%5
2. 3/4/5
3. 1:20/2

4. (1:20)/2

Exercise 2: Exploratory Analysis of IBM Stock Price Data

This exercise is concerned with the closing price (in U.S. dollars) of IBM stock over a sequence of 250
consecutive trading days in 1980. These data can be read in and assigned to the vector ibm by

ibm <- scan(file=choose.files())

and navigate to where the file ibm. txt is stored on your computer.

1. Take a look at the data by typing the name of the vector: ibm.
2. Find the mean, standard deviation, maximum and minimum of the IBM stock price data.

3. You should have found in part 1. that the maximum price is the (rather unlikely) value 6575.
This is, in fact, an outlier generated by a typographical error. Find out which element of ibm
corresponds to this outlier, and replace that element by the correct value which is 65.75.

Introduction to R: Computer Laboratory 1 1

4. Recalculate the summary statistics from part 1. using the corrected data set.

5. The return on any given day is defined to be the stock price on that day divided by the stock price
on the previous day. Create a vector containing the returns.

6. It is often assumed in financial modelling that the log-returns are (approximately) independent
and normally distributed. Create a vector containing the logarithms of the daily returns; call it
lreturn.

7. Investigate whether the normality assumption seems reasonable by producing a histogram of the
data with the command hist(lreturn). Try hist(lreturn,breaks=15) to get a finer level of
discretization. (You will learn how to beautify this type of plot of Lecture 3.)

8. Type t.test(lreturn,mu=0) and interpret the results. Find a 99% confidence interval for the
(population) mean log-return by t.test (lreturn,mu=0,conf.level=0.99).

Exercise 3: Analysis of Clinical Trial Data

This exercise is concerned with data from a clinical trial conducted in the late 1940s. The purpose was
to compare the effects of three possible treatments for pulmonary tuberculosis:

e treatment by para-amino-salicyclic acid (coded P)
e treatment by streptomycin (coded 8)

e treatment by a combination of the above two (coded SP).

The outcomes for sputum samples obtained for each of 273 subjects in the trial were classified as

e positive smear (coded sm)
e negative smear but positive culture (coded cul)

e negative smear and negative culture (coded neg).

These data can be read in and assigned to the data frame tuber by
tuber <- read.table(file=choose.files(), header=TRUE)
and navigate to where the file tuber.txt is stored on your computer.

1. Take a look at the data by typing tuber. You should see that the data are listed by subject. Type
names (tuber) to get a list of the column headings in the data frame.

2. Attach the data frame by attach(tuber). Obtain a frequency tables by treatment and outcome
respectively using table(trt) and table(sputum).

3. Obtain a two-way table of frequencies classified by treatment and outcome by table (trt, sputum).
Display the results in a bar plot by barplot(table(trt,sputum)).

4. Investigate whether there is an association between the outcome and the treatment using a Chi-
square test. Type chisq.test(table(trt,sputum)) and interpret the results.

5. You can store the results of your Chi-square test in an object named tuber.test (or what-
ever name you find memorable) by tuber.test <- chisq.test(table(trt,sputum)) You will
find that this object has a number of components that you may like to examine. For example,
tuber.test$expected will produce a table of expected counts, while tuber.test$residuals will
output a table of the Pearson residuals. Based on this table of residuals, which treatment would
you recommend?

Finishing Off:
When you’ve finished, close down R by typing q(). Choose ‘Save’ when prompted as to whether you
want to retain your workspace.

Introduction to R: Computer Laboratory 1 2

Introduction to R

Martin Hazelton Berwin Turlach
M.Hazelton @massey.ac.nz berwin@maths.uwa.edu.au
) o o o o [] ([o ([J o
Introduction to R: 10 Dec 2010, ASC 2010 1/31

Lecture 2: Linear Modelling in R

H In this lecture we will introduce linear modelling in R.
B Much of the material covered via example:

[0 Models and notation
O Linear regression modelling of bird species data;
O ANOVA modelling of cow milk butterfat content;

O Modelling pollen counts with nested factors;

Introduction to R: 10 Dec 2010, ASC 2010 2/31

Models and Notation

Linear regression:
Yi=00+Biwn+...+ By +e (i=1,...,n)

W Y is response, x;j is jth predictor for individual ¢;

B cy,..., &, random sample of N (0, o%) errors;
W 5y, ..., [, are regression parameters.
Introduction to R: 10 Dec 2010, ASC 2010 3/31

Models and Notation (cont.)

ANOVA type models: e.g. the one way model
Yij=p+a; +¢g4 (i=1,....1, j=1,...,n;)

W Y, is jth individual at level 7 of the factor;

m {,;} random sample of N (0, o?) errors;

B [, qq, ..., a7 are parameters.

Introduction to R: 10 Dec 2010, ASC 2010 4/31

Models and Notation (cont.)

General Linear Model

B Linear regression, ANOVA type models and hybrids are all types of general linear
model.

B Described in matrix format by
y=XB+e
O vy is vector of responses,
O X the design matrix,
O 3 the vector of parameters,

O e the vector of normal random sample of error terms.

Introduction to R: 10 Dec 2010, ASC 2010 5/31

Models and Notation (cont.)

B Vector of parameters (3 is typically estimated by method of least squares

B Least squares estimate given by
B=(X"X)"'X"y
Fitted values and residuals defined respectively by

y=XB and r=y-—y

Introduction to R: 10 Dec 2010, ASC 2010 6/31

Example 1: Regression for Paramo Birds Data

B A paramo is an exposed, high plateau in
the tropical parts of South America.

M In the northern Andes, there is a pattern of
‘islands’ of vegetation within the otherwise
bare paramo.

B A study conducted to investigate the bird
life in this region.

B One question of interest — what character-
istics of these islands (if any) affect the di-
versity of bird species?

Introduction to R: 10 Dec 2010, ASC 2010 7/31

Example 1 continued

For each of 14 islands of vegetation the following variables were recorded:
B number of species of bird present, N
B area of the island in square kilometres (AR),
B elevation in thousands of meters (£/'L),
B the distance from Ecuador in kilometres (D E'c)
B distance to the nearest other island in kilometres (DN I).

Data source: Vuilleumier (1970), ‘Insular biogeography in continental regions. I. The
northern Andes of South America’, American Naturaliste, 104, 373-388.

Introduction to R: 10 Dec 2010, ASC 2010 8/31

A Multiple Linear Regression Model

B Can try to model IV as a function of other variables using multiple linear
regression:

E[N] = By + BLAR + BoEL + 3DEc + B4DNI

B Linear regression models can be fitted using the 1m () command in R.

B The syntax is of the form 1m(formula, data, ...) where formulaisaR
formula of the form

y 1 +x1+ ... +xp
and data is an optional argument specifying the data frame containing the
variables.

Introduction to R: 10 Dec 2010, ASC 2010 9/31

Fitting the Regression in R

B The following code:

O Reads in the data and saves it as a data frame paramo
O Displays the contents of paramo
O Fits the linear regression described previously and assigns the result to the

fitted linear model object paramo. 1m.

> paramo <- read.table(file="data/paramo.txt",header=T)
> paramo

Island N AR EL DEc DNI
1 Chiles 36 0.33 1.26 36 14

14 Cende 15 0.07 0.55 1380 35
> paramo.lm <- 1lm(N ~ AR + EL + DEc + DNI, data=paramo)

Introduction to R: 10 Dec 2010, ASC 2010 10/ 31

Notes of this R Code

B R includes intercept by default, so N = AR+EL+DEc+DNI and
N ~ 1+AR+EL+DEc+DNI are equivalent.

B Short cut on RHS of formula is . which stands for ‘all other variables in the data
frame’. E.g. paramo.1lm <- 1m(N ~ . - Island, data=paramo).

B Nothing special about fitted model name paramo . 1m; could have chosen e.g.
vjc4njb.

B Fitted model object has many attributes; e.g. parameter estimates and standard
errors, fitted values, residuals etc.

B The summary () command applied to linear model object generates listing of
parameter estimates, standard errors etc.; anova () produces an ANOVA table.

Introduction to R: 10 Dec 2010, ASC 2010 11/31

Fitted Model for Paramo Birds Data

> summary (paramo.lm)

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 27.889386 6.181843 4.511 0.00146 *x*
AR 5.153864 3.098074 1.664 0.13056
EL 3.075136 4.000326 0.769 0.46175
DEc -0.017216 0.005243 -3.284 0.00947 *x
DNI 0.016591 0.077573 0.214 0.83541

Signif. codes: O ’*xx’ 0.001 ’**x’ 0.01 ’x> 0.05 ’.” 0.1
Residual standard error: 6.705 on 9 degrees of freedom

Multiple R-Squared: 0.7301, Adjusted R-squared: 0.6101
F-statistic: 6.085 on 4 and 9 DF, p-value: 0.01182

Introduction to R: 10 Dec 2010, ASC 2010 12/31

ANOVA Table for Fitted Model

> anova(paramo.lm)
Analysis of Variance Table

Response: N

Df Sum
AR 1 508.
EL 1 45.
DEc 1 537.
DNI 1 2.

Residuals 9 404.

Signif. codes: 0

2.

Sq Mean
92 508.
90 45.
39 537.
06

59 44.
Tkkk? (),

Sq F value Pr(>F)
92 11.3208 0.008328 *x*
90 1.0211 0.338661
39 11.9541 0.007189 *x*
06 0.0457 0.835412

95

001 ’*x’ 0.01 ’x’ 0.05 ’.” 0.1

Remember, ANOVA table P-values are dependent on ordering of terms.

Introduction to R: 10 Dec 2010, ASC 2010

13/31

Residuals Versus Fitted Values

B Syntax to view properties of fitted model is typically natural.

B coef (), resid(), fitted () returns estimated regression coefficients,
residuals and fitted values respectively.

B Eg. plot(fitted(paramo.lm),resid(paramo.lm)):

resid(paramo.Im)

Introduction to R: 10 Dec 2010, ASC 2010

-5 0

1

-10

L

1
o
o

fitted(paramo.Im)

30

14/31

Updating Models

B A number of predictors in the fitted regression are not significant.

B We can conveniently update with
update(original.lm, . ~ . - del.x + add.x)

B For update (), the dots in the formula represent all the terms in the corresponding
positions in the original model formula.

B The variables del.x and add.x are just example names of terms which we wish
to remove and add to the model respectively.

Introduction to R: 10 Dec 2010, ASC 2010 15/31

Updating the Paramo Birds Regression

> paramo.lm.2 <- update(paramo.lm, . ~ . - DNI)
> summary (paramo.lm.?2)

Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 28.10415 5.80141 4.844 0.000677 *x*xx

AR 5.26428 2.90535 1.812 0.100087

EL 3.04394 3.80214 0.801 0.441977

DEc -0.01679 0.00462 -3.635 0.004572 *x*
Signif. codes: O ’**x’ 0.001 ’*x’> 0.01 ’x’ 0.05 ’.” 0.1

Residual standard error: 6.377 on 10 degrees of freedom
Multiple R-Squared: 0.7287, Adjusted R-squared: 0.6473
F-statistic: 8.953 on 3 and 10 DF, p-value: 0.003499

Introduction to R: 10 Dec 2010, ASC 2010 16/ 31

Updating the Paramo Birds Regression (cont.)

> paramo.lm.3 <- update(paramo.lm.2, . ~ . - EL)
> summary (paramo.lm.3)

Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 30.797969 4.648155 6.626 3.73e-05 *x*xx

AR 6.683038 2.264403 2.951 0.01318 *
DEc -0.017057 0.004532 -3.764 0.00313 *x*
Signif. codes: 0 ’***x’ 0.001 ’*x’ 0.01 ’x’ 0.05 .’ 0.1

Residual standard error: 6.272 on 11 degrees of freedom
Multiple R-Squared: 0.7113, Adjusted R-squared: 0.6588
F-statistic: 13.55 on 2 and 11 DF, p-value: 0.001077

Introduction to R: 10 Dec 2010, ASC 2010 17/ 31

Example 2: ANOVA for Dairy Cattle Data

B Experiment performed to investi-
gate butterfat content of milk (the
response variable, measured as
a percentage).

B Factors:

0 Cow breed with five lev-
els: Ayrshire, Canadian,
Guernsey, Holstein-Fresian,
Jersey.

O Cow age with two levels:
mature and 2 years old.

Introduction to R: 10 Dec 2010, ASC 2010 18/ 31

Example 2 (cont.)

M 10 replicates (cows) observed at each treatment.

B The design is complete and balanced, so therefore orthogonal.

Data source: Sokal, R. and Rohlf, F. (1995) Biometry: the principles and practice of
statistics in biological research (3rd edition), WH Freeman and Co.

Introduction to R: 10 Dec 2010, ASC 2010 19/31

Summary of Dairy Cattle Data

> cows <- read.table(file="data/cows.txt",header=T)

> cows

Butterfat Breed Age
1 3.74 Ayrshire Mature
2 4.01 Ayrshire 2year
100 5.72 Jersey 2year
> summary (cows)

Butterfat Breed Age
Min. :3.300 Ayrshire :20 2year :50
1st Qu.:3.938 Canadian :20 Mature:50
Median :4.405 Guernsey :20
Mean :4.482 Holstein-Fresian:20
3rd Qu.:4.987 Jersey :20
Max. :6.550

Introduction to R: 10 Dec 2010, ASC 2010 20/ 31

Specification of ANOVA Type Models in R

B ANOVA type models fitted using 1m () function with same kind of formula as for
regression models.

B R detects difference between quantitative predictors and qualitative factors as
explanatory variables, and constructs the appropriate design matrix and model.

B If A and B are factors, then in an R model formula:

O A on RHS indicates inclusion of main effect for A;
O A:B on RHS indicates inclusion of interaction between A and B;
O shorthand syntaxis A*xB = A + B + A:B

O brackets expanded in natural fashion; e.g.
(A+B)*C = A*C + B¥C = A + B + C + A:C + B:C

Introduction to R: 10 Dec 2010, ASC 2010 21/31

ANOVA Model for Dairy Cattle Data

> cows.lm.1 <- Im(Butterfat ~ Breed*Age, data=cows)
> anova(cows.lm.1)
Analysis of Variance Table

Response: Butterfat

Df Sum Sq Mean Sq F value Pr(>F)
Breed 4 34.321 8.580 49.5651 <2e-16 ***
Age 1 0.274 0.274 1.5801 0.2120
Breed:Age 4 0.514 0.128 0.7421 0.5658
Residuals 90 15.580 0.173

Signif. codes: O ’**x’ 0.001 ’*x> 0.01 ’%’ 0.05 ’.” 0.1’

B Breed but not age (or breed:age interaction) affect butterfat content.

Introduction to R: 10 Dec 2010, ASC 2010 22/31

Parametrisation for ANOVA Models in R

B The effects of factors in linear models can be parametrised in any number of ways.
B E.g. the one-way ANOVA model is typically written as
Yii=p+ o +e; (i=1,...,I, j=1,...,n;)
where a constraint must be placed on vy, . .., .

B Common constraints include:

00 Sum constraint: Ele n;o; = 0.

O Treatment constraint: a;; = 0.

B R employs the treatment constraint by default: the first level of each factor is
regarded as a ‘baseline’.

Introduction to R: 10 Dec 2010, ASC 2010 23/ 31

Parameter Estimates for Dairy Cattle Data

> summary (cows.lm.1)

Estimate Std. Error t value Pr(>|tl)

(Intercept) 3.9660 0.1316 30.143 < 2e-16
BreedCanadian 0.5220 0.1861 2.805 0.00616
BreedGuernsey 0.9330 0.1861 5.014 2.65e-06
BreedHolstein-Fresian -0.3030 0.1861 -1.628 0.10693
BreedJersey 1.1670 0.1861 6.272 1.22e-08
AgeMature 0.1880 0.1861 1.010 0.31503
BreedCanadian:AgeMa.... -0.2870 0.2631 -1.091 0.27834
BreedGuernsey:AgeMa.... -0.0860 0.2631 -0.327 0.74457
BreedHolstein-Fresi.... -0.1750 0.2631 -0.665 0.50773
BreedJersey:AgeMature 0.1310 0.2631 0.498 0.61982

Introduction to R: 10 Dec 2010, ASC 2010 24 /31

Interpretation of Parameter Estimates

B Model is
Yij = b+ a; + B + (aB)i; + €ij

O ¢ indexes breed (with 5 levels)

O 7 indexes age (with 2 levels)

O k indexes animal in each group (k = 1,.. ., 10).
B By default, R sets factor levels in alphabetical order. Hence:

O Ayrshire is level one of the breed factor.

O 2year is level one of the age factor.

B Treatment constraint implies oy = 31 = 0, so 2 year old Ayrshire is reference
level.

Introduction to R: 10 Dec 2010, ASC 2010 25/31

Interpretation of Parameter Estimates: Examples

B Intercept estimate of /i = 3.97 is fitted value for 2 year old Ayrshire.

B &3 = 0.93, labelled BreedGuernsey in output, is contrast between 2 year old
Guernsey and 2 year old Ayrshire.

B Fitted value for mature Guernsey is

fi+ b3+ B+ ()30 = 3.97 4+ 0.93 4+ 0.19 — 0.09 = 5.00

B Check:

> attach(cows)

> fitted(cows.1lm.1) [Breed=="Guernsey" & Age=="Mature"]
41 43 45 47 49 51 53 55

5.001 5.001 5.001 5.001 5.001 5.001 5.001 5.001

Introduction to R: 10 Dec 2010, ASC 2010 26/ 31

Example 3: Nested Factors and Pollen Count Data

H Interest in abundance of pine pollen in
cores taken from bogs in northern Al-
berta, Canada.

B Pollen sampled at three depths: shal-
low, medium and deep.

B Two samples of peat at each depth.

B Two slides prepared from each sam-
ple.

B Number of pollen grains on a slide is
the response.

Introduction to R: 10 Dec 2010, ASC 2010 27 /31

Model for Pollen Count Data

B Factors are Sample and Depth, with Sample nested within Depth.

B Model can be written
Yij = p+ i + By + €ijin-

O Depth indexed by 7 (3 levels)

00 Sample indexed by j (2 levels per depth)
O Slide indexed by £k (k = 1, 2)

B R formula uses A/B to represent B nested within A.

B Formally, A/B = A + A:B.

Introduction to R: 10 Dec 2010, ASC 2010 28/ 31

Analysis of Pollen Count Data

> pollen <- read.table(file="data/pollen.txt",header=T)

> pollen

Depth Sample Count
1 shallow A 12
2 shallow A 14
3 shallow B 10
4 shallow B 7
5 medium A 16
6 medium A 12
7 medium B 10
8 medium B 19
9 deep A 21
10 deep A 29
11 deep B 33
12 deep B 30
Introduction to R: 10 Dec 2010, ASC 2010 29/ 31

Model Fitting

> pollen.lm <- 1lm(Count ~ Depth/Sample, data=pollen)
> anova(pollen.lm)
Analysis of Variance Table

Response: Count
Df Sum Sq Mean Sq F value Pr(>F)

Depth 2 686.00 343.00 22.4918 0.00163 x**
Depth:Sample 3 62.75 20.92 1.3716 0.33847
Residuals 6 91.50 15.25

Signif. codes: O ’x*xx’ 0.001 ’**x’ 0.01 ’x> 0.05 ’.’ 0.1

B No evidence clustering within Sample.

Introduction to R: 10 Dec 2010, ASC 2010 30/ 31

Summary

B Linear models fitted by R function 1m ().
B Models specified by R model formulae.
B In a formula, R identifies predictors and factors.

B Interaction specified by A : B; nesting by A/B.

B Fitted model object can be scrutinised by commands like summary () (table of

estimates) and anova () (ANOVA table).

Introduction to R: 10 Dec 2010, ASC 2010

31/31

AUSTRALIAN STATISTICAL CONFERENCE 2010

INTRODUCTION TO R
FREMANTLE, 10 DEC. 2010

Computer Laboratory 2

Exercise 1: Regression Modelling for Swiss Fertility Data

This exercise is concerned with data on fertility rates in Switzerland in 1888. At that time Switzerland
was going through a period of “demographic transition”, with fertility rates falling from the previous
high levels to those more typical of modern industrialized European countries. The aim is to relate
standardized fertility rate to five socioeconomic indicators using data from 47 French speaking provinces
in Switzerland. The variables in the data set are (for each province):

Fertility A common standardized fertility measure

Agriculture Percentage of males involved in agriculture as occupation
Examination Percentage of ‘draftees’ receiving highest mark on army examination
Education Percentage of education beyond primary school for ‘draftees’
Catholic Percentage of Catholics in the population

Infant.Mortality Percentage of live births who live less than one year

Data source: Mosteller, F. and Tukey, J.W. (1977) Data Analysis and Regression: A Second Course in
Statistics. Addison-Wesley, Reading Mass.

You can read these data into R, and store them as a data frame swiss, with the command
swiss <- read.table(file=choose.files(), header=TRUE, row.names=1)

and navigate to where the file swiss.txt is stored on your computer. Note that the argument row.names=1
tells R that the first column in the text file swiss.txt should be read in as row names.

Fit a multiple linear regression model to the data by
swiss.lm.1l <- Im(Fertility ~ ., data=swiss)

Notice the use of the dot in the model formulae to represent ‘all other variables in the data frame’.

Use the summary () command to scrutinize the fitted model. Is Fertility related to at least one of the
predictors? (Check the ‘omnibus’ F test statistic at the bottom of the summary output.)

Consider whether we can remove some of the predictors by using backwards variable selection imple-
mented by F testing. You should have found from the summary table for swiss.1lm.1 that Examination
is not statistically significant having adjusted for the other variables (p = 0.315). Remove this predictor
from the model and refit, by

swiss.lm.2 <- update(swiss.lm.1, . - Examination)

Look at the summary table for swiss.1lm.2. Should any further terms be dropped? Update the model
if necessary.

Have a look at the coefficients of the predictors in your preferred model. Can you explain the signs of
these coefficients in the context of the data?

Introduction to R: Computer Laboratory 2 1

Exercise 2: Linear Modelling for Ton Absorption Data

This Exercise concerns a study on the absorption over time of rubidium and bromide ions in potato
slices. Three variables are measured on each slice:

Variable Description

Absorption amount of ion absorbed in the tissue
Duration time of immersion (in hours) in ion solution
Ions Rubidium, R, or Bromide, B

Data source: Hand, D.J., Daly F., Lunn A.D., McConway K.J., Ostrowski E. (1994). A Handbook of
Small Data Sets, Chapman & Hall, London.

You can read these data into R, and store them as a data frame ion, with

ion <- read.table(file=choose.files(), header=TRUE)

and navigate to where the file ion.txt is stored on your computer. Take a look at the data frame (by

simply typing its name).

We will seek to construct a suitable linear model Absorption as a response and Duration and Ions as
explanatory variables. There are three candidate models:

M1: Simple linear regression of Absorption on Duration (ignoring Ions).
M?2: Parallel linear regression of Absorption (the response) on Duration for each type of ion.
M3: Separate linear regressions of Absorption (the response) on Duration for each type of ion.

These models can be fitted by the following commands respectively:

ion.1lm.1 <- lm(Absorption ~ Duration, data=ion)
ion.1m.2 <- lm(Absorption ~ Duration + Ions, data=ion)
ion.1m.3 <- lm(Absorption ~ Ions/Duration, data=ion)

The first of these commands should need no explanation. The second command indicates a constant
slope (specified by the inclusion of the Duration term) but different intercepts (specified by the inclusion
of the Ions term). The formula in the third command can be expanded to

Absorption ~ Ions + Ions:Duration

which indicates different intercepts (specified by the inclusion of the Ions ‘main effect’) and different
slopes (specified by the Ions:Duration term).

Take a look at the fitted models. You should be able to figure out the fitted model equations from the
R summary output. The correct equations are as follows:

M1: E[Absorption] = 0.186 + 0.180 Duration
. .| —2.444 4+ 0.181Duration for Bromide ions
M2 E[Absorption] = { 2.816 4+ 0.181 Duration for Rubidium ions

—2.922 + 0.188 Duration for Bromide ions
3.295 + 0.173Duration for Rubidium ions

M3 E[Absorption] = {
We can compare nested linear models by F tests. This can be achieved using the anova() command in
R. Specifically,

anova(ion.lm.1,ion.1m.2)

will compare M1 and M2 by an F test (i.e. a null hypothesis of equal intercepts for Bromide and
Rubidium ions will be tested). Compare M2 and M3 using the same methodology. What is your
preferred model?

Finishing Off:
When you’ve finished, close down R by typing q(). Choose ‘Save’ when prompted as to whether you
want to retain your workspace.

Introduction to R: Computer Laboratory 2 2

Introduction to R

Martin Hazelton Berwin Turlach
M.Hazelton @massey.ac.nz berwin@maths.uwa.edu.au
) o o o o [] ([o ([J o
Introduction to R: 10 Dec 2010, ASC 2010 1/31

Lecture 3: Graphics

In this lecture we shall discuss
B graphics devices
B R base graphics

B graphics parameters for fine tuning graphics

Introduction to R: 10 Dec 2010, ASC 2010 2/31

Graphics Devices

R can produce graphics on a variety of graphical devices.
> help("Devices")
will tell you which devices are available on your platform; some of which may be:

windows () graphics driver for Windows

X110 graphics driver for the X11 Window system
postscript() writes PostScript graphics commands to a file
pdf O writes PDF graphics commands to a file

You may have several graphics devices open at the same time.
But only one device is the active device.

Introduction to R: 10 Dec 2010, ASC 2010 3/31

Handling Multiple Graphics Devices

The following commands are useful for handling multiple graphics devices:

dev.cur() returns the number and name of the

active device
dev.list() returns the numbers of all open devices
dev.next () returns the number of the next device
dev.prev() returns the number of the previous device
dev.set () makes the specified device the active device
dev.off () shuts down the specified device
graphics.off () shuts down all open graphics devices
dev.copy() copies the graphics contents of the

current device into a new device,
e.g. dev.copy (windows)

Introduction to R: 10 Dec 2010, ASC 2010 4/31

Plotting Commands

We shall discuss the commands in the package graphics.
This package contains functions for base graphics, the traditional S graphics.
A list of all commands available in this package can be obtained either via the command
library(help=graphics)
or
help("graphics-package")

demo (graphics) illustrates some of R’s graphics capabilities.

A rewrite of the graphics capabilities is given by the (base) package grid and the (recommended)
package lattice. The latter implements Trellis Graphics (Cleveland, W.S. (1993). Visualizing Data,
Hobart Press, Summit, N.J.).

Introduction to R: 10 Dec 2010, ASC 2010 5/31

Plotting Commands (cont.)

Plotting commands can be divided into three basic groups:

B High-level plotting commands:
These commands typically create new plots on the active graphics device.

B Low-level plotting commands:
These commands add more information to an existing plot.

B Interactive graphics commands:
Commands for adding information to, or extracting information from, an existing
plot in an interactive manner.

Introduction to R: 10 Dec 2010, ASC 2010 6/31

Some High-Level Plotting Commands

plot () Generic X-Y Plotting
barplot () Bar Plots

boxplot () Box Plots

curve () Draw Function Plots
contour () Display Contours
coplot () Conditioning Plots
hist() Histograms

image () Display a Color Image
matplot () Plot Columns of Matrices
pairs() Scatterplot Matrices
persp() Perspective Plots

stripchart() 1-D Scatter Plots

Introduction to R: 10 Dec 2010, ASC 2010 7/31

Powerball data

> dat <- read.csv("data/Powerball.csv")
> head(dat)
NumTDA WeeksSLDA NumTDB WeeksSLDB
1 65 12 14 6
2 69 3 14 3
3 61 1 14 2
4 62 9 19 38
5 82 7 11 24
6 63 9 11 170
> numdrawn <- rep(1:45, dat[,1])
> hist (numdrawn)
> hist(numdrawn, probability=TRUE, xlab="Number")
> hist(numdrawn, breaks=1:45, xlab="Number", main="")
> hist(numdrawn, breaks=0:45, xlab="Number", main="")

Introduction to R: 10 Dec 2010, ASC 2010 8/31

Powerball data (cont.)

Histogram of numdrawn Histogram of numdrawn
g g
g S 2

[e
i 8 e s
(=3
° 8

T T T T 1 =R T T T 1

0 10 20 30 40 0 10 20 30 40

numdrawn Number
] 8
[=3
g g g ©
g ® S ¢
o o <
© ©

[T L o
N
o (=

T T T T 1 T T T T 1

0 10 20 30 40 0 10 20 30 40

Number Number
Introduction to R: 10 Dec 2010, ASC 2010 9/31

Powerball data (cont.)

> barplot(dat[,1])

> barplot (dat$NumTDA, names.arg=1:45)

> barplot(dat[,"NumTDA"], names.arg=1:45, space=0.5)
> barplot(dat[,1], names.arg=1:45, space=0.9)

> chisq.test(dat[,1])

Chi-squared test for given probabilities

data: dat[, 1]
X-squared = 25.2264, df = 44, p-value = 0.9897

Introduction to R: 10 Dec 2010, ASC 2010 10/ 31

Powerball data (cont.)

0 20 40 60 80
0 20 40 60 80

0 20 40 60 80
0 20 40 60 80

T

1 5 9 13 18 23 28 33 38 43

Introduction to R: 10 Dec 2010, ASC 2010

1 5 9 13 18 23 28 33 38 43

i

1 5 9 13 18 23 28 33 38 43

11/31

Arguments to High-Level Plotting Commands

Most high-level plotting commands have the following arguments:

B add=TRUE: forces the function to act as a low-level graphics function,

superimposing the plot on the current plot

B axes=FALSE: suppresses generation of axes—useful for adding customised axes

with the axis () command.

B log="x", log="y" or log="xy":

Causes the x axis, y axis or both axes to be logarithmic

B xlab=string, ylab=string:
labels for the &« and y axes, respectively

B xlim=c(a,b), ylim=c(a,b):

specifies the ranges for the x and y axes, respectively

Introduction to R: 10 Dec 2010, ASC 2010

12/31

Arguments to High-Level Plotting Commands (cont.)

B main=string:
figure title, placed at the top of the plot in a large font

B sub=string:
sub-title, placed just below the x-axis in a smaller font

B type=string: the type of plot to be produced.

L] "p" plot individual points

"1" plot lines

"b" plot points connected by lines (both)

"o" plot points overlaid by lines

"h" plot vertical lines from points to zero axis (high density)

"s" or "S" step-function plot (top or bottom of vertical defines point, respectively)

I B B N R

"n" plot nothing at all, however the axes are still drawn and the coordinate system is set up
according to the data

Introduction to R: 10 Dec 2010, ASC 2010 13/31

Powerball data (cont.)

> hist(dat[,2])

> hist(dat[,2], x1lim=c(0,10))

> hist(dat[,2], x1im=c(0,10), breaks=0:80)

> hist(dat[,2], x1im=c(0,10), breaks=0:80, right=FALSE)

Introduction to R: 10 Dec 2010, ASC 2010 14/ 31

Powerball data (cont.)

Histogram of dat[, 2] Histogram of dat[, 2]
wn wn
> o > o
2 2
g wn g w
g 7 g 7
w [[
w w
o — o
I T T T 1 I T T T T 1
0 20 40 60 80 0 2 4 6 8 10
dat], 2] dat], 2]
Histogram of dat[, 2] Histogram of dat[, 2]
‘O_ w
[ee] <
) 3
g © g °
3 3
g « g o
'S 'S
o (=
I T T T T 1 I T T T T 1
0 2 4 6 8 10 0 2 4 6 8 10
datf, 2] dat[, 2]
Introduction to R: 10 Dec 2010, ASC 2010 15/31

Example 4: lllustrating the Argument

postscript("graphl.eps", paper="special",
width=8, height=6,
bg="white", horizontal=FALSE)
par (mfrow=c(2,3))
plot(-3:3, type="p", main="type=\"p\"")

V VV V V V VYV 4+ + V

plot(-3:3, type="1", main="type=\"1\"")

plot(-3:3, type="b", main="type=\"b\"")

plot(-3:3, type="o", main="type=\"o\"")

plot(-3:3, type="h", main="type=\"h\"")

plot(-3:3, type="s", main="type=\"s\"")
)

dev.off(

Introduction to R: 10 Dec 2010, ASC 2010 16/ 31

lllustrating the Argument (cont.)

type="p" type="1" type="b"
© © © 5]
o o~ o c/
- - - a/
o a 2 /
8 o 8 o 8 o4 o
: ; N
N N N e
? o P A @ *c/
\\\\\\\\\\\\\\\\\\\\\
12 3 4 5 6 7 12 3 4 5 6 7 12 3 4 5 6 7
Ind Inde: Ind
type="o0' type="h type="s
o © o
o o N
)) | \)
© o © © ‘ w8 ©
o « o
o B @
\\\\\\\\\\\\\\\\\\\\\
12 3 4 5 6 7 12 3 4 5 6 7 12 3 4 5 6 7
Ind Inde) Ind
Introduction to R: 10 Dec 2010, ASC 2010 17/31

Some Low-Level Plotting Commands

abline() Add a Straight Line to a Plot

axis() Add an Axis to a Plot

legend () Add Legends to Plots

lines() Add Connected Line Segments to a Plot
mtext () Write Text into the Margins of a Plot

points() Add Points to a Plot
polygon() Polygon Drawing

rect () Draw One or More Rectangles
rug() Add a Rug to a Plot
segments() Add Line Segments to a Plot
text () Add Text to a Plot

title() Plot Annotation

Introduction to R: 10 Dec 2010, ASC 2010 18/ 31

Graphics Parameters

In addition to low-level plotting commands, the presentation of graphics is influenced by
graphics parameter.

Graphics parameters can be changed permanently using the function par ().

If called without argument, par () returns the current values of all graphics parameters.
Currently, there are 70 parameters, 65 of which can be changed by the user.

A call like par("col", "1ty") orpar(c("col", "1ty")) returns only the values
of the specified graphics parameters.

A call with named arguments, e.g. par (col=4, 1ty=2) sets the values of the named
graphics parameters and returns a list with the original values of the parameters.

Introduction to R: 10 Dec 2010, ASC 2010 19/31

Graphics Parameters (cont.)

The complete list of graphics parameters, and the description of each one, can be
obtained via help (par).
Some of the more useful ones are:

B ask: ask before a new figure is drawn
B adj: controls text justification

B bg: specifies the background colour
B fg: specifies the foreground colour
|

cex: character expansion, the desired size of text characters relative to the default
text size

B cex.axis, cex.lab, cex.main, cex.sub: magnification to be used for axis
annotation, x and y labels, main titles and sub-titles, respectively, relative to the
current setting of cex

Introduction to R: 10 Dec 2010, ASC 2010 20/ 31

Graphics Parameters (cont.)

B col: default plotting colour

B col.axis, col.lab,col.main, col.sub: colourto be used for axis
annotation, x and y labels, main titles and sub-titles, respectively

B family: the name of a font family
B las: orientation of axis labels

B 1ty: the line style

B 1lwd: the line width

B pch: integer specifying a symbol or a single character to be used for plotting points

Introduction to R: 10 Dec 2010, ASC 2010 21/31

Graphics Parameters (cont.)

Graphics parameters may also be passed to (most) graphics function as named
arguments to have only a temporary effect.

plot(1l, 1, xlim=c(1, 7.5), ylim=c(0,5),
type="n", xlab="", ylab="")

points(1:7, rep(4.5, 7), pch=0:6, cex=1:7)
text(1:7, rep(3.5, 7),

labels=paste(0:6), cex=1:7, col=1:7)
points(1:7, rep(2, 7), pch=(0:6)+7)
text(1:7+0.25, rep(2, 7), paste((0:6)+7))
points(1:7, rep(1l, 7), pch=(0:6)+14)
text(1:7+0.25, rep(l, 7), paste((0:6)+14))

V V.V V 4+ V V + V

Introduction to R: 10 Dec 2010, ASC 2010 22/ 31

Graphics Parameters (cont.)

~ o ® 7 * 8 ® 9 ® 10 x 11 B 12 7 13
- - @14 =15 ° 16 A 17 .18 e 19 20
o 4
T T T T T T T
1 2 3 4 5 6 7
Introduction to R: 10 Dec 2010, ASC 2010 23/ 31

Graphics Parameters: Multiple Figures

The graphics parameters mfcol and mfrow can be used to create multiple figures on a
graphics device.

These graphics parameters take a numerical vector of the form c(nr, nc) and set up an
nr by nc array of figures.

Subsequent plotting commands will fill this array either by columns (mfcol) or by rows
(mfrow).

The graphics parameter mf g can be used to either enquire or set which figure in an
array of figures is drawn next.

The commands layout () and screen() provide alternative ways of creating multiple figures
on a graphics device. These commands are somewhat more flexible.
NOTE: These methods of creating multiple figures are mutually incompatible.

Introduction to R: 10 Dec 2010, ASC 2010 24 /31

Powerball data (cont.)

> par (mfrow=c(2,2))
> hist(numdrawn, breaks=0:45, xlab="Number", main="")

> ndl <- O*numdrawn

> for(i in 1:605) ndl1[(5*(i-1)+1):(5%i)] <- sample(1:45,5)
> hist(ndl, breaks=0:45, xlab="Number", main="")

> for(i in 1:605) nd1[(6%x(i-1)+1):(5%i)] <- sample(1:45,5)
> hist(ndl, breaks=0:45, xlab="Number", main="")

> for(i in 1:605) nd1[(5x(i-1)+1):(5xi)] <- sample(1:45,5)
> hist(ndl, breaks=0:45, xlab="Number", main="")

Introduction to R: 10 Dec 2010, ASC 2010 25/31

Powerball data (cont.)

Frequency

0 20 40 60 80
Frequency

0 20 40 60 80

I T T T 1 I T T T 1
] 10 20 30 40 0 10 20 30 40

Number Number

Frequency

0 20 40 60 80
Frequency

0 20 40 60 80

I T T T 1 I T T T 1
0 10 20 30 40 0 10 20 30 40

Number Number

Introduction to R: 10 Dec 2010, ASC 2010 26/ 31

Graphics Parameters: Figure Margins

The graphics parameters mai and mar control
the margins of a figure.

These are numerical vectors of the form
c(bottom, left, top, right) giving the margin sizes
of each side.

mai specifies the margin sizes in inches.

mar specifies the margin in lines of text.

Introduction to R: 10 Dec 2010, ASC 2010

777777777777777777777777777

27 /31

Graphics Parameters: Figure Margins

Analogously, in multiple figure plots the graph-
ics parameters omi and oma control the outer
margins of the plot.

These are numerical vectors of the form
c(bottom, left, top, right) giving the margin sizes
of each side.

omi specifies the margin sizes in inches.

oma specifies the margin in lines of text.

Introduction to R: 10 Dec 2010, ASC 2010

omi[2]| 100”0

omi[1]
mfrow=c(3,2)

28/ 31

Interacting with Graphics

There are essentially two functions available for interacting with graphics

B locator(n, type="n"):
returns upon completion the locations of points selected by the user as a list with
components x and y.

Typical usage is the interactive positioning of legends
legend(locator(1),....)

B identify(x, y, labels):
allows the highlighting of the points defined by x and y. The indices of the selected
points are returned upon completion of the command.

Introduction to R: 10 Dec 2010, ASC 2010 29/ 31

Where to From Here?

More examples can be found at the R Graph Gallery:
http://addictedtor.free.fr/graphiques/

Study “From Data to Graphics” and “Customizing graphics” at Statistics with R:
http://zoonek2.free.fr/UNIX/48 R/all.html

“Graphing” at Rtips:
http://pj.freefaculty.org/R/Rtips.html

Murrell, P. (2006). R Graphics, Computer Science and Data Analysis Series, Chapman
& Hall/CRC.
http://www.stat.auckland.ac.nz/ paul/
RGraphics/rgraphics.html

Introduction to R: 10 Dec 2010, ASC 2010 30/31

Where to From Here? (cont.)

Also of interest:

Cook, D. and Swayne, D.F. (2007). Interactive and Dynamic Graphics for Data Analysis,
Use R!, Springer-Verlag, New York.

Sarkar, D. (2008). Lattice: Multivariate Data Visualization with R, Use RI,
Springer-Verlag, New York.
http://1lmdvr.r-forge.r-project.org/figures/figures.html

Wickham, H. (2009). ggplot2: Elegant Graphics for Data Analysis, Use R!,
Springer-Verlag, New York.
http://had.co.nz/ggplot2/book/

The next lab.

Introduction to R: 10 Dec 2010, ASC 2010 31/31

AUSTRALIAN STATISTICAL CONFERENCE 2010

INTRODUCTION TO R
FREMANTLE, 10 DEC. 2010

Computer Laboratory 3

Exercise 1: Plotting Functions of One Variable

The aim of this exercise is to help you learn how to plot functions of one variable in R. Consider, for
example, the function

fl@) =a®
and suppose that we wish to plot the graph of f(z) for z in the range (—5,5). The way to do this in R
is as follows:

(i) Create a fine grid (sequence) of x values on the interval (=5, 5).
(ii) Evaluate the function f(z) at each grid point.
(iii) Join up the resultant pairs (z, f(x)) with tiny straight line segments.
This is perhaps easiest understood by actually doing it!
Start by creating the grid of x values using the command
x <- seq(-5, 5, length=201)

Take a look at the object x (just type its name) to see what you have made. Now evaluate the function
on the grid:

fx <- x72
Finally, plot £x against x with
plot(x, fx, type="1")

The argument type="1" of plot tells R to connect the points with line segments (hence "1"). By default
R would simply plot the unconnected points — see what happens if you omit the (optional) type="1"
argument. You can beautify your graph by adding labels to the axes, by adding a title, and by changing
the colour scheme. Try

plot(x, fx, type="1", ylab="f(x)", col="red", main="Graph of f(x)=x"2")
and then try some variations of your own devising.
Now try plotting the following functions:
1. f(x) = Tlog(z) — « for = in the interval (0.1, 20).
2. f(x) =5log(z) + 10log(1 —) for x in the interval (0.1, 0.9).

Exercise 2: Plotting Functions of Two Variables

It is much more difficult to visualise functions of many variables than functions of one variable. Nonethe-
less, we can get useful displays of functions of two variables using perspective (‘wire frame’), contour
and image (‘heat’) plots. This exercise will help you learn how to generate such plots in R.

Consider the function
fla,y) = e @00

and suppose that we wish to plot its graph over the range x € (=3, 3) and y € (—3,3). To do this we
will:

Introduction to R: Computer Laboratory 3 1

(i) Create a fine grid of points on the z-y plane over the ranges indicated above.
(ii) Evaluate the function f(z,y) at each grid point.

(iii) Supply grid and function evaluations to R’s persp, contour or image commands.

Start by creating the locations of the grid lines on the = and y axes:

x <- seq(-3, 3, length=51)
y <- seq(-3, 3, length=51)

All the R plotting commands for functions of two variables expect the evaluations of f(z,y) to be
presented as a matriz, with elements corresponding to the appropriate grid locations. We start by
creating a matrix full of zeros:

fxy <- matrix(0, ncol=51, nrow=51)

Note that the number of columns (ncol) and rows (nrow) matches the number of grid lines on each axis.
We now insert the function values into this matrix using loops':

for (i in 1:51){
for (j in 1:51){
fxyl[i,jl <- exp(-(x[il"2 + y[j1°2))
}
}

Finally, we can get perspective, contour and image with the following syntax:

persp(x, y, fxy)
contour(x, y, fxy)
image(x, y, fxy)

If you have time, try beautifying these plots; e.g.

persp(x, y, fxy, col="cyan", theta=45)
contour(x, y, fxy, nlevels=25)
image(x, y, fxy, col=terrain.colors(50))

Use R’s help system to guide you.
Exercise 3: Studying Examples

R, as a programming environment, has excellent quality control tools. When installing R itself (or any
R package) from source these tools try to ensure that the installation will be successful. Part of the
installation process is that the examples in every help page are checked. This process produces a large
set of examples of graphical figures which is readily accessible.

In the material provided electronically, you will find a folder called GraphicsEx with graphical output
produced by some of the base and recommended packages during installation. You may peruse these
files at your leisure.

Note the file GraphicsEx.R. After starting R, change your working directory (Change dir... from the
File menu) to an easily accessible place, e.g. the desktop. Then select Source R code... from the
File menu, locate and select the file GraphicsEx.R to execute the commands in this file. After R has
run the commands in this file, you will find a file called GraphicsEx.pdf in your working directory. This
file will contain the graphics from the example section of selected commands. By editing GraphicsEx.R,
you can easily create your own gallery of favourite R figures. (NOTE: some packages may first have to
be loaded (via library()) before you can run the examples of commands provided by the package.)

Finishing Off:
When you’ve finished, close down R by typing q(). Choose ‘Save’ when prompted as to whether you
want to retain your workspace.

INOTE: Alternatively, to avoid loops we could ‘vectorise’ these calculations. A simple command like
fxy <- exp(-outer(x~2, y~2, "+"))
would do the same calculations. In this case, we also would not have to issue the previous command that created fxy and
filled it with zeros.

Introduction to R: Computer Laboratory 3 2

Introduction to R

Introduction to R: 10 Dec 2010, ASC 2010

Martin Hazelton
M.Hazelton @massey.ac.nz

Berwin Turlach
berwin @ maths.uwa.edu.au

1/18

Lecture 4: Generalized Linear Models in R

B In this lecture we will introduce GLMs in R.

B Much of the material covered via example:

0 Models and notation

O Logistic regression for Titanic survivors data

O Gamma regression for hormone assay data

Introduction to R: 10 Dec 2010, ASC 2010

2/18

Basic Elements of a Generalized Linear Model

B Response Y; for ith individual, observed independently of other responses.
B Corresponding explanatory variables are ;1, ;2, . . . , Tjp.
B Linear predictor is
ni = Po+ Bz + ... + BpTip.
B Expected response E[Y;] = 1; and linear predictor related by
m = g(1)-
where g is smooth invertible link function.

B Response Y] follows exponential family distribution.

Introduction to R: 10 Dec 2010, ASC 2010 3/18

GLM Families

B Combination of response distribution and link function is called the family of the
GLM.

B Canonical links pair naturally with response distribution.

Response distribution Canonical link

Normal identity g(p) = p

Binomial logit: g(u) = log(p/(1 — p))
Poisson log: g(1) = log(p)

Gamma inverse: g(p) = !

B Gamma response with identity link, and binomial response with probit link are
examples of common non-canonical links.

Introduction to R: 10 Dec 2010, ASC 2010 4/18

Inference for GLMs

B Parameters o, .. ., 3, in GLMs are (typically) estimated by maximum likelihood.

B Goodness of fit of a GLM can be measured by (residual) deviance, which is
analogous to the (residual) sum of squares in a linear model.

B The fitted values for a GLM are defined by

where
M = Bo+ Bz + ...+ Bpxip
B Raw residuals are r; = y; — [i;, but alternatives like deviance residuals are

available.

Introduction to R: 10 Dec 2010, ASC 2010 5/18

Fitting GLMs in R

B GLMs are fitted (by maximum likelihood estimation) in R using the glm () function.

B The function glm() essentially works in the same way as 1m (), but with an
additional argument to specify the GLM family.

B Options for the family argument binomial, Gamma and poisson. E.g.
glm(y ~ x1 + x2, family=Gamma)

B Canonical link is assumed by default. Alternative link specified in parentheses, e.g.
glm(y ~ x1 + x2, family=Gamma(link="identity")).

Introduction to R: 10 Dec 2010, ASC 2010 6/18

Example 5: Logistic Regression for Titanic Data

B Titanic data contains observations from passengers of the Titanic.
B For each individual four variables are recorded:

Survived: Binary response, 1 = survived, 0 = died.
PClass: Travelling class; 1st, 2nd or 3rd.

Age: Age in years.

Sex: Factor with levels ‘female’ and ‘male’.

B Shall use logistic regression — i.e. GLM with binomial family and canonical link — to
model survival in terms of age and sex.

Introduction to R: 10 Dec 2010, ASC 2010 7/18

Data Summary

> titanic <- read.table(file="data/titanic.txt",header=T)
> summary (titanic)

Name PClass Age Sex ce.
Carlsson,: 2 1st:322 Min. : 0.17 female:462
Connolly,: 2 2nd:280 1st Qu.: 21.00 male :851
Kelly, ceet 2 3rd:711 Median : 28.00
Abbing, ceaa 1 Mean : 30.40
Abbott, R 1 3rd Qu.: 39.00
Abbott, R 1 Max. : 71.00
(Other) 11304 NA’s :557.00

Introduction to R: 10 Dec 2010, ASC 2010 8/18

Data Summary: Comments

B Three pairs of passengers shared the same names.

B The majority of passengers were travelling third class.
B Age is missing (NA) for about half the passengers.

B We will assume that the age data is missing at random.

B For Im() or glm(), default is to omit entire record for each individual with a
pertinent missing value.

B Alternatives available by specifying na.action argumentin 1m() or glm().

Introduction to R: 10 Dec 2010, ASC 2010 9/18

Fitting Logistic Regression to Titanic Data

> titanic.glm.1l <- glm(Survived ~ . - Name, family=binomial,
+ data=titanic)
> summary (titanic.glm.1)

Coefficients:
Estimate Std. Error z value Pr(>|zl|)

(Intercept) 3.759662 0.397567 9.457 < 2e-16 *xx
PClass2nd -1.291962 0.260076 -4.968 6.78e-07 **x
PClass3rd -2.521419 0.276657 -9.114 < 2e-16 *x*x*
Age -0.039177 0.007616 -5.144 2.69e-07 *xx*
Sexmale -2.631357 0.201505 -13.058 < 2e-16 *x*x*

Null deviance: 1025.57 on 755 degrees of freedom
Residual deviance: 695.14 on 751 degrees of freedom

Introduction to R: 10 Dec 2010, ASC 2010 10/18

Summary of Results for Titanic Data

B By default, first level of Sex (i.e. female) and of PClass (i.e. 1st class) are set as
reference.

B The better the travelling class, the better the chances of survival.
B Women more likely to survive than men.

B Young more likely to survive than old.

B Analysis supports idea of ‘women and children first’.

B Could refine analysis by checking for interactions and varying slope for Age.

Introduction to R: 10 Dec 2010, ASC 2010 11/18

Example 6: Gamma Regression for Hormone Assay

B Hormone assays conducted on 85 samples.

B In the experiment, the old (or reference) method is compared to a new (or test)
method.

30 40 50
I
o
o

Test
e}

20
|
o

10
|
Ego
od

0 10 20 30 40 50 60

Reference

Introduction to R: 10 Dec 2010, ASC 2010 12/18

Modelling the Hormone Assay Data

B Seek to model test method (response) in terms of reference method (predictor).

B Could use standard simple linear regression model, but scatter-plot provides clear
evidence of heteroscedasticity.

B Possible solutions:

0 Model on the log-scale for both response and predictor.

O Use gamma regression with identity link, since mean proportional to
std. dev. for gamma distribution.

B Second solution allows us to maintain additive model on original scale of data.

Introduction to R: 10 Dec 2010, ASC 2010 13/18

Model Fitting for Hormone Data

> hormone <- read.table(file="data/hormone.txt",header=T)
> hormone.glm <- glm(Test ~ Reference, family=

+ Gamma(link="identity"), data=hormone)

> summary (hormone.glm)

Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) -0.01802 0.15212 -0.118 0.906
Reference 0.93629 0.04497 20.819 <2e-16 **x*

Signif. codes: 0 ’***x’ 0.001 ’*x’ 0.01 ’x’ 0.05 ’.” 0.1

(Dispersion parameter for Gamma family 0.08433066)

Introduction to R: 10 Dec 2010, ASC 2010 14/18

Plot of Fitted Model

> attach(hormone)
> plot(Reference,Test)
> abline(coef (hormone.glm))

Test

Reference

Introduction to R: 10 Dec 2010, ASC 2010 15/18

Model Residuals

> par (mfrow=c(1,2))
> plot(fitted(hormone.glm),resid(hormone.glm,type="response"))
> plot(fitted(hormone.glm),resid(hormone.glm,type="deviance"))

0.2
|
)
o
)
©o
o
o

-0.2
|

resid(hormone.gim, type = "response")
-5 0
|
&-
00 @O
o
% o]
o
o
resid(hormone.gim, type = "deviance")
|
&
o°®
&
%
o
o
o

-10
-0.6
|

o
T T T T T T T T T T T T T T

0O 10 20 30 40 50 60 0 10 20 30 40 50 60

fitted(hormone.glm) fitted(hormone.glm)

Introduction to R: 10 Dec 2010, ASC 2010 16/18

Comments: Model Residuals

B Recall that residuals not uniquely defined for GLMs.
B Response (raw) residuals not appropriately scaled; display fanning.
B Deviance residuals appropriate; do not suggest any major problems with model.

B Canuse plot(hormone.glm) to get standard set of diagnostic plots for GLM.

Introduction to R: 10 Dec 2010, ASC 2010 17/18

Comments on the Fitted Model

B Data do not completely discount the possibility that (true) regression line goes
through origin and has slope 1.

B The dispersion parameter estimate in the output indicates that oy = 1/0.0843 py
for responses.

B Could try fitting regression through origin. Use formula
Test © -1 + Reference to force R to remove intercept in model.

Introduction to R: 10 Dec 2010, ASC 2010 18/18

AUSTRALIAN STATISTICAL CONFERENCE 2010

INTRODUCTION TO R
FREMANTLE, 10 DEC. 2010

Computer Laboratory 4

Exercise 1: Survival Times for Leukemia Patients

This exercise concerns data collected on survival times for Leukemia patients in the 1960s. (Data
source: Feigl, P. and Zelen, M., (1965), ‘Estimation of exponential survival probabilities with concomitant
information,” Biometrics, 21, 826-838.) For 33 subjects the following variables are recorded:

WBC: White blood cell count

AG: Subject is positive or negative for aminiothuteglucide (AG)

Time: Time to death, in weeks

We will seek to model survival time as a function of WBC and AG using Gamma regression with the
canonical inverse link.

Read in the data by
leuk <- read.table(file=choose.files(), header=TRUE)

and navigate to where the file leukemia.txt is stored on your computer. Take a look at the data frame
leuk.

Fit the following Gamma regression:

leuk.glm <- glm(Time ~ AG + WBC, family=Gamma, data=leuk)
Perform an analysis of deviance by
anova(leuk.glm,test="Chisq")

You should see that there is evidence that both AG and WBC affect survival time. Look at the estimated
coefficients (regression parameters) by

coef (leuk.glm)

Does survival time increase or decrease with WBC?

Exercise 2: Hearing Impairment and Maternal Attachment

This exercise concerns a study to investigate a possible connection between hearing-impairment in tod-
dlers and the development of a secure attachment to their mothers. (Source: A.R. Lederberg and C.E.
Mobley, “The effect of hearing impairment on the quality of attachment and mother-toddler interac-
tion,” Child Development, 61 (1990), pp. 1596-1604.) A group of 41 hearing-impaired toddlers, and
another group of 41 toddlers without hearing impairment, were included in the study. For each toddler
an assessment was made on whether he/she had a secure, or insecure, attachment to his/her mother.
The resulting data are displayed below.

Attachment
Impaired | Secure Insecure
Yes 23 18
No 25 16

Introduction to R: Computer Laboratory 4 1

A two way contingency table such as this can be modelled using logistic regression. The response in this
case is a binomial count of the number of secure attachments from the sample of 41 toddlers. The single
factor is the hearing impairment status.

We can create the necessary objects in R as follows.

Secure <- c(23, 25)

Insecure <- c(18, 16)

Impaired <- factor(c("yes", "no"))

toddlers <- data.frame(Secure, Insecure, Impaired)

Take a look at the data frame toddlers that you have just created to ensure that you understand its
structure.

For binomial count responses as opposed to simply binary responses, the LHS of the R formula must
be a matrix with two columns. The first column contains the number of ‘successes’ (i.e. secure attach-
ments in our case) and the second column contains the corresponding number of ‘failures’ (i.e. insecure
attachments in our case). Hence to fit a logistic regression to these data the code is

toddlers.glm <- glm(cbind(Secure, Insecure) ~ Impaired, family=binomial, data=toddlers)

In this formula the cbind () command has been used to bind together to vectors as columns of a matrix.
Generate a summary table of parameter estimates and an analysis of deviance table. Is there any
evidence that the level of maternal attachment is affected by hearing impairment?

The analysis that you have just done used the canonical logit link for the binomial family GLM. Just
for practice, repeat the analysis using a probit link.

Additional Exercise: Analysis of Copenhagen Housing Survey Data

This exercise is intended only for those familiar with log-linear modelling for contingency tables (and
who have completed earlier exercises very quickly!). It is concerned with data from a housing survey
conducted in Copenhagen (in Denmark). A total of 1681 respondents in rental accommodation were
classified according to the following variables:

Sat: Satisfaction of householders with housing circumstances, (High, Medium or Low).

Infl: Perceived influence householders have on management of property (High, Medium, Low).
Type: Type of rental accommodation, (Tower, Atrium, Apartment, Terrace).

Cont: Contact residents are afforded with other residents, (Low, High).

Load that data by

housing <- read.table(file=choose.files(), header=TRUE)

and navigate to where the file housing. txt is stored on your computer.

In this data frame the numbers (frequencies) in each class are listed under the variable Fregq.

We can analyse the associations between the factors in these contingency table data using a Poisson
log-linear model. Fit the saturated model by

housing.glm.1 <- glm(Freq ~ Sat*Infl*Type*Cont, family=poisson, data=housing)

Confirm that the four way interaction Sat:Infl:Type:Cont can be dropped by inspecting the result of
dropl(housing.glm.1,test="Chisq")

Update the model with the

housing.glm.2 <- update(housing.glm.1,. ~ . - Sat:Infl:Type:Cont)

Now check if any more terms can be removed by

dropl(housing.glm.2,test="Chisq")

Introduction to R: Computer Laboratory 4 2

Repeat this process, dropping one term at a time until no more terms need to be removed from the
model.

What do you conclude about the associations between the variables? In particular, what factors affect
a householder’s level of satisfaction with his or her housing circumstances?

Finishing Off:
When you’ve finished, close down R by typing q(). Choose ‘Save’ when prompted as to whether you
want to retain your workspace.

Introduction to R: Computer Laboratory 4 3

¥N 9UO 1Sed] Je SUIeIU0d x 41 afessall 4013 Ue SUINjal (x) TTe3 - eu
(swreuy eyep e 10 XL1eW € SI X 41 aul] Buipuodsaliod ay) sassaid

-dns) (¥N) ejep Buissiw yum suoleAssqo syl sessaiddns (x)3Two - eu
(i1 —u)]/iu =

suonnadal u Buowe S)UaA3 ¥ JO SUOIBUIGIOD Byl SaINdwod (3 ‘u) @sooyD
(1ea

-160] apow J0 3|geLIeA € 3 ISNW UondUNy S1Y} Jo uawnbie ayy) ©
[T]1% 4oIym Jo} T JO sanjeA ay} ajdwexa siyy ul ‘(ZNHI) anJi SI UoKeId
-do uosiredwod ayy I X JO S8IIPUI B} JO J0JIBA B SUINJAI (B == X)YDTUM
(8s1MIBYI0 ¥N) A Ul 8JB YIIYM X JO
SJUBWIAIA AU YNM X Ueyl YyiBua| swes 8y JO J0Jd8A B suinjal (& ‘x) yojew
sjuiod 1nd JO J0199A B IO S[eAISUI 1D JO
Jaquinu 8y} SI syeaxq {(SI0198)) S[BAJSIUI OJUl X SBPIAIP (SYee1q‘X)3no
((x)37108) 221 1I8pIO
Bulsealdsp Ul 1OS 0} ‘1apJo Buisesloul ul X JO SJUBIBIS 8y} SHOS (X) 3x0S
X O SJUBWIAIA By} SasJanal (X) aex
X JO JUSLUS|S 1S9][WS 8Y} JO Xapul 8y} SuJnial (X) uTw* Yo TyM
X 10 JUBWIA| 1531346 B} JO Xapul 8y} SUINja) (X) Xewr* Yo TyMm
Co_um_—._n:cm.c(_ pue uolleps ered
Lo Jo senquie Jo 1s1| 8y1 18s 10186 (Lqo) seanqraiae
X JO UOTUM g)NgIIIe aY1 18S 10 180 (Yo TUMm‘x) 133%®
X JO 3INQLIIR SSB[D 8y} dAOWSR) (X) sseToun
uSserohw, -> (X)SSeTd !X JO SSejd 9y} 1as 10 1eh (x) sseTo
SuwN|oJ Joj "pI (X) TODN pue (X) Toou
X1Iyew Mol
-9U0 B SE 10JI9A B SJeal) Ing awes ayl SI (X) MOYN ‘SMOJ JO Jaquinu (X) moxu
103[q0 Ue JO SawWeu UOISUBWIP 3y} 13S 10 9A3LIRY (X) SeuretwITp
(z'¢)o —> (x)wrp 193[qO UE JO UOISUBLIIP B} 18S IO BABLIY (X) WTP
X Ul SJUBWIJ9 JO Jaquinu (x) yabusT
(sT) spoyasw asn ‘11| 819)dwod e 4oy ‘adAy Joy 1sa) * * *
‘ (x)I930eIRYD ST ‘ (X)XoTdWoD ST ‘ (X)OTIdUMU ST
‘(x)ourexz-ejep st ‘(x)Lexxe st ‘(X)TINU°ST ‘(X)eU'ST
uolrew ojulajgel e
(s®e) spoy3su asn ‘1s1| 919]dwo9 e 10} ‘adA) aAu0d * * *
‘ (x)a93oeIRYD SE ‘ (X)xX9TdwWoD 'se ‘ (X)1eoriboT-se
‘(X)DoTI9UMuU-se ‘(X)oweaj-ejep-se ’(x)Lexxe-se

UOIS JOAUOD 3Rl e

] Sweusx

4SURU, paweu uwnjod [[,aweu,]]x

(Buimoyjoy ayy snid Buixapul xiyew) sawely eyep Buixapu|
WOURU, paWeu Mol [/, sueu,]x

€ pue T Suwnjod [(¢’1)2’]x

{ uwnjoa L%
T MOJ ['T]x
£ uwnjod ‘T mol 1e Juswald [Cr1lx

saoLew Buixapul
I SwWeugx
4 SURU, paWeU 11| 8y} Jo Juswals [[,oweu,]]x

111 83U} JO JUBWII3 U [fu]l]x
U SJUSWad YHM Isi| [u]x
s1s1] Buixapuy

195 UBAIB By} Ul suswdd [(,2Y3, ‘,pue, ‘,e,)0 SuTy XX
G pue € U9aMIaQ SIUBWIIJS || [6>%x % ¢ <x]x
€ Uey Jayealb syuawia|a || [e < x]x
4 SURY,, PaWeU JUsWa|d [usweu,]x
[(z' w 1)o]x%

X

X

sjuawia|a ai419ads
pua 8y} 0} T+U WO} SJusWals [(u:1)-]
SIUBLLIBID U ISI) E 1]
WBWS3 U 3y Ing |[e [u-Tx
Wawaa ,u [u]x

$10399A Buixapu|
elep Buloe.aixe pue buniig
suwnjod Ag "pr (* * *) PUTAd
slay1o
pue ‘sawely elep ‘sadlew Joj smod Ag sjuawnfie suiquiod (* *) puTqx
$1019€} 10 S10}
-23A palddns 8y JO SUOITRUIQUIOD || WOJy dwel) elep e () PTIb - puedxe
suolyeal|das o Jaquinu ay}
SI U pue ‘S|aAd] JO Jaquinu ayl SI ¥ S|aAd] 1y} Jo ulened ay) BuiAyl
-0ads Aq (s1010e}) S|ans)| arelauab (u:T=sToqeT ‘}Y*u=yjbus ‘3 ‘u) 16
10)0B} © SE X J0JO9A B S9POJUS (=STOAST ‘X) I030®3F
9194231 X JO SJUBWIAJD ‘XLJeW (=TODU‘=MOIU’X)XTIjeu
yBnoua Buoj 10U SI X 41 8]9AIBI X JO SJUBWIAYD : (7 % ‘€) O=wTp
suoisuswip Apoads (x elep yum Aede (=wTp’x)Aexxe
S(T€=0",TUu=q"’(Z‘1)0=R) 3IsTT
‘Sjuswnble paweuun JO paweu ayl JO 1SI| B 8leald ("°*)astT
1596u0] a1 4o yibus| 8y} 0} pajaAdal aJe SI0}8A J8HOUS
S0T=U" (uwPu ‘uOu ‘ubu ‘wBa)O=Ud '§: T=4) SwrII B3RP SUswnfise
paweuun 1o paweu ay} jJO awel elep B desld (°° °)swexz-ejep
€€22T TSI (z=yoes’(g’z’1)0)dex
(z'(g'z’1)0)dea !sawnl yoes X JO JusWS
‘sewtl x geoldas (sewr3 ‘x)dex
sdooj
‘1 sojelausb (x=BuotTe)bes
yibua| pauisap saiyioads
=y3busT ‘Juaweloul saly1oads =Aq agusnbas e sejessush (o3 ‘woxz)bes
«S§'V'€'2,, SI T + 1T ‘Aiond Joyesado sey ., ‘9ouanbas e sajesaush o3 :woxz
10}98A BUO 0JUI SJUBLUBID
Ile Buruiquiod sisi| YyBnoayy SpUadsap ANYI=SATSINOSI Y)IM ‘10JIBA
e Bulwioy 3 negap ayl yum suawnbie auiquiod 0} uonauny dLBusb (** *) D
uollea 0 ele
*SJewloy a1y Jaylo Bulpeal 1oy Aad3su ‘'GIpY “TiHX Sebexoed 8ag ©ToRI0Y
pue ‘T0sbad “TOSANM ‘TEd ‘09a0d sabexded 99s ‘uondBIBUI dSEgEIRp 104
Amzum@Emc.Hou\=u/=ugwm~=vumoggﬂﬂo=~wiagmu.muﬂu3
asn ‘|aox3 4o} pJeoqdi|d 8y} 03 9|qel © S}M O
(ypae0oqdTIT0,)WITSP ' PESI -> X
asn ‘|adx3 woJy pa1dod ajge)y e peas 0] *,PIeoqdITo,
= uoT3dTIOS8p YYM pasn g OS[e Ued UOKJBUUOD 3Jl} 8yl ‘SMOpUIM UQ
'sa|qelieA o pue ‘sajiy paddiz ‘sadid ‘saj1y apnjoul Ued suondsuU0) ‘Indino
10 Indul pJepuess ay suesw , ,=2TT3F "UOIIBUUOI e 10 3|1} & Buiweu BuLis 18}
-JeJeyd € 8q USYO Ued SIY] Juswnbie STTJ e aAey suorouny O/l 8yl 40 SO
()3{uTs [un ‘sTT3 0} INdINO (STTF) qUTS
ndui 19ayspealds 1oy AJ393.1100 paubije siapeay uwnjod ay) 1eb
0} JOPEAY UWN|0d YUB|Q B PPE 0} ¥N=S=weu -’ Tod asn ‘sanfen Buissiw
1oy Buins ayy s1 eu ‘ojeledas aull-Jo-pus ay) SI Toe ‘lojeledas plaiy
ay1 si des (,) sajonb Ag papuno.Ins aJe suwnjod J0}ae} JO J3)drIeyd

A

't21€2TH
-]o .yoes,, Jeadas 0} =uyoes asn

103 Joj |nyasn :(buote)yzbusy ‘7

‘AN¥L S| @30nb J1 ‘swely eyep e 0} BuiaAuod Jeye x sjuud (u w=des
‘gNJL=seureu’ 70D ‘HNYL=SOWRU MOI ', w=9TTJF ‘X)8Tqe] 93 TIM
Bunuiid Anaid 1o 198[qo o Ue Jewoy (° * * ‘x) 3ewzoz
5199[q0 JuBJaYIP 40} SPOYISW JUd
-1aj41p 9AeY Ued 1 Butuesw ‘oridusb ‘suawnbie sy sjuud (¢ ‘) 3utad
sjuswinbue usamiaq Jojesedas Ja1oeseyd ay} I des Liajoeseyd
01 Bu121209 Joye sjuswinbue ayy siuld (u w=des ‘,,=oTT3 ‘- °°)3ed
$108[q0 |[e Senes (S9TTF) obewt saes
Tewloy Aseulq yuspuadapul
-wuoeld ¥ax ay ur () s108lqo paiyloads ayy sanes (* t * ‘OTTF) oAeS
SpIay YIPIM-pax1y 8yl JO SyIpIm ay3 Buialb ‘10199 Jabaiul ue si
SUIPTM ! BWeILBIEP, B 01Ul BIEP PANRLLIO } YIPIM Pax | O 3|ge) & peal
(ISTYd=ST se’,yu=des 'EgTIVi=I9pesy ' SYIPTM ‘ST TF) JMJ 'pPedl
Sa|1} paywi|ap-qey Buipea 1oy
19S S)neyap Yum ng ‘pl (EZNYL=I9pesy’,SweusTTI,)WTTSp pesa
3|1} paliWIjap-ewwod Buipeal
10} 188 S)nejap Yyum ng ‘pl (AaYL=Iopesy’,SweusTTF,)ASD pesx
S13y10 pue ‘Juawieal) N ‘Buiwreu mod uo suondo oy djay
ayy 9as ‘ejep Buipea. a10jaq saul| u diys 0} u=dT¥s asn JuBWIWOI e
se pajaidiaiul Butaq wody . #.u JudAdId 0} , ,=TBYD * JUSWWOD Jsn S10}
-0®} 0] PaloAUO0d Bulaq WOo1) SI0J08A J810eIeYD JUBASId 0} ANYI=ST " s®
asn {salleu UWN|O JO Japeay B Se aul| 1SJ1} 8y} peal 0} AN I=Ispesy
asn ‘aoedsayym Aue si ,,=des Jojesedas 1nejop syl ‘M WOJY ey
Blep ® S9Jeald pue Jewloj a|ge} Ul)iy e Speas (STTF)STqel - pesa
safexjoed uo-ppe peo| (x) Lxeaqrl
S19S ejep payloads speo| (x)e3zep
SABS U)IM USNILIM S1aserep ayl peo| () peoT
ndino pue 1ndu|
e Sse|o
10 $198[q0 8|pueY 0} SPOYIBW By} |[e SISl| ((B) sseTo=sseTd)spoyjzsu
® JO Spoylaw €S SMOYS (®) spoy3jeum
A1010841p JUBLIND Y} Ul S8} MOYS () ITP
yred yoJeas ay ul ajqereA yoes Joy ()ais () I3s-sT
usaned
B U0 ydJess 0} ,3ed,=3ed Ayoads ‘yjed yosess sy ul s39sfgo moys () ST
© 10 S8sSe|0 JualayIp Jo} suonesado Jualtaylp sey 1 Bulueaw o1eusb
S111Ing Arewwins [eansiess e Ajjensn ‘e jo Arewwns,, e saAlf () Axeuums
103[00 Y Ue JO 8INJON, IS, [euIalul 8y} Aejdsip (e) x3s
djey 40 UoISIeA JNLH 3yr Lels () 3xe3s-diey
a1doy,, uoissaidxa Jejnbal ayy
Buryorew 3s1| yauseas syl ui s19s8(qo | Jo saweu a8y} (u2Tdo3,) sodoade
wiaysAs djay ay3 yosess (uoTdol,) yoaess-disy
‘pI ordo3 e
01do3 uo uoneuswnaop (otdolz)diey
*UOITEIUBLINDOP BUIUO 3ABY SUOIIAUNY Y ISON

dpy buneo

*(uoissiwuad

YlM) sipeled [anuewwg Aq sieuuifeg 10j Y WOl [eLislew sapnjoul "UoISIan
1S9)e| puR 824N0S 3y} o) Bio'pedy'mmm 8as urewop a1jgnd syl 01 pajuelo)
£0-TT-700Z wod-oead-1ide@uoys} ‘Ov3d 14d3 ‘Hoys wol Aq

pIeD W RPY o

(uesw=un3 Jnejap Aq) £ Jo onsnels Arewwns ay}
9500y92 0} Smojje un uondo ayy {(saAInd JUaIaKIP) 73 JO pue (SIxe-x
aU) UO) T3 JO SanjeA sy} 03 19adsal yim (SIXe-A syl uo) 4 Jo suesw
ay) s10|d ‘si0)oey ale zI pue 13 1 (K ‘z3 ‘13) 3o1d-uor3ioeasiur
Z JO sanfen
10 |eAJBIUL JO BNJBA Ydea Ioy A pue x Jo 101d sleuealq (z | £ x)3o01dod
(saz1s ajdwies |jews Joy () 30Tdxoq
0] 9AlJeuJs}e UE) aull B U0 X JO sanjen ay} jo jo|d (x)3o1ddraas
swiod Jo Jaq
-winu 8y} sjussaldal Jaquinu [e3ad YoIym SISMO[) Se UMeIp aJe Sareulp
-1002 Je[iwis ynm sjutod ayr ing () 3otd uey pi (£ “x) 3oTdxsmoTIuns
10]d , SISIym-pue-xoq,, (¥) 3oTdxoq
Jeyd-aid Jenasd (x)etd
(uwnjoa-Ag-uwinjod pue aulj-Ag-aul|
sjo|d pexaels) 10jd 10p puejan’|D e S10|d ‘awel) Blep B SI X JI (X) 32BYDIOP
sleq
|eIUOZII0Y JO} ASTYA=2TI0Y 3SN X JO San|eA ay} Jo weibolsiy (x) 3otdaeq
¥ J0 sa1ouanbaly ayy Jo weibolsly (x) IsTyY
(s1xe-A 8y} uo) £ pue (sIxe-x ayj uo) x Jo jojd ayertenlq (& “x)3otd
SIXe-X 9y} U0 palap.o (Sixe-A ay) uo) x Jo sanjea ayl jo jojd (x)3o1d

Bumoid

"SWT33I3S¢ 998 "Indul uo
leuondo a.e Ing INdiNo uo pasn aq [IM A3y} UMOYS aJe $04azZ Buipes| aIsaym

‘(a1qejrene 1ou 1 Axdwia) Buis Jsyoeseyd e se auoz swiy (‘Ajuo indino) z%
'JO 1S9M SINOY 8 S1 0080- ‘YIIMUBBIS) Woly 189S0 (*Ajuo Indino) zs
"AINUad YIIM Jeaj A%

'asn 3,uoq *(66—00) A1NUd INOYNM JeaA A%

"T %9am Jo T Aep se AepuolA st} aUp ((EG—00) X9 1S

(0 st Aepuns '9-0) Aep>aam #%

"T Moam Jo T Aep se Aepuns 1si1y 8y} {(£5—-00) %99 0%

*(T9—00) Jagquinu [ewi2ap Se puodas S3

Jojedlpul Nd/WV 9%

"(65-00) BINUIA 1%

"(21-T0) WO ws

"(99€-T00) 489k Jo Aeq [

"(¢1-10) SINOH 1%

"(€2-00) SINOH H

(T€-T0) Yuow ays Jo Aeq p%

"3WeU YIuow [Ny pue pajeinsIqay €% ‘as

‘aWeu Aepyaam [Ny pue paleIAsIgqaY Y3 ‘BS

:8Je STew.I0) UOWWO0I SWOS "UOISISAUOI 10§ Jew oy

® A319ads 0] Juawnbire puodss e 1dadde asayl .. TZ-20-T00Z., SI Jeuwloy}

Bulis ynejep ayl uonejussaidal Buis © 0} SLBAUOD (3IP) 1BWIOT

'SSe|0 9AI103dsal 8y} 0} MBAUOD (S)3IDXISOd°Se pue (s)°@3eq-se
‘uoayo afexoed osfe

89S "UOI1BLIOJUI BIOW SBAID SSSSBTDSWTIS3Rd: "— PUR + SMO|[e 0S[e 93ed

‘Inyasn ale ()2uT3FITP pue ‘()bes (< 69) suosedwo) ‘seuoz swiy Bul

-pNjaUl ‘SawI} pue S81ep Sey 30X IS0d "SaWi} INOYIIM Salep Sey 23ed SSe|d ay |

Sowll| puesaleq
S1910BJRYD JO J3qunu (X) xeyDU

2Tqe3 Buowe x Jo Sjuswa|a sy} 1oy saydrew [ered (1qed ‘x) yojeud
10100/ [€0160] € SUINIBJ ING Pl TRl FUTH X

21qe3 Buowe x Jo
S)uaWa|a 3y} 40} SaYdlew 111 JO suonisod ayl Jo J0J0BA e (9TqR3 ‘X) Yyojeu
asealaddn 0] LeAU0d (x) x@ddnog
9SBIJAMO| 01 BAUOD (X) I9MOTO3

'90U8.1INJJ0 18414 Y}

saoe|dal Ajuo Ing awres ays s () ans Buiyorew uoissaidxa Jejnbai Aq
pauIWIRIep Saydlew Jo Juswage|dal (x‘juswederdsa‘/uizeijed)qnsb
x8b31¢ 99S !X UIYIM uzs3jed 0] Saydyewl Joj Saydless (x ‘uxsijzed) deab
3171ds Bulsgns ay) 01 Buipiodde x Jijds (3T1ds ‘x) 3TTdsaas

snTea -> (dols ‘3xe3S ‘X)I1SONS SE .cm_m
-Se 0S| UBd ‘10199A Ja)orleyd e ul sbulisgns (doas ‘3ae3ls ‘x) a3sqns

synsal , pasde||09,, aresedas 03 Buils jeuondo ue

sI =osdeTT00 {(3neyap ayi si adeds a|buls e) swisy ajesedas 03 Bulils
ay} s =des ‘1a)oeseyd 03 BuIlIBAUOD JaYJe SI0J0BA 8Jeusieduod (°* *)e3sed
sbulig

(..Buoy,.=uonoaup) 1o (,8pIM,,=UoI8IIP) 8sn

‘spJodaJ ajesedss Ul syuswiainseaw pajeadal ayy yum jewoy buoj,

pue pJodaJ awes ayl Jo suwnjod alesedas Ul Sjuswainseaw payeadal
YNM Jewuo) 9pIM, Usamiaq awely elep e sadeysal (°° - ‘x)edeysex
()¥oe3s Joastanul (*°° ‘x)3oe3sun

uwinjod aBuIs e ojul IS1| IO dWel)
BlEp B Ul SUWN|0 alesedas Se a|ge|leAe Blep WUojsues) (*°° ‘x)3oe3s

% ul

sa|qeldeA ay se Buo| se yoea ‘syuswia|a Buidnolb o 1s1| e s1 Aq ‘wioy

JUBIUSAUOD B Ul }INSaJ 8y} SuInjas pue ‘ydes 104 SoNsels Alewwns
sandwod ‘sjesgns ojul x awel) eyep syl syjds (NNd ‘&q‘x)e3ebeabbe
510108} Bu1A}ISSR|9-SS040 WUy 3]ge) Aousbunuod e (x=ejep’q e)sqelx
S3lLBU MOJ J0 SUWN|0I UOWWOI Ag Sawel) erep om) afisw (q‘e) esbasu
XAANT AQ panasqns e3ep awely elep 0} NnJ Ajdde (NAJ ‘XEANI ‘e3ep) Lq

XHAANT S8Xapul Yum X Aq
uanib Aele pabbed e Jo 189 ydes 0] NnJ Ajdde (=NA4d ‘XFANI ‘X) A1ddes
X 1S1] 8} J0 Juawa|a ydes 03 NnJd Ajdde (Nad ‘x) A1ddet

X 40 (X"aNT) suibrew 03 NA4 uonouny e BuiAjdde
AQ paurelqo sanjen Jo Isi| 1o Aelle 1o 10109A B (=NNJ ‘XHANT ‘X) A1dde

BuIsse00 1d elRp PROURAPY

SuWN|0d 40} Pl (X) SUBSKHTOD

SUBSW MOJ JO UOISIBA IS8} (X) SUBRSHMOI

SUWN|09 J0J Pl (X) SWNSTOD ' (X)WNsTOD
UOISIaA

191se) @ SI (x) sumgmox 493(00 a)1]-X111eW € 10 SMOJ JO WNS (X) umsmox

© JO 9SJ9AUI XLiJeW (®) @ATOS

X 10} g = X $x% ©SOA|OS (d‘e)dATOS

uoedNdiNW Xjew %*%

[euoBelp (x)Betp

asodsuesy (x)3

Sadllle N

‘lenowal (WN) erep bul

-ssiw A}193ds 0} ISTYA=wI * eU Jajaweled |ed160] e aAeY SuondUN Yrew Auely
$3118S B d)eLIeAIlNW © JO Ajaresedss sallas Yoes 0}

10 S3LIAS AW} ajelteAlun e 0} Buuialjy Jeaul| saljdde (I93TTF ‘X) I93TTI

X11JeW © JO UWN|0d Ydea JO | 44 (¥*) 3FFau

Aelse ue JO wiojsuel] JalIN04 Ise4 (X)3FF

saouanb
-8S OM] JO SUOIINJOAUOD JO SPUIY |eJanss ay) aindwod (L ‘x)saToauod
aebnfuod xajdwod (x) Luop
Jaquunu xa]dwod ay) Jo suelpel ul a|bue (x) bay
awes ay} S (x) sqe sninpow (X) PO
ued Areuifewn (x)wx
Jagquinu xajdwiod e Jo ued [eas (x) oy
suonouny ,18s, (39s’T9) jusweTa ST
‘(K’x) Tenbejes ‘ (A’x) 33TP3es ‘ (A’/x)3D9sae3uT ‘ (A/X)uoTUun
WwiNWIXew ay) 104 Pl (X) Xeummod
wnwiuIW 8y} 104 Pl (¥X) uTuIMD
10npoud ay1 Joj "pi (x) poadumo
[T1% 0} [T]%X WO WNS 8y} SI JUBWSIS YIl YIIYM J0J08A B (X) wmsumod
winwixew ayy 4oy ‘p1 (‘& x) xeud
T4
‘[T]X JO wnwiuiw 8yl SI JUsWad Yl Yydiym JoyoeA e (** * ‘A x)utwd
(dngr=2TeOS ‘ANYI=133UsD
}Ineyap Aq) ISTvA=2Te0s AJUo 8dnpas 0} ‘ASTYA=T23u=0 uondo ay}
asn AJuo Ja)usd 0} ‘eyep 8y} S8oNPal pue SIBUBI ‘XIjeW e SI X JI (X) @Teds
3seq 9seq YUMm x Jo wyisebol syl saindwod (eseq ‘x)bot
S|ewW198p U 0] X JO SIUBWIAIS 8y} SpUnoJ (u ‘x) punox
Sale.y eIep 10 Sadlijew ase
A8y} JI X1JyewW Uo1e|81102 10 ‘A pue X USBMIB] UOIIe|3110D Jeaul| (& “x) x0D
SalUBLJ BJep J0 SAOLIJeW ale Ay} 41 4 JO 9SOy} puUB X JO SUWN|0d
3y} USaMIBQ J0 ‘A pue X USAMISQ 9JUBLIBAOD (& ‘x)n0D Jo (& ‘X)aea
(101007
B S| X JI T) 9WeJy BJep € JO XUJew € S 1 JI X JO XJew UoIe|allod (x) xoo
X J0 UOIBIASD pJepuels (x)ps
paYeNdled SI X1Jew 89UBIIBAOJ-8OUBLIA B} ‘SWel) Blep € 10 XIjew e
SI % J1 (T —U U0 paleInofed) X JO SIUBWSIS 3} JO BOUBLIBA (X) A0D IO (X) IBA
X JO SJUBWIAIA 8y} JO SHueS (X) uex
M wwr_m_w>> r_u_>> X ho ueawl :b ~unv ﬂmwﬁ.ﬁmud—mﬂw?
(T'527'5'5Z*0 01 SNeYEp) Senijige
-goud uanif ayy 01 Buipuodsa.liod sajuenb sduwres (=sqoxd’x)eTT3uenb
X JO SJUBWIAJA 8} JO URIPBW (X) ueTpaw
X JO SJUBWIAIS 3y} JO UeBW () uedw
X JO Sjuawiala ay} 4o Jonpoud (x) poad
X 10}99A JO S3oUBIBYIP pajesdll pue pabbe| (%) IFTP
X JO SIUBWIAJA 8y} JO WNS (x) umns
((x)xew ‘(x)utw)o usy) 'pl (x)sbuex
¥ JO SJUBWI3JS 8y} JO Wnwiuiw (x) utur
X JO SJUBWIIS 8y} JO WNWIXew (x) xeur
dxs/gTbo1’/boT‘zZueje‘/ueje’sooe‘urse’/uel ‘sod‘uts

yren

9]ge) [eulbrew JO UONJLIY S SaLIUB 9]ge) (=uTbrew’x)oTqes -doxd
juawade|dal yum
a|dwesal 0} SMo|je ENUL = oeTdaa uondo ay) ‘X J0J09A 8U Ul Sjuaw

-89 22T Juawade|dal oYM pue Ajwopuel sjdwesal (2zTs ‘x)sTdues
ubis snuiw e Buisn paddoup 1o 1dey aq 01 sa|qeLeA ay) saAIb 10Tes
uondo ay} ‘awrely erep e st x 1 (0T > TA$X :suosuedwod AjeardAy

0t) BLIBIID 0] 303dSa) YNM X JO UOIDBISS B suinas (°° ‘x)3esqns
(s1010e} 10 siabayul 10y Ajeo1dAy)

X JO SON[eA SJUBJIBKIP Yl JO SIBqUINU 8Y} YIM 3[gel B SuInjal (X) @Tqe3d
passaiddns syuswaja ayearjdnp ayx

YHM g 393[qO Jejiwis e suinjal ‘wiel) BIep e 10 J0JIBA B S| X JI (X) enbTtun

101d Jone0s pg (zB+*16|&+x_z)pnoTo
jo1d aoepns pg (ZB*TH|A*x_z)sweigsatm
(y1Bus| awres ay Jo [|e aJe z pue A ‘x) A pue x Aq usAIb sajeulp
-1000 3} 1e Z JO Sanjen 8y} Jo 1ojd painojod (z6+16|&*x_z)3o1dsasT
10[d s81eu1pI009 |9]jeted (x_) ToTTexed
sjo|d ajeneAlq Jo Xujew (x_)wotds
.S|9A3], O} aARY 1SN NG 10}9R) 10 ‘48}oRJeyd ‘OLIBWINU 3q
Aew £ ‘auswinu aq Isnw x ‘suonnguisip omy atedwod 0y sajuenb (x_&) bb
10108}
e 8 Aew A& ‘ouawinu aq isnw x ‘j0jd uoisuswip ajbuls (x.4&) 3o1ddrags
uonnquIsIp [eanaio
-3y} © Japun pajoadxa sanjen ayj 0} 10adsal Yim x Jo sajiuenb (x._) yjewbb
10]d , SI9SIym-pue-xoq,, (x_.X)301dmq
X JO sa19uanbaly 8y} Jo welbolsty (x..) weabozsty
j01d suonouny Alisusp (x_)3oTdi3Tsusp
(uwnjoa-Aq
-uwinjod pue aulj-Ag-aul| siojd paxaels) joid 1op puejans|) (x.4&)3otdiop
X JO 8soy} 0} 30adsal Y & Jo sanjen ayy jo weibosly (x.4) 3xeyosaeq
(sanjeuonouny Auew yum) syord sjenrenlq (x_4&) 3o1dix

solyde B (Si|pJL) donreT

((-+- ‘z=opTs)sixe
UM uorouofuod ul [ngasn) umelp Jou Ing 18s Si SIXe-A ay} ,u,=3xek J| 3xek
(" ‘1=0pTs)stxe
YJIM Uuo13ouofuod ul [njasn) umelp Jou Ing 185 SI SIXe-X 8y} , U, =3IXex J| 3xex
(5 0-=To31Iney8p Ag) 1xa1 Jo aul| e Jo ybiay sy Jo
UOI3oEI4 B SB SXE 3U} UO SyIew-xo13 o yibua| syl sai19ads yaiym anjea e 103
umelp
s pub e T=323 41 301d 8y} 4o WBIBY JO YIPIM 3Y) JO 1S8|[eWS 8y} 4O
UOI10BJ4 B SB S3XE 3y} UO SyJew-xo1 Jo yibua] ayl sai1oads yoiym anjea e 303
Jewixew :,u,
‘arenbs 1, s, ‘uoifas Bumold ays Jo adA1 syl saiy1oads yalym Jaroeseyd e £3d
S|0quIAS pue sIxa} 0 syutod ul 8zIs 8y} S|0U0d Yatym Jabsjul ue sd
(i BB XX - o+, ASZ y¥Z OFEZ 022 OIZ e0Z @6l 8L V.l @91
mSl ©yl ®EL @2k R @0L 6 k8 WL A9 O§ Xy +€ ve Ol
wu UIYIIM J3)0eIRYD 3]BUIS
Aue 10 ‘Gz pue T usamiaq Jabajul ue Jaylle ‘joquiAs Jo adAl ayp sjosjuod yod
MoJ AQ umelp ale sjojd 8yl Ing ‘pI mox Fur
suwnjod
Ul UMeJp uay} ale sjojd 8y} ‘suwnjod Ou pue Saul| IU JO Xjew e se
mopuim o1ydelt ayy suoniued Yyolym (ou“au)d Wwioy 8y} JO J0JI9A B TODFur
(T°Z ‘1'% ‘T°% '1°G)0aJesanjeAlneyap ayy ‘ (Iubta
‘do3 ‘3387 ‘wo33oq)o wioy syl Jo ydesb ayy Jo Jspioq ay) pue
SaXe 8y} Usamiag adeds ay} |0JJUOD YIIYM SenjeA JLIBWNU ¢ JO J0JOBA B Teu
T J|Neyap ‘saul] JO YIPIM 8} S|0JIU0I YIIYM JLISWNU B PAT
2=£3T uey) 108448 auwes ay)
aney |[IM .77 u=A3T 9|dwexa Jo} ‘Syue|q 8y} pue Suswaja umelp ay}
10 ‘sjaxid Jo swutod ur ‘yibus) ayr Ajeaneulsye sai1oads yotym (6w
pue . 0. U2aMmiaq) siaroeteyd 1ybia 03 dn jo Buiis e Jo ‘,ysepomi,
9 ‘uUysepbuoT, G ‘,USBPIOD, p ‘wPoIIOP, € ‘,PaUseP, T
‘uPTTOS, :T) Buwis Jo sabsjul ue aq ued ‘saull Jo adAl syl sjosu0d A3t

(rearuan :¢ ‘saxe ayy 03 Jejnaipuadiad :z ‘[eIuozuIoy T ‘saxe ay}
0} |9]eted :0) S|9ge| SIXe 8U} JO UOITRIUSLIO B} S|0AU0I YdIym Jabajul ue seT
qns - 3juog .CﬂmE. Juog
‘qeT3UOF ‘STXR"JUOZ :ale Jay) X0 Jo) Se ‘(Solen pjoq b ‘plog
1€ ‘SoIell iz ‘lewdou :T) 18} 4O 9JAIS 8yl S|0JIU0d Ydlym Jabaul ue 3uog
qns - 102
‘UTeW" TOD 'qeT’TOD ‘STXE"TOD :3Je 8lay}) X0 o) Se ! ()moquriex
pue ‘()Aexb ‘()asy ‘()gba 88s !,d999qd4, SB IO () STOTOD 89S
4SNTq, ‘uPoT, SaWeU JOJ0I SN ‘Saul| pue SJoquiAS JO 10]02 8y} S|0AIU0d TOD
ans - x22 ‘813-gns ay} pue
‘utew " x9d ‘) 8y} ‘aqeT X930 ‘s|age| SIXe 9y} ‘STXe X230 ‘Saxe ay}
UO SJ3quINU 10} |0J1UOD SWES 3y} aAeY SJalawesed Buimol|o) ayp ey
-ap 8y} 0 10adsal Y)Mm SJoquiAs pue SIxa} JO 8IS ayl Buljjo1Iuod anjeA e xeo
UMBIP 10U SI X0q 8y} ,U,=A3q I
-1eyd BuIpuodsalI09 8y} 81 SY00| X0q 3Y3) u [NO & Ou'ulu‘uTu
0, :aIe sanjeA pamol|e ‘10]d ay1 punole umelp xog Jo adA} ay sjoauod £3q
(() s70702 yym pakejdsip si sIN0J03 3|qe|leAR 2G9 U} JO IS| BU}
s henTg,=bq ‘,pea,=bq : 'xa) punoibxoeq ayl J0 IN0J0d 8y} salydads Bq
(paynsnl-ybu T ‘panusd G 0 ‘painsni-ys) 0) uonealnsnl 1xa} sjouo0d Lpe
"spuewiwod Bumoyd o3
sla1aweled se passed aq ueo Auew : (- - -) xed yum A|jeqob 19s aq ued asay L
sRPPWe ed poiyde o
(wUuu=2dA3) umelp s1 Buiylou ynegep Aq (" *) siarawered
a1yde.b jeuondo 03 19adsas yum (. Tu=2dA3) saulf 4o (.d,.=2dA3) sjoq
-WAS smeJp os|e ‘asnow ay} Y 1o1d ayl uo Sawil u paxdl|d sey Jasn
3yl Jaye (A°x) sareulplood ayy swinjal (*** ‘wuy=odi3 ‘u)IxojzeooT
SaUI| [BIILIAA [[BWIS S SIXe-X 3y} U0 X Blep ay) smesp (x) bnx
UMBIP 8J. SYJew-X21} 81aym (Sareulpio
10) Bss190e ay) saAlb (jeuondo) 1024 (%) yBu 8y uo Jo ‘() dor ayy Je
“(2) Ya| 8u UO ‘(T=SPTS) LLIONIOY B} I8 SIXE UB SPPE (3094 ‘OPTS) STXR
a1-gns e Ajjeuondo pue ajn e sppe () ®T3IT3
pusbs1 Ag usnIb sjoq
-WwAs auyp ynm (4'x) jurod aup e pusbol ayi sppe (pusbsT ‘A& ‘x)pusbat
£ pue x Aq
uanIb sareulplood yym siutod ayy Buiqui) uobAjod e smelp (£ “x) uobA1od
AlaAnoadsal ‘z4 pue ‘14 ‘zx ‘1% ale sywi doy
pue ‘wonoq ‘Wb ‘Ya| yorym sjbueldalesmelp (z& ‘zx ‘TA ‘1x)3oex
Lqo-wt Aq uanlb aul| uoissaifial ay) smesp (Lqo-wT)duTTqe
X BSSIOQE 1B 8UI| [eJIHBA B SMRIP (X=A)SUTTJe
& 81euIpJo 1€ BUI| [BIUOZLIOY B SMEIp (L=1)sUTTqe
e 1daoJalul pue g 8dojs JO aulj B SMeIp (g ‘') dUTTqe
peay modJe ay} Jo abpa
3y} 01 MOLIe 8y} JO Yeys ayy wouy ajbue sy} S|0u0d STbue {c=sp0od
11 Y10 Jo ‘T=opod yI (TA‘TX) sulod e ‘z=opoo §1 (04°0%) sjulod 18
SMOMEe YIIM ‘pI (Z=epod ‘pg¢ =oTbue ‘TA ‘Tx ‘0L ‘QX)smoxre
(141%)
swiod 01 (04°0%) syutod wouy seulj smelp (TL ‘Tx ‘0L ‘0x)sjusubes
eaJe Bumold ayy wouy aul|
3y} sal10ads suTT {(MOJaq () sTx® 8as) epTs AQ palyloads uibrew ayy
ur 3xe3 Aq USAIB 19} sppe (**° ‘0=SUTT ‘€=9PTS ‘3IX93)3IxS3W

(ssweu
‘A x)axe] !(,u,=edhy ‘A ‘x)107d sl esn |ealdAy e (£'x) sajeu
-1pJ00d Je sTeqeT AQ USAIB 1xa) sppe (*°° ‘sTeqeT ‘A ‘x)3xe3
Saull UM INg 'l (& x) sSUTT
(pasn aq ued ==d43 uondo ayy) switod sppe (£ “x) sutod
spuewwod buio|d pre|-mo
(3uo4 Jaj[eWS B Ul UBTILIM) 3[311-gNS =qns
J1a]oeJeyD 3pOW JO 3|qeLIBA B 3Q ISNW ‘3J}} UleW =uTeur
18)0BJBYD 8POW JO SBqeIIeA 8 ISNW ‘SeXe Y} Sejejoule =qeTi ‘=qerx
(%) obueI=wTTX JO (0T ‘T)O=WTTX YUM 3|d
-WIexa 10} ‘saxe ay} Jo suwij saddn pue Jamo| ayl sayioads =wTTL ‘=wTTX
Saul| |e91BA 3U}
10 wonoq ayl Aq pajuasaldal are elep ayr Ing ‘Pl :uSu ‘SaUI| [BIILBA
ayy Jo doy ayy Aq pajuasaidas ase eyep ayl ‘sdels .S, ‘Saul| [BI1AA
“uUa ‘Sjulod 8y Jan0 are saul| 8yl INg Pl 1.0, ‘Saul] Aq paidsuuod
sutod @9, ‘saul] tuTau ‘stutod :,d, “0]d Jo adA) ayr saiioads wdu=o9dX3
X0Q 8} pue Saxe ay) Melp 10U S0P FSTV.J I ZNYL=SoXe
(s1s1x® 11 1) 8uo snotaid sy uo 1o1d sy sesodiadns INIL JI ISTYA=pPe
:suonouny Buimold Auew 0} uowwod ale sislsweled Buimol|o) 8y L
(Cqo - pow)
|Jopow uoissaifal e Jo s1oaye (jenued) ayy Jo 10jd (Lqo-pow)zorduasy
syuawinBue Areyuswsajddns Aq paijioads ase *** SIN0JOI ‘sazZIS YdIym
(..s101dx0Q,, J0 saipwoW.aY) ‘siels ‘sa|fueloal ‘sarenbs ‘saja419) sjoq
-WASs ‘A pue x Aq UaAIB Sa1eUIPI00d Byl Je ‘sMelp (* ‘A ‘X) sToquis
syuawiBas ay3 Jo syibus| ayy
ale SUWN|02 8y} pue Jels e Ag paiuasaldal SI X JO MOJ Uoea aJaym Jels
© 0 syuswibas ylim yde.d e smelp ‘awel) elep e 10 XLJeW B S| X JI (X) sae3s
(panojd aue e1ep jenioe) aandadsiad urng 'pi (z ‘& ‘x)dsaesd
(pamo|d aue eyep [enioe) SIN0jOd yuming 'pi (z ‘& ‘x)ebewt
||2M Se umelp S1 $IN0J0d 3y} 40 puaha] e pue ‘painojod
aJe SIN0JUOJ B} UsaMIaq seate 8yl Ing pl (z ‘& ‘x)ano3juod peTTT3
(pamwo aq Aew & pue x) ((£)y3busT ‘(x)y3zbust)o=(z)wrp
Jey) 0S XLyew e aq ISnW z pue SI0}8A 8q Isnw & pue x ‘(sannd
ayr mesp o1 pajejodisul are eyep) 1ojd Jnouod (z ‘& ‘x)anojuod
% J0 sa|nuenb ay) 03 198dsal yyum 4 Jo ssjiuenb (& ‘x)3o1dbb
ME] Jew
-1oU B J3pun pa)dadxa sanjeA ay} 03 108dsal Yyum x Jo ssjiuenb (x)uxoubb
Aouanbaiy awes ay) aney 1snw pue
Salep JuaIaIp aney Aew SaLIas 8y} ajeLIeANW SI X J1Ing "pI (x) 3oTd-s3
sarep
pue Aouanbauy awes ayl aAeY ISnW SaLIas ay INg dlelieAljnw aq Aew
% ‘guin} 03 398dsas yim x Jo 1ojd ‘,S3, SSe|9 J0103[qo ue S| X I (%) s3°301d
X JO SUWINJOJ 8y} Udamiaq
sjo|d ajerreAlq 8]qissod |[e SMep ‘Buiel) Blep e 4o Xujew e S| X §I (x) sated
3]qe1 Aouabunuod e Jo uois
-saufiau Jeaul|-bo| e wouy sjenpisal sy} Jo ydesd oresow, (x)3zordoresou
3lq
-e) Aouabunuod [euoisuswiIp OM] B Ul SUWN|OI pue SMOJ JO 8duapuad
-8pul Wouy suofeIAsp ay} Buimoys ydelh Ajpusii4—usyod (x)3otdoosse
(T=A
J (2 '2)o=wTp yUM Xujew B 10 (X ‘Z ‘Z) o=uTtp ynm Aeise ue aq
1snw x) suonejndod JuaJayp 104 S3|QRLIBA SNOWOIOYIIP OM] U3aM}
-3 UOITRIJ0SSE 8 ‘S3]2412 JO S1apenb yum ‘sazijensin (x) 3otdpTozanoz
*019 ‘A JO BUO PUOIAS BY} 'SA X JO U0 PUOIAS B}
‘A JO 8UO 1841} 8Y} 'SA X JO UWN|OI ISJ1} B} O 10]d 8jeLreAlq (& “x) 3oTd3ew

11 01 passed aq 0} s)uswinfire 40 11| & pue UoKdUN 3y}

JO BWeU 8y} WOy |[ed UOIOUN) B S3INdaxe (sbae ‘sureuuny) [TeD - Op
ou Jo so4 Jaylle WoJj SIUSWSIS YIM

pa||ly 1s23 se adeys awes ay) YlIM anjea e (ou ‘ssk ‘3se3)esTeIT

sjuawiajels punode {} saoelq asn

3xau

yesaxq

xdxs 3eadsx

adxe (puod)STTUyM

adxs (bes ut aea)aoz

adxe - 3Te osT1e adxs-suod (puod)3iT

adxe (puod)3IT

(enTea)uanisx

uonuyap uonouny xdxe (3strbae)uor3zoung

Bulwwe 16014

(T>d>ouym: (-

‘d) oungb) anuenb Jo anjea ayy pue (- - ‘x)ounyd) Ausuap Anjiqeqoid
anlreInwing ay) ‘((*** ‘x)ounzp) Aususp Ajigeqold ayy ‘AjpAnoadsas 196
0} b 1o d ‘v yum I 1sns| ayr Buroejdas Ag pasn aq ued suonduUNy asay} ||V
SO1SITRIS S,UOXOJIAN (U ‘uu) 3ueIubTsI ‘(U ‘W ‘UuU)XODTTIMI
wJiojlun (T=xew ‘Q=uTw ‘u)JTUNI

|elwoulq aAnebau (qoxd ‘ezTs ‘u)wourqul

lewloubo| (T=BoTps ‘p=BoTuesur ‘u)wIoUTI

onsifo] (T=eTeos ‘Q=uor3iedol ‘u)stbora

oupswoabiadAy (3 ‘u ‘w ‘uu)zedAyx

ouBwosb (qoxd ‘u)wosba

lelwoulq (qoaxd ‘®zTs ‘u)wWOuTqx

uosiead (3p ‘u)bstyox

(%) (2) 1009paus—uaysiy (z3p ‘T3P ‘u) 32

(1) auspmig, (3P ‘u)3x

elaq (zedeys ‘Tadeys ‘u)elsqa

Ayone) (T=eTeds ‘p=uoTr3iedorl ‘u)Aiyoneoda

[INgioW\ (T=eTeos ‘edeys ‘u) [TNqToMI

uossiod (epquret ‘u)stodx

ewweb (T=oTeos ‘odeys ‘u)euurebx
lenusuodxs (T=93ex ‘u)dxex
(Jewuou) ueissnes (T=ps ‘p=uesw ‘u)uIoux

suonnqusia
(43s27,)yoaeas-dreyasn = ‘()3s923°3 ‘() 3se3-doad
‘()3seo3° 3 aamod ‘()3se3- 3 estmated ‘()3se3woutrq
X J0 S81eWnss Alsuap |suley (x) L3 Tsusp
s193[qo |apow paniy
8J0W JO 3UO 0} S3|e) (82UBIASP 10) 8OUBLIEA JO SISAjeUR (* * * “3T3F) BAOUR
|8pow 8dUBLIBA JO SISA[eue (eTnuio3)aoe

soIsirelIs
DIV 10 UOLIB}LID UoIewLIOUIl IeXY 8y} seindwod (3TF) DIV
sigjawesed
10 Jaguinu ay) pue pooyi|ax1] ay} Jo wyiebo] ayr seindwiod (ITF) ATI60T
San[eA paply 8yl suInjal (ITF) Pe3I3TF
90UBIABD BY} SUINJA) (3TF) eDoueRTASP
S[enpisal syl suinlal (ITF) sTenprsax
(slodsa-pIepuels
118U} UM SBWIIBWOS) SIUBIDIYB0D parewnss 8yl suinial (3TF) Feoo
WwopaaJ} J0 Saaifap [enpisal Jo Jaquinu 8y} suinlal (IT3) TenpIsax- Ip
elep Indul uo paseq 313 wolj suondipaid (*** “3T3F)3oTpPead
‘suonouny
Buimiy japow 01 Ajdde usio sa1iauah BuIMO|04 BYL "UOROUNS B IO ‘, ITWO " B,
‘4 TTeI eu, :sanjeA BUISSIW J0j UOIJE =UOTIO® " BU JI4 3y} Ul Pasn Sa|qelieA
0 195gns B =32sqns ‘sa|qelieA BJNWIOY 8y} J0} SWe.y eyep ay} =eiep :Ssjusw
-nbJe uoWWOd [eJdA3S dABY SUOIdUNY Buljapow pased-ejnuwiioy ayl Jo Auey
Bumy 1eoo| Buisn aoeyins jeiwouAjod e 11} (eTnuIO3) Ss9OT
uonrejodiaiul aunjds 21gnd (=4 ‘x) suttds
aimonus bun
-101d Ax ue ag ued x ‘syuiod erep usalb ajejodisul Ajiesul) (=4 ‘x) xoxdde
sig)awesed
|apow Jeauljuou ay} JO Serewlss satenbs-1ses| Jesuljuou (eTnuwioz)sTu
ATTwe3¢ 9as ‘|apouwl 8y} ul pasn ag 01 UoIduUNy yulj pue
uonNQIISIP 4013 8y} JO uondiIdsap e S| ATTWeT ‘uonNqLIsIp 10419 8y}
10 uonduiosap e pue J0301pald Jeaul| ay o uonduasap d1joquiAs e Hul
-NIB Aq paiy1oads ‘sjapow Jeaul| pazijelausb)iy (=ATTuwrez ‘ernuxoz)wib
sjuauodwod Jeauljuou
JO 9pew swud) 10y (Z.X)T + (A«X)T 8sn ! + duisl + ywisl
ssuodsax wloy 8y 4o AjJedardAy S| eTnuIoF ‘S|gpow Jeaul| Jij (eTnwIoF) ury
d sanfen
Bunueis yum wyiiobe adAl-uoimaN e Buisn 3 uonouny sziwiuiw (4 3) wru
(az1wnuiw Ajjewou) aziwndo 01 uonauny i U3 ‘sanjea Jeniul si xed
‘uoneziwndo asodind-jesoush (uNNUYSw ‘u€-SOJE-Tu ‘udOu
‘uSDALGn ‘uwPESW-ISPISNu)2 = poyasu ‘uz ‘xed)wrtido
Bumiy ppow pue uolreziwndo
‘slnejep
8011167 abueyd 0} 3°ST pue swsy3* 80T33RT 85N MI0M 1,usaop Bunuud srew
-0JNe aJaym suonauny apisul ((- *) 30TdAx) 3utad asn "ydelb ayy sonpoud
0} pa-3utad aq 0} aAeY pue SI||al} SSe|I JO 98[O Ue UINal SUOKOUNY 3JITeT]
‘(seut1Té pue (uTsued,)sodoade aas) uonouny |aued WOoISNI & aulyap 0}
=Taued asn ‘Bumasgns 1o} =1esqns pue Ss|qeLieA BJNWLIOY Y} 10} skl
elep ay) =e1ep osfe snid soiydelb aseq se sjuswinbie awes ay) Jo Auew axel
suonouny a21e] ‘sjaued ayesedss uo panold zb pue 16 ssjqersen Buiuonip
-U09 [euondo Jo SuoleUIquIOd SeY zDbxTH X £ ‘eInwiioy 891337 [ewlou ay} uj

R reference card, by Jonathan Baron

Parentheses are for functions, brackets are for

indicating the position of items in a vector or matrix.

(Here, items with numbers like x1 are user-supplied
variables.)

Miscellaneous

qO: quit

<-: assign

INSTALL packagel: install packagel
mi[,2]: column 2 of matrix m1

mi[,2:5] ormi[,c(2,3,4,5)]: columns 2-5
mi$al: variable a1 in data frame m1

NA: missing data

is.na: true if data missing

library(mva): load (e.g.) the mva package

Help

help(commandl): get help with command1 (NOTE:
USE THIS FOR MORE DETAIL THAN THIS
CARD CAN PROVIDE.)

help.start(): start browser help

help(package=mva): help with (e.g.) package mva

apropos("topicl"): commands relevant to topicl

example (command1): examples of command1

Input and output

source("filel"): run the commandsin filel.
read.table("filel"): read in data from filel
data.entry(): spreadsheet

scan(x1): read a vector x1

download.file(urll): from internet
url.show(urll), read.table.url(urll): remote
input

sink("filel"): output to filel, until sink ()
write(object, "filel"): writes an object to filel
write.table(dataframel,"filel"): writes a table

Managing variables and objects

attach(x1): put variables in x1 in search path

detach(x1): remove from search path

1s (): lists all the active objects.

rm(object1): removes objectl

dim(matrix1): dimensions of matrix1

dimnames (x1): names of dimensions of x1

length(vectoril): length of vectori

1:3: the vector 1,2,3

c(1,2,3): creates the same vector

rep(x1,nl): repeats the vector x1 ni times

cbind(al,bl,c1), rbind(al,bl,cl1): binds
columns or rows into a matrix

merge (df1,df2): merge data frames

matrix(vectorl,rl,cl): make vectorl into a

matrix with r1 rows and c1 columns

data.frame(vl,v2): make a data frame from

vectors v1 and v2

as.factor(), as.matrix(), as.vector():
conversion

is.factor(), is.matrix(), is.vector(): whatit
is

t (): switch rows and columns

which(x1==al): returns indices of x1 where x1==a1

Control flow
for (il in vectorl): repeat what follows

if (conditionl) ...else ...:conditional
Arithmetic

%*%: matrix multiplication

Why, ~, hh, sqrt(): integer division, power,

modulus, square root

Statistics

max(), min(), mean(), median(), sum(), var():
as named

summary (data.frame): prints statistics

rank(), sort() rank and sort

ave(x1,y1): averages of x1 grouped by factor y1

by (): apply function to data frame by factor

apply(x1,n1,functionl): apply functionl (e.g.
mean) to x by rows (ni1=1) or columns (n2=2)

tapply(x1,listl,functionl): apply function to
x1 by listi

table (): make a table

tabulate (): tabulate a vector

basic statistical analysis

aov(), anova(), 1m(), glm(): linear and
nonlinear models, anova

t.test(): ttest

prop.test(), binom.test(): sign test

chisq.test(x1): chi-square test on matrix x1

fisher.test (): Fisher exact test

cor (a): show correlations

cor.test(a,b): test correlation

friedman.test(): Friedman test

some statistics in mva package

prcomp (): principal components
kmeans (): kmeans cluster analysis
factanal (): factor analysis
cancor (): canonical correlation

Graphics

plot (), barplot(), boxplot(), stem(),
hist (): basic plots

matplot (): matrix plot

pairs(matrix): scatterplots

coplot (): conditional plot

stripplot(): strip plot

qgplot (): quantile-quantile plot

qqnorm(), qgqline(): fit normal distribution

Analysing spatial point patterns in R

Adrian Baddeley
CSIRO and University of Western Australia

Adrian.Baddeley@csiro.au
adrian@maths.uwa.edu.au

Workshop Notes
Version 4.1
December 2010

Copyright (©CSIRO 2010

Abstract

This is a detailed set of notes for a workshop on Analysing spatial point patterns in R,
presented by the author in Australia and New Zealand since 2006.

The goal of the workshop is to equip researchers with a range of practical techniques for
the statistical analysis of spatial point patterns. Some of the techniques are well established
in the applications literature, while some are very recent developments. The workshop is
based on spatstat, a contributed library for the statistical package R, which is free open
source software.

Topics covered include: statistical formulation and methodological issues; data input and
handling; R concepts such as classes and methods; exploratory data analysis; nonparamet-
ric intensity and risk estimates; goodness-of-fit testing for Complete Spatial Randomness;
maximum likelihood inference for Poisson processes; spatial logistic regression; model val-
idation for Poisson processes; exploratory analysis of dependence; distance methods and
summary functions such as Ripley’s K function; simulation techniques; non-Poisson point
process models; fitting models using summary statistics; LISA and local analysis; inhomo-
geneous K-functions; Gibbs point process models; fitting Gibbs models; simulating Gibbs
models; validating Gibbs models; multitype and marked point patterns; exploratory analysis
of multitype and marked point patterns; multitype Poisson process models and maximum
likelihood inference; multitype Gibbs process models and maximum pseudolikelihood; line
segment patterns, 3-dimensional point patterns, multidimensional space-time point patterns,
replicated point patterns, and stochastic geometry methods.

These notes require R version 2.10.0 or later, and spatstat version 1.21-2 or later.

Acknowledgements
The author gratefully acknowledges countless comments and suggestions from workshop partici-
pants and colleagues, and the support of CSIRO MATHEMATICS INFORMATICS AND STATISTICS,
THE UNIVERSITY OF WESTERN AUSTRALIA, THE STATISTICAL SOCIETY OF AUSTRALIA, THE
NEW ZEALAND STATISTICAL ASSOCIATION, and THE UNIVERSITY OF WAIKATO.

Copyright (©CSIRO Australia 2010

All rights are reserved. Permission to reproduce individual copies of this document for
personal use is granted. Redistribution in any other form is prohibited.

The information contained in this document is based on a number of technical, circumstantial
or otherwise specified assumptions and parameters. The user must make its own analysis and
assessment of the suitability of the information or material contained in or generated from this
document. To the extent permitted by law, CSIRO excludes all liability to any party for any
expenses, losses, damages and costs arising directly or indirectly from using this document.

Copyright (©CSIRO 2010

CONTENTS 3

Contents

PART 1. OVERVIEW 5
1 Introduction 6
2 Statistical formulation 13
3 The R system 18
4 Introduction to spatstat 20
PART II. DATA TYPES & DATA ENTRY 31
5 Objects, classes and methods in R 32
6 Entering point pattern data into spatstat 38
7 Converting from GIS formats 45
8 Windows in spatstat 46
9 Manipulating point patterns 53
10 Pixel images in spatstat 63
11 Tessellations 71
PART III. INTENSITY 77
12 Exploring intensity 78
13 Dependence of intensity on a covariate 82
PART IV. POISSON MODELS 87
14 Tests of Complete Spatial Randomness 88
15 Maximum likelihood for Poisson processes 95
16 Checking a fitted Poisson model 106
17 Spatial logistic regression 112
PART V. INTERACTION 113
18 Exploring dependence between points 114
19 Distance methods for point patterns 115
20 Simulation envelopes and goodness-of-fit tests 132
21 Spatial bootstrap methods 139

Copyright (©CSIRO 2010

4 CONTENTS

22 Simple models of non-Poisson patterns

23 Model-fitting using summary statistics

24 Exploring local features

25 Adjusting for inhomogeneity

PART VI. GIBBS MODELS

26 Gibbs models

27 Fitting Gibbs models

28 Validation of fitted Gibbs models

PART VII. MARKED POINT PATTERNS

29 Marked point patterns

30 Handling marked point pattern data

31 Exploratory tools for multitype point patterns
32 Exploratory tools for marked point patterns
33 Multitype Poisson models

34 Gibbs models for multitype point patterns
PART VIII. HIGHER DIMENSIONS AND OTHER SPATIAL DATA
35 Line segment data

36 Point patterns in 3D

37 Point patterns in multi-dimensional space-time
38 Replicated data and hyperframes

39 Stochastic geometry

40 Further information on spatstat

Bibliography

Index

139

144

148

149

155

156

162

171

177

178

181

187

200

204

210

215

216

218

219

221

222

224

225

228

Copyright (©CSIRO 2010

CONTENTS 5

PART I. OVERVIEW

The first part of the workshop is a quick overview of spatial statistics for point patterns, and a
very quick introduction to the software.

Copyright (©CSIRO 2010

Introduction

1 Introduction

1.1 Types of data
1.1.1 Points

A point pattern dataset gives the locations of objects/events occurring in a study region.

The points could represent trees, animal nests, earthquake epicentres, petty crimes, domiciles
of new cases of influenza, galaxies, etc.
The points might be situated in a region of the two-dimensional (2D) plane, or on the Earth’s
surface, or a 3D volume, etc. They could be points in space-time (e.g. earthquake epicentre

location and time).

The spatstat package was originally implemented for 2D point patterns. However it is being
extended progressively to 3D, space-time, and multi-dimensional space-time point patterns (see

Sections 36-37).

1.1.2 Marks

The points may have extra information called marks attached to them. The mark represents an
“attribute” of the point. The mark variable could be categorical, e.g. species or disease status:

© off
e on

The mark variable could be continuous, e.g. tree diameter:

Copyright (©CSIRO 2010

1.1 Types of data 7

The mark could be multivariate (for example, a tree could be marked by its species and its
diameter) or even more complicated.

1.1.3 Covariates

Our dataset may also include covariates — any data that we treat as explanatory, rather than
as part of the ‘response’. Covariate data may be of any kind. One type of covariate is a spatial
function Z(u) defined at all spatial locations u, e.g. terrain altitude. Such functions can be
displayed as a pixel image or a contour plot:

elevation

elevation

160

150

140

130

120

Another common type of covariate data is a spatial pattern such as another point pattern,
or a line segment pattern, e.g. a map of geological faults:

Copyright (©CSIRO 2010

Introduction

1.2 Typical scientific questions

1.2.1 Intensity

‘Intensity’ is the average density of points (expected number of points per unit area). It mea-
sures the ‘abundance’ or ‘frequency’ of the events recorded by the points. Intensity may be
constant (‘uniform’ or ‘homogeneous’) or may vary from location to location (‘non-uniform’ or

‘inhomogeneous’).

uniform inhomogeneous
o °
o o ° o 0o [}
o
o o
o o o) o ° e %o
o & ° o° o
o o ° o ©°o °
o o
° 4 00 o ° 5
o o
00 ° o ° ° ° o9
o o o o ° o
o o o ° o o oo o o ®° o .
o °
o ° 0 o0g 09°%°0
° o o° o o & o
° °) o o
o o o o ® o [}
o
o ° o 00%
°© ° ° o o) o
o o @ o 0@ o 00
o
°© °
@
o o o o & 0% o
° ° 0° o o o) 8o
o %o |
o ° ° o ° oo o o
° o
° o ° o ° oo 08 o
o o o [e]
o o © 50 © o,
°© ° o 80° o9
o o o ° o
oo o ®, ©

1.2.2 Interaction

‘Interpoint interaction’ is stochastic dependence between the points in a point pattern. Usually
we expect dependence to be strongest between points that are close to one another.

regular clustered

independent
-
°
o o o o o o oo
o ° ° ° o @8
°
o © o ° & 3 °
° ° o o
°
& ° ° o ° o ° o0
o o ° ° ° o LY
°
o ©o ° oo
o ° o o ° o o) o° ©0
° o ?0° o o %
o o ©° ° ° o o ° o| 3
° o
°
° o© o ° ° ° Sofe
©o o ° o ° °© o 0 o0
° ° 00 o ° °
° °
oo o 00 o @ o ° o o <§§D
° ° °
° o © ° S o b o
o ° ° 00 o
oo o ° ° ° °o o %o° S °
o o O ° o
Ll
°
o) 2 oo ° o o o o o o
° ° °
° o ° ©
° o o o ° o g° ° 4
o 2 o °© > ° Q

Example 1 (Japanese pines) Locations of 65 saplings of Japanese pine in a 5.7 X 5.7 metre
square sampling region in a natural stand.
Main question: is the spacing between saplings greater than would be expected for a random

pattern? (reflecting competition for resources)

Copyright (©CSIRO 2010

1.2 Typical scientific questions 9

Japanese Pines

1.2.3 Covariate effects

For a point pattern dataset with covariate data, we typically want to
e investigate whether the intensity depends on the covariates

e allow for covariate effects on intensity before studying interaction between points

Example 2 (Tropical rainforest data) Locations of 3605 trees in a tropical rainforest, with
supplementary grid map of elevation (altitude).

Main questions: (1) does tree density depend on slope? (2) after accounting for variation in
tree density due to slope, is there evidence of clustering of trees?

1
160

T
150

T
140

130

120

Example 3 (Queensland copper data) A intensive mineralogical survey yields a map of
copper deposits (essentially pointlike at this scale) and geological faults (straight lines). The
faults can easily be observed from satellites, but the copper deposits are hard to find. The main
question is whether the faults are ‘predictive’ for copper deposits (e.g. copper less/more likely to
be found near faults).

Copyright (©CSIRO 2010

10 Introduction

Example 4 (Chorley-Ribble data) An apparent cluster of cases of cancer of the larynz oc-
curred near a disused industrial incinerator. The area health authority mapped the domicile

locations of all cases (58) of cancer of the larynz and, for control purposes, a random sample of
cases (978) of lung cancer.

Main question: after allowing for spatial variation in density of the susceptible population
(for which the lung cancer cases are a surrogate), is there evidence of raised incidence of laryngeal
cancer near the incinerator?

Chorley-Ribble Data

“\’/\/\-w L]
o .
.0.
. o
[J e

® larynx
lung
® incinerator

1.2.4 Segregation of points with different marks

In a marked point pattern, we need to investigate whether points with different mark values are
‘segregated’ (found in different parts of the study region).

Example 5 (Lansing Woods) In a 20-acre study region in Lansing Woods, Michigan, the
locations of 2251 trees and the botanical classification of each tree were recorded.

Main question: is the study region divided into domains where a single tree species dominates,
or are the different species randomly interspersed?

Copyright (©CSIRO 2010

1.2 Typical scientific questions 11

blackoak hickory maple
Ea FH T F Fry e E T T F
+ + ;o * - ot L S + +
T Lk T T %&uﬁ + SV By
& oo ST 5 + + + ¥ +
o R * *W e et #*#ﬁ? + o+
o - i I@* . R + 4 +
e ¥ i, + A 4 o+ *
4 + ++ t+ + ##1 A + ot ot
+ o+ . # ;* #_:: 4 +$¢{ﬁm + B iy , +*i+:+
ot +. e ++ + +
f o ¥ Bl o e R AN
A+ LT % FRE S ARr AL e
AT PR ST 5T T sE R T +
+ ++ +1 _,tpjg:%# . Hy "-;,‘f* F + fa# +
A e . * o4 TS R e TR + RS
+ + i e Fp t o +~a§£§ + o
+ + M AP L % Py *+$++ + +tt ++$+ he 5
+ ++ g Rt Fy +3++++++1§ﬁ.#+.§§. :*Qﬁ-# *
+ ot +++++- +, 0+ ﬁ*:. +-&++I++++ # " Fa i '¢*:+¥*#m e ‘FF;
* o+ + + k3 + + + 4t
ot < LA lit+ * * + *t #$f+¢¢+ et et *&-P‘%ﬁ
+ + + R T v F+ + + g+ o+t by

Example 6 (Longleaf Pines) In a forest of Longleaf Pine trees in Georgia, USA, the locations
of 584 trees were recorded along with their diameter at breast height (dbh), a convenient surrogate
measure of size and age.

Main question: explain any spatial variation in the density and age of trees.

Longleaf Pines

=0 BT By
@ ()@ zitéoo’g"ﬁ

1.2.5 Dependence between points of different types

In a point pattern dataset with categorical marks, (aka multitype point pattern), dependence
between the different types may be formulated either as

e interaction between the sub-pattern of points of type ¢ and the sub-pattern of points of
type j; or

e dependence between the mark values of points at two specified locations.

Example 7 (Amacrine cells) The retina is a flat sheet containing several layers of cells.
Amacrine cells occupy two adjacent layers, the ‘on’ and ‘off’ layers. In a microscope field
of view, the locations of all amacrine cells were mapped, and classified into ‘on’ and ‘off’.

Main question: is there evidence that the ‘on’ and ‘off’ layers grew independently of one
another?

Copyright (©CSIRO 2010

12

Introduction

o off
* on

amacrine

. L -
o o e o O
H o s ®o S e © o X
e O ° .
o e O © e ° o ° o
. d e o ©° g ®o © 8
% * o S ® ° o
o . o .
. I o . Cg ®0 ® 4 °
o A QO © e O © ° o
0 o © °® e OCe0 @ o
o o I o o .
L]
o 9 . o © % o e°° Qe o
o ° O o . . o
e OF° Py hd ° . o®
o o 40 o ° °
. ® o L4 o s . o
L[] oe o e 5 L[] o, o
o e o . o e
o o e
o. Oq b o % e o.f e O ° °©
@ * e0 o e o ® 3 o®
o » O o @ o oe S
L) ° °
« % ° o s e o . L] e %0
o %o o ©O
%5, 00 ?® o oe . e ©° o
o e o0 (e o - o e ©

Example 8 (Ants’ nests) The nests of two species of ants in a plot in Greece were mapped.
Auziliary information records a field/scrub boundary, and the position of a walking track.
Main question: does species A intentionally place its nests close to species B?

1.3 Overview of statistical methods

Statistical methods for spatial point patterns have a quirky history. Although there is a highly-
developed branch of probability theory for point processes, the corresponding statistical method-
ology is relatively underdeveloped. Until recently, practical techniques for analysing spatial point
patterns were often developed in application areas (notably forestry, ecology, geology, geography

and astronomy) rather than in statistical science. Techniques include:

e summary statistics: the applied literature is dominated by ad hoc methods based on
evaluating a summary statistic (e.g. average distance from a point to its nearest neighbour)
with very little statistical theory to support them.

e comparison to Poisson process: in the applied literature, hypothesis tests are invoked
chiefly to decide whether the point pattern is ‘completely random’ (a uniform Poisson

point process) whether or not this is scientifically relevant.

e modelling: only in the last decade has it finally become possible to formulate and fit

realistic models to point pattern data.

algorithms, model choice, goodness-of-fit.

There’s still a lot of work to be done e.g. in

Copyright (©CSIRO 2010

13

We'll cover both classical and modern methods. Useful textbooks include [24, 30, 35, 44, 61,
51]. An important recent survey is [50].

2 Statistical formulation

2.1 Point processes

In this workshop, the observed point pattern x will be treated as a realisation of a random
point process X in two-dimensional space. A point process is simply a random set of points;
the number of points is random, as well as the locations of the points. Our goal is usually to
estimate parameters of the distribution of X.

2.2 Should I treat the data as a point process?

Treating the point pattern as a point process effectively assumes that the pattern is random
(the locations of the points, and the number of points, are random) and that the pattern is
the observation or ‘response’ of interest. A realisation of a point process is an unordered set of
points, so the points do not have a serial order (unless there are marks attached).

Example 9 A silicon wafer is inspected for defects in the crystal surface, and the locations of
all defects are recorded.

This can be analysed as a point process in two dimensions, assuming the defects are point-
like. We're interested in the intensity of defects, spacing between defects, etc.

Example 10 FEarthquake aftershocks in Japan are detected and their latitude, longitude and
time of occurrence are recorded.

This can be analysed as a point process in space-time (where space is the two-dimensional
plane or the Earth’s surface). If the occurrence times are ignored, it becomes a spatial point
process.

Example 11 The locations of petty crimes that occurred in the past week are plotted on a street
map of Chicago.

This can be analysed as a point process. We're interested in the intensity (propensity for
crimes to occur), any spatial variation in intensity, clusters of crimes, etc. One issue here is
whether the recorded crime locations can be anywhere in two dimensional space, or whether
they are actually restricted to locations on the streets (making them a point process on a 1-
dimensional network).

Example 12 A tiger shark is captured, tagged with a satellite transmitter, and released. Over
the next month its location is reported daily. These points are plotted on a map.

It is probably not appropriate to analyse these data as a spatial point process. At the very
least, the time of each observation should be included. They could be treated as a space-time
point process, except that it’s a strange process, as it consists of exactly one point at each instant
of time. These data should really be treated as a sparse sample of a continuous trajectory, and
analysed using other methods [which, alas, are fairly underdeveloped.] See the R package trip.

Copyright (©CSIRO 2010

14 Statistical formulation

Example 13 A herd of deer is photographed from the air at noon each day for 10 days. Fach
photograph is processed to produce a point pattern of individual deer locations on a map.

Each day produces a point pattern that could be analysed as a realisation of a point process.
However, the observations on successive days are dependent (e.g. constant herd size, systematic
foraging behaviour). Assuming individual deer cannot be identified from day to day, this is
effectively a ‘repeated measures’ dataset where each response is a point pattern. Methods for
this problem are in their infancy.

Example 14 In a designed controlled experiment, silicon wafers are produced under various
conditions. Fach wafer is inspected for defects in the crystal surface, and the locations of all
defects are recorded as a point pattern.

This is a designed experiment in which the response is a point pattern. Methods for this
problem are in their infancy. There are some methods for replicated spatial point patterns
[15, 19, 36, 37, 42] that apply when each experimental group contains several point patterns.

Example 15 The points are not the original data, but were obtained after processing the data.
For example,

e the original dataset is a pattern of small blobs, and the points are the blob centres;

e the original dataset is a collection of line segments, and the points are the endpoints,
crossing points, midpoints etc;

e the original dataset is a space-filling tessellation of biological cells, and the points are the
centres of the cells.

This is a grey area. Point process methodology can be applied, and may be more powerful
or more flexible than existing methodology for the unprocessed data. However the origin of the
point pattern may lead to artefacts (for example the centres of biological cells never lie very close
together, because cells have nonzero size) which must be taken into account in the analysis.

For more discussion about these topics, see [3].

2.3 Assumptions about the data

The “standard model” assumes that the point process X extends throughout 2-D space, but
is observed only inside a region W, the “sampling window”. Our data consist of an unordered
set

x={z1,...,zn}, €W, n>0

of points z; in W. The window W is fixed and known. Usually our goal is inference about
parameters of X.

Copyright (©CSIRO 2010

2.4 Marks and covariates 15

o P % o o 6 % © o
oo o
] o o-o ° o o o g o
SN ® o Oo® 30 % 0 OO
o Oo o 6) © o ® o) °
og 0©° o 0%°g0 oo © S
3 -
&S0 0° oNC°0o oo °
[o} q o fo) [e]
o o8 ° ° [¢]
o 08 o O " s e® | O 8 ®
o e © ©
& o 008 ° o° °8 ©o
6 900 o *e*® o °o © o
° o . ° o o
@ o) L [o3) 0
[¢] o [¢]
k) . ® OOOQGD [} o
o © o 9 e S o ® ° 4 O ®L
o 0% oo ©° % o o © °
o o o e o
@8 o OOO o
o © 0 o %P, © o
e} CDO ° [e] @ [0}
00 o] o ®
o o o) <)

Data are often supplied without information about the sampling window W. It is impor-
tant to know the window W, since we need to know where points were not observed. Even
something as simple as estimating the density of points depends on the window. It would be
wrong, or at least different, to analyze a point pattern dataset by “guessing” the appropriate
window. An analogy may be drawn with the difference between sequential experiments and
experiments in which the sample size is fixed a priori.

For the same reason, it is not sufficient to observe the values of covariates at the data points
only. In order to investigate the dependence of the point process on the covariate, we need to
have at least some observations of the covariate at other (“non-data”) locations.

It’s implicitly assumed that all points of X within W have been mapped without omission.

Most models we use will assume that random points could have been observed at any location
in the window W, without further constraint. (Examples where this does not apply: GPS
locations of cars will usually lie along roads; certain cells lie only inside certain tissues).

When thinking about methodological issues it’s often useful to think about the discretised
version of a point process. Suppose the window W is chopped into a large number of tiny
‘pixels’. Each pixel is assigned the value I = 1 if it contains a point of X, and I = 0 otherwise.
This array of 0’s and 1’s constitutes the data that must be modelled. Thus we need to know
where points did not occur, as well as where they did occur.

[]
. 1 1
. 1

. 1

° ° 1 1
1
[]

* . . 101 1

. * 1 1

To investigate the dependence of these indicators on a covariate, we need to observe the
covariate value at some locations where I = 0, and not only at locations where I = 1.

2.4 Marks and covariates

The main differences between marks and covariates are that

Copyright (©CSIRO 2010

16 Statistical formulation

e marks are associated with data points;

e marks are part of the ‘response’ (the point pattern) while covariates are ‘explanatory’.

2.4.1 Marks

A mark variable may be interpreted as an additional coordinate for the point: for example
a point process of earthquake epicentre locations (longitude, latitude), with marks giving the
occurrence time of each earthquake, can alternatively be viewed as a point process in space-time
with coordinates (longitude, latitude, time).

A marked point process of points in space S with marks belonging to a set M is mathemati-
cally defined as a point process in the cartesian product S x M. The space M of possible marks
may be ‘anything’. In current applications, typically the mark is either a categorical variable
(so that the points are grouped into ‘types’) or a real number. Multivariate marks consisting of
several such variables are also common.

A marked point pattern is an unordered set

y={(z1,m1),...,(xn,mp)}, x, €W, myeM

where z; are the locations and m; are the corresponding marks.
Marked point patterns are discussed in detail in section 29.

2.4.2 Covariates

Any kind of data may be recruited as an explanatory variable (covariate).

A ‘spatial function’, ‘spatial covariate’ or ‘geostatistical covariate’ is a function Z(u) observ-
able (potentially) at every spatial location u € W. Values of Z(u) may be available for a fine
grid of locations u, for example, a terrain elevation map:

140 150 160

130

120

The values of a spatial function Z(u) may only be observable at some scattered sampling
locations u. An example is the measurement of soil pH at a few sampling locations. In this case,
the value of the covariate Z must be observed for all points z; of the point pattern x, and must
also be observed at some other ‘non-data’ or ‘background’ locations v € W with u € x. You
might have to interpolate the observations.

Alternatively, the covariate information may consist of another spatial pattern, such as a
point pattern or a line segment pattern. The way in which this covariate information enters
the analysis or statistical model depends very much on the context and the choice of model.
Typically the covariate pattern would be used to define a surrogate spatial function Z, for

Copyright (©CSIRO 2010

2.4 Marks and covariates 17

example, Z(u) may be the distance from u to the nearest line segment. Here is a line segment
dataset representing the locations of geological faults, and its distance function Z:

W

N
\
e

Copyright (©CSIRO 2010

18 The R system

3 The R system

We will be using the statistical package R.

3.1 How to obtain R

R is free software with an open-source licence. You can download it from r-project.org and
it should be easy to install on any computer (see the instructions at the website).
Books and online tutorials are available to help you learn to use R.

3.2 How commands are printed in the notes

You can run an R session using either a point-and-click interface or a line-by-line command
interpreter. In these notes, R commands are printed as they would appear when typed at the
command line. So a typical series of R commands looks like this:

> pi/2

> sin(pi/2)

> x <= sqrt(2)
> X

Note that you are not meant to type the > symbol; this is just the prompt for command input
in R. To type the first command, just type pi/2.

In these notes we will sometimes also print the response that R gives to a set of commands.
In the example above, it would look like this:

> pi/2

[1] 1.570796
> sin(pi/2)
(1] 1

> x <= sqrt(2)
> X

[1] 1.414214

If the input is too long, R will break it into several lines, and print the character + to indicate
that the input continues from the previous line. (You don’t type the +). Also if you type an
expression involving brackets and hit Return before all the open brackets have been closed, then
R will print a + indicating that it expects you to finish the expression.

> folderol <- 1.2
> sin(folderol * folderol * folderol * folderol * folderol * folderol *
+ folderol * folderol * folderol * folderol)

[1] -0.09132148

Copyright (©CSIRO 2010

3.3 Contributed libraries for R 19

3.3 Contributed libraries for R

In addition to the basic R system, the R website also offers many add-on modules (‘libraries’ or
‘packages’) contributed by users. These can be downloaded from the R archive site cran.r-project.org
(under ‘Contributed Packages’).

Packages that may be useful for analysing spatial data are listed under the Spatial Task
View (follow the links to Task Views — Spatial on cran.r-project.org). For spatial point
pattern data, the useful packages include:

adehabitat habitat selection analysis

ads spatial point pattern analysis

ash (includes functions for hexagonal binning)

aspace ‘centrographic’ analysis of point patterns
DCluster detecting clusters in spatial count data

ecespa spatial point pattern analysis

fields curve and function fitting

geoR model-based geostatistical methods

geoRglm model-based geostatistical methods

GeoXp interactive spatial exploratory data analysis
maptools geographical information systems
MarkedPointProcess nonparametric analysis of marked spatial point processes
RArcInfo interface to ArcInfo system and data format

rgdal interface to GDAL geographical data analysis

SGCS spatial graph techniques for detecting clusters

sp base library for some spatial data analysis packages
sparr analysis of spatially varying relative risk
spatgraphs graphs constructed from spatial point patterns
spatialCovariance spatial covariance for data on grids

spatialkernel interpolation and segregation of point patterns
spatialsegregation segregation of multitype point patterns

spatstat Spatial point pattern analysis and modelling
spBayes Gaussian spatial process MCMC (grid data)

spdep spatial statistics for variables observed at fixed sites
Spgwr geographically weighted regression

splancs spatial and space-time point pattern analysis
spsurvey spatial survey methods

trip spatial trip data formats

tripEstimation analysis of spatial trip data

To make use of a package, you need to:
1. download the package code (once only) without unpacking;
2. ‘install’ the package code on your system (once only);

3. ‘load’ the package into your current R session using the command library (each time you
start a new R session).

The installation step is performed automatically using R, not by manually unpacking the code.
Installation is usually a very easy process.

Copyright (©CSIRO 2010

20 Introduction to spatstat

Instructions on how to install a package are given at cran.r-project.org. If you are running
Windows, first start an R session. Then try the pull-down menu item Packages — Install
packages. If this menu item is available, then you will be able to download and install any
desired packages by simply selecting the package name from the pulldown list. If this menu item
is not available (for internet security reasons), you can manually download packages by going
to the CRAN website under Contributed packages --- Windows binaries and downloading
the desired zip files of Windows binary files. To perform step 2, start an R session and use the
menu item Packages — Install from local zip files to install.

If you are running Linux, step 1 is performed manually by going to the CRAN website under
Contributed Packages and downloading the tar file packagename.tar.gz. Step 2 is performed
by issuing the command R CMD INSTALL packagename.tar.gz.

4 Introduction to spatstat

4.1 The spatstat package

Spatstat is a contributed R package for analysing spatial data, written by Adrian Baddeley
and Rolf Turner. Current versions of spatstat deal mainly with spatial point patterns in
two dimensions. The package supports

e creation, manipulation and plotting of point patterns
e exploratory data analysis

e simulation of point process models

e parametric model-fitting

e hypothesis tests

e residual plots, model diagnostics

Spatstat is one of the largest contributed packages available for R, containing over 1000
user-level functions and a 750-page manual. It has its own web domain, www.spatstat.org,
offering information about the package.

Spatstat can be downloaded from cran.r-project.org (under ‘Contributed packages —
spatstat’). To install spatstat you will also need to download the package deldir (some other
packages are also recommended but not compulsory).

4.2 Please acknowledge spatstat

If you use spatstat for research that leads to publications, it would be much appreciated if you
could acknowledge spatstat in your publications, preferably citing [10]. Citations help us to
justify the expenditure of time and effort on maintaining and developing the package.

4.3 Getting started

Here is a quick demonstration of spatstat in action. You can follow the demonstration by
typing the commands into R.
To begin any analysis using spatstat, first start the R system, and type

> library(spatstat)

Copyright (©CSIRO 2010

4.4 Licence 21

The response will be something like this:
deldir 0.0-12

Please note: The process for determining duplicated points
has changed from that used in version 0.0-9 (and previously).

spatstat 1.21-2
Type help(spatstat) for an overview of spatstat
latest.news() for news on latest version
licence.polygons() for licence information on polygon calculations

The printout shows that, before loading spatstat, the system has loaded the package deldir
that is required by spatstat. Then it loads spatstat, showing the version number of the
package.

For a list of the commands available in spatstat, type

> help(spatstat)

To get information on a particular command, type help(command).

To gain an impression of what is available in spatstat, you can run the package demonstra-
tion by typing demo (spatstat).
4.4 Licence

The spatstat package is free open source software, under the GNU Public Licence.

However, some of the facilities in spatstat depend on a polygon geometry package called
gpclib, and this has a restricted licence, that forbids commercial use. For details, type
licence.polygons().

By default, the gpclib package is disabled when you start spatstat. If you are doing
non-commercial work, please enable the polygon clipping library by typing

> spatstat.options(gpclib = TRUE)

4.5 Inspecting data

For our first demonstration, we’ll use one of the standard point pattern datasets that is installed
with the package. The ‘Swedish Pines’ dataset represent the positions of 71 trees in a forest plot
9.6 by 10.0 metres.

> data(swedishpines)

To avoid typing ‘swedishpines’ all the time, let us copy the data to another dataset with a
shorter name:

> X <- swedishpines
You can immediately plot the point pattern by typing

> plot(X)

Copyright (©CSIRO 2010

22 Introduction to spatstat

P o
o
o
o
o o
° o o
o o o o
o
o o
e
o
o o
° o o o q
° o o
° o
o o o
o © o
o
o o ° o 9
o ° o °
o
o
o o
o o ° o
o q
° o
o ° o °
° o
o o
° o
o
o

Simply typing the name of the dataset gives you some basic information:
> X

planar point pattern: 71 points
window: rectangle = [0, 96] x [0, 100] units (one unit = 0.1 metres)

Let’s study the intensity (density of points) in this point pattern. For a few basic summary
statistics, type

> summary (X)

Planar point pattern: 71 points
Average intensity 0.0074 points per square unit (one unit = 0.1 metres)

Window: rectangle = [0, 96]x[0, 100Junits
Window area = 9600 square units
Unit of length: 0.1 metres

The coordinates are expressed in decimetres (0.1 metre), so the average intensity is 0.0074
trees per square decimetre or 0.74 trees per square metre.

To get an impression of local spatial variations in intensity, we can plot a kernel estimate of
intensity:

> plot(density(X, 10))

density(X, 10)

0.012 0.014

T
0.01

0.002 0.004 0.006 0.008

Copyright (©CSIRO 2010

4.6 Exploratory data analysis 23

where 10 is my chosen value for the standard deviation of the Gaussian smoothing kernel: it is
10 decimetres, i.e. one metre. If you prefer a contour plot,

> contour (density (X, 10), axes = FALSE)

density(X, 10)

The contours are labelled in density units of “trees per square decimetre”.

4.6 Exploratory data analysis

Spatstat is designed to support all the standard types of exploratory data analysis for point
patterns.

One common example is quadrat counting. The study region is divided into rectangles
(‘quadrats’) of equal size, and the number of points in each rectangle is counted.

> @ <- quadratcount(X, nx = 4, ny = 3)

>q
X
y [0,24] (24,48] (48,72] (72,96]
(66.7,100] 7 3 6 5
(33.3,66.7] 5 9 7 7
[0,33.3] 4 3 6 9
> plot(X)

> plot(Q, add = TRUE, cex = 2)

Copyright (©CSIRO 2010

24 Introduction to spatstat

P o
o o
° o
o
-7 1 3 6, | °5 .,
o o°
P o
o
° o o o o
° o
o
o °o 4 © o
5 9 1 7 7
o o 9
o o o %
o
<) <)
o o ° o
o 9
4 3o B o |°
° o6 &
° o

Another common example is Ripley’s K function. T’ll explain more about the K function
later. For now, we’ll just demonstrate how easy it is to compute and plot it. To compute the K
function for a point pattern X, type Kest (X). This returns an object which can be plotted.

> K <- Kest(X)
> plot (K)

1500
|

K(r)
1000
|

500
|

0 5 10 15 20

r (one unit = 0.1 metres)

In this plot, the empirical K function (solid lines) deviates from the theoretical expected
value assuming the points are completely random (dashed lines). To test whether this deviation
is statistically significant, the standard approach is to use a Monte Carlo test based on envelopes
of the K function obtained from simulated point patterns. In spatstat this is done with the
envelope function:

> E <- envelope(X, Kest, nsim = 39)
> plot (E)

Copyright (©CSIRO 2010

4.7 Models 25

2000
|

— obs

1500
|

£ 8 |
¥ g
o
3 -
o -
T T T T T
0 5 10 15 20
r (one unit = 0.1 metres)
4.7 Models

The main strength of spatstat is that it supports statistical models of point patterns. Models
can be fitted to point pattern data; the fitted models can be used to summarise the data or
make predictions; the fitted models can be simulated (i.e. a random pattern can be generated
according to the model); and there are facilities for model selection, for testing whether a term in
the model is required (like analysis of variance), and for model criticism (like residuals, regression
diagnostics, and goodness-of-fit tests).

Participants in this workshop often say “I’m not interested in modelling my data; I only
want to analyse it.” However, any kind of data analysis or data manipulation is equivalent to
imposing assumptions. We can’t say something is ‘statistically significant’ unless we assume a
model, because the p-value is the probability according to a model. The purpose of statistical
modelling is to make these assumptions or hypotheses explicit. By doing so, we are able to
determine the best and most powerful way to analyse data, we can subject the assumptions
to criticism, and we are more aware of the potential pitfalls of analysis. In statistical usage, a
model is always tentative; it is assumed for the sake of argument; we might even want it to be
wrong. In the famous words of George Box: “All models are wrong, but some are useful.” If you
only want to do data analysis without statistical models, your results will be less informative
and more vulnerable to critique.

A statistical model for a point pattern is technically termed a point process model. Think of
a point process as a black box that generates a random spatial point pattern according to some
rules. To fit a point process model to a point pattern dataset in spatstat, use the function ppm
(point process model). This is analogous to the standard functions in R for fitting linear models
(1m), generalized linear models (glm) and so on.

> data(swedishpines)

> X <- swedishpines

> fit <- ppm(X, ~1, Strauss(9))
> fit

Stationary Strauss process
First order term:

beta
0.04378316

Copyright (©CSIRO 2010

26 Introduction to spatstat

Interaction: Strauss process
interaction distance: 9
Fitted interaction parameter gamma: 0.2904

Relevant coefficients:

Interaction
-1.236324

We have fitted a model called the “Strauss point process” to these data. We can generate a
simulated realisation of this model:

> plot(simulate(fit))

simulate(fit)

Simulation 1
o (] o
[e] ® o] ®
© o]
o o o o o o
[e]
SRS
00 o
[e] [e]
[e]
8 o [e] o] o
o
o o °
[e] e}
° %, o ®» o dq
O o
o o
o o
o
o
0% o 6 o © o g
o Oo
o
8 o

We can perform a goodness-of-fit test for this fitted model:

> plot(envelope(fit, Kest, nsim = 39))

envelope(fit, Kest, nsim = 39)

1500
|

K(r)
1000
|

500
|

0 5 10 15 20

r (one unit = 0.1 metres)

This plot suggests good agreement between the model and the data.
There are many, many other facilities for point process models in spatstat, described
throughout these notes (mainly in Sections 15-16, 23.1, 27-28 and 34).

Copyright (©CSIRO 2010

4.8 Multitype point patterns 27

4.8 Multitype point patterns

A marked point pattern in which the marks are a categorical variable is usually called a multitype
point pattern. The ‘types’ are the different values or levels of the mark variable.

Here is the famous Lansing Woods dataset recording the positions of 2251 trees of 6 different
species (hickories, maples, red oaks, white oaks, black oaks and miscellaneous trees).

> data(lansing)
> lansing

marked planar point pattern: 2251 points
multitype, with levels = blackoak hickory maple misc redoak
window: rectangle = [0, 1] x [0, 1] units (one unit = 924 feet)

> summary (lansing)

Marked planar point pattern: 2251 points
Average intensity 2250 points per square unit (one unit = 924 feet)

Pattern contains duplicated pointsx

Multitype:

frequency proportion intensity
blackoak 135 0.0600 135
hickory 703 0.3120 703
maple 514 0.2280 514
misc 105 0.0466 105
redoak 346 0.1540 346
whiteoak 448 0.1990 448

Window: rectangle = [0, 1]1x[0, 1]units
Window area = 1 square unit
Unit of length: 924 feet

> plot(lansing)

blackoak hickory maple misc redoak whiteoak
1 2 3 4 5 6

Copyright (©CSIRO 2010

28 Introduction to spatstat

lansing

In this plot, each type of point (i.e. each species of tree) is represented by a different plot
symbol. The last line of output above explains the encoding: black oak is coded as symbol 1
(open circle) and so on.

An alternative way to plot these data is to split them into 6 point patterns, each pattern
containing the trees of one species. This is done using split:

> plot(split(lansing))

split(lansing)

blackoak hickory

[eX¢) U [e) =)
EETY T
o]
(e]%)
o

@Fo §

8

2&% o

®%0 @
<&%poo

(o]
o® °
o (o)

The result of split(lansing) is a list of point patterns. The names of the list entries are the
names of the types (in this case "blackoak","hickory", etc). To extract one of these patterns,

Copyright (©CSIRO 2010

4.8 Multitype point patterns

29

e.g. the hickories,

> hick <- split(lansing)$hickory

> plot (hick)

hick
Qo O 0 00 X0 0o o ®F 00K
&)g% ow&) OZOO ° Oogg o (?o ocwoooo
o <)
LY ok ARG
O o o Soo © Qe
b o o o & 008
®S o ° @’0%) 8
o]
% o ° o . 00 R ®
S5 o © 0%8 °© o © ? o o8 o
0
QP& 0° o 8 Z’oogo&g
o o o
B2, @ ° 0o b %o &
0 o o o o o
o ® o) o o
0000 L Q o e od’ 2 OOOO
o o %° R 000, o
o% =) ® 0Qo® o 000
O%50 8§ o o 8 o @o o L
%o @ o0 & 00 o o O %60 Q
e o © °© o ©° ®
8) oo °, o o O ° P
% o oo ° S8 o © o
°© oo 5o ® Q
o o [} ° o% o
00 o o 9 o 004
o %o o o 9 ©° [¢)
° o o %0 @
©%o 8 o o 0&®o0 Ogp
3 Bo [0o 0%
& ° o ® oo ° o
ooo opn o @ Lo o

It’s also possible to do exploratory analysis and model-fitting for multitype point patterns.

Copyright (©CSIRO 2010

30 Introduction to spatstat

4.9 Installed datasets

For reference, here is a list of the standard point pattern datasets that are supplied with the
current installation of spatstat:

name description marks covariates window
amacrine Hughes’ rabbit amacrine cells 2 types []
anemones Upton-Fingleton sea anemones diameter |:|
ants Harkness-Isham ant nests 2 species 2 zones O
bei Tropical rainforest trees topography []
betacells Wassle et al. cat retinal ganglia 2 types . []
bramblecanes | Bramble Canes 3 ages []
bronzefilter | Bronze particles diameter []
cells Crick-Ripley biological cells []
chorley Chorley-South Ribble cancers case/control e
copper Queensland copper deposits fault lines []
demopat artificial data 2 types i
finpines Finnish Pines diam, height []
hamster Aherne’s hamster tumour data 2 types []
humberside Humberside child leukaemia case/control e
japanesepines | Japanese Pines []
lansing Lansing Woods 6 species []
longleaf Longleaf Pine trees diameter . []
faults
murchison Murchison gold deposits rock type s
nbfires New Brunswick fires several i
nztrees Mark-Esler-Ripley NZ trees []
ponderosa Getis-Franklin Ponderosa pines []
redwood Strauss-Ripley redwood saplings []
redwoodfull Strauss redwood map (full set) 2 zones []
shapley Shapley galaxy concentration several O
simdat Simulated point pattern []
spruces Spruce trees in Saxony diameter []
swedishpines | Strand-Ripley Swedish pines []
urkiola Urkiola, Woods, Spain 2 species e

The shape of the window containing the point pattern is indicated by the symbols[] (rectangle),

O (convex polygon) and Y (irregular polygon).

There are also the following datasets which

are not 2D point patterns:

name description format

heather Diggle’s heather data | binary image (three versions)

osteo osteocyte lacunae replicated 3D point patterns with covariates
residualspaper | data from [12] it’s complicated

To flick through a nice display of all these datasets, type demo(data).

To access one of these datasets, type data(name) where name is the name listed above. To
see information about the dataset, type help(name). To plot the dataset, type plot(name).

Copyright (©CSIRO 2010

4.9 Installed datasets 31

PART II. DATA TYPES & DATA ENTRY

In Part IT of the workshop, we look at the different types of spatial data in spatstat (point
patterns, windows, pixel images, etc). We explain how to read data into the package and
manipulate these data types.

Copyright (©CSIRO 2010

32 Objects, classes and methods in R

5 Objects, classes and methods in R

The tutorial examples above have used some of the ‘object-oriented’ features of R. It is very
useful to know a little about how these work.

5.1 Classes in R

R is an ‘object-oriented’ language. A dataset with some kind of structure on it (e.g. a contingency
table, a time series, a point pattern) is treated as a single ‘object’.

For example, R includes a dataset sunspots which is a time series containing monthly sunspot
counts from 1749 to 1983. This dataset can be manipulated as if it were a single object:

> plot(sunspots)
> summary (sunspots)
> X <- sunspots

Each object in R is identified as belonging to a particular type or class depending on its
structure. For example, the sunspots dataset is a time series:

> class(sunspots)
[1] ||tsl|

Standard operations, such as printing, plotting, or calculating the sample mean, are defined
separately for each class of object.

For example, typing plot (sunspots) invokes the generic command plot. Now sunspots is
an object of class "ts" representing a time series, and there is a special “method” for plotting
time series, called plot.ts. So the system executes plot.ts(sunspots). It is said that the plot
command is “dispatched” to the method plot.ts. The plot method for time series produces a
display that is sensible for time series, with axes properly annotated.

Tip: to find out how to modify the plot for an object of class "foo", consult
help(plot.foo) rather than help(plot).

5.2 Classes in spatstat

To handle point pattern datasets and related data, the spatstat package defines the following
important classes of objects:

e ppp: planar point pattern

e owin: spatial region (‘observation window’)
e im: pixel image

e psp: pattern of line segments

e tess: tessellation

(there are also other classes for specialised use, such as pp3 for three-dimensional point
patterns, ppx for multidimensional space-time point patterns, and hyperframe).

Copyright (©CSIRO 2010

5.2 Classes in spatstat 33

Point pattern (class ppp)

Rectangular window Polygonal window Binary mask window
(class owin) (class owin) (class owin)

D

Pixel image (class im)

2
3
=

150

140

130

Line segment pattern (class psp) Tessellation (class tess)

e

Most of the functionality in spatstat works on such objects. To use this functionality, you’ll
need to read your raw data into R and then convert it into an object of the appropriate format.

In particular spatstat has methods for plot, print and summary for each of these classes.
For example, the plot method for point patterns, plot.ppp, ensures that the x and y scales
are equal, and does various other things that are sensible when plotting a spatial point pattern
rather than just a list of (z,y) pairs.

Copyright (©CSIRO 2010

34 Objects, classes and methods in R

> data(humberside)
> plot (humberside)

humberside

Exercise 1 Find out how to modify the command plot (swedishpines) so that the title reads
“Swedish Pines data” and the points are represented by plus-signs instead of circles.

When you type print (swedishpines) or just swedishpines, this invokes the generic com-
mand print, which dispatches to the method print . ppp, which prints some sensible information
about the point pattern swedishpines at the terminal.

> swedishpines

planar point pattern: 71 points
window: rectangle = [0, 96] x [0, 100] units (one unit = 0.1 metres)

The generic command summary is meant to provide basic summary statistics for a dataset.
When you type summary(swedishpines) this is dispatched to the method summary.ppp, which
computes a sensible set of summary statistics for a point pattern, and prints them at the terminal.

> summary (swedishpines)

Planar point pattern: 71 points
Average intensity 0.0074 points per square unit (one unit = 0.1 metres)

Window: rectangle = [0, 96]x[0, 100]units
Window area = 9600 square units
Unit of length: 0.1 metres

The command density is also generic. It is normally used to compute a kernel density
estimate of a probability distribution from a vector of numbers. (This “default method” is
called density.default.) But there is also a method for point patterns, so that when you type
density(swedishpines), this is dispatched to density.ppp which computes a two-dimensional
kernel estimate of the intensity function.

> plot(density(swedishpines, sigma = 10))

Copyright (©CSIRO 2010

5.3 Return values 35

density(swedishpines, sigma = 10)

0.012 0.014

T
0.01

0.002 0.004 0.006 0.008

To see a list of all methods available in R for a particular generic function such as plot:
> methods (plot)
To see a list of all methods that are available for a particular class such as ppp:

> methods (class = "ppp")

[1] affine.ppp as.data.frame.ppp as.im.ppp as.owin.ppp
[5] as.ppp.ppp bermantest.ppp by . ppp closing.ppp
[9] coords<-.ppp coords.ppp crossdist.ppp cut.ppp

[13] density.ppp dilation.ppp distfun.ppp distmap.ppp
[17] duplicated.ppp envelope.ppp erosion.ppp identify.ppp
[21] is.empty.ppp is.marked.ppp is.multitype.ppp kstest.ppp
[25] markformat.ppp marks<-.ppp marks.ppp nnclean.ppp
[29] nndist.ppp nnwhich.ppp npoints.ppp opening.ppp
[33] pairdist.ppp pct.ppp periodify.ppp pixellate.ppp
[37] plot.ppp [<-.ppp [.ppp print.ppp
[41] quadratcount.ppp quadrat.test.ppp rebound.ppp rescale.ppp
[45] rotate.ppp rshift.ppp sharpen. ppp shift.ppp
[49] split<-.ppp split.ppp summary . ppp unique.ppp
[63] unitname<-.ppp unitname.ppp unmark. ppp

5.3 Return values
5.3.1 The return value of a function

Every function in R returns a value. The return value may be ‘null’, or a single number, a
list, or any kind of object. When you type an R expression on the command line, the result of
evaluating the expression is printed.

> 1+ 1
(11 2
> sin(pi/3)

[1] 0.8660254

Copyright (©CSIRO 2010

36 Objects, classes and methods in R

Just to confuse matters, the result of a function may be tagged as ‘invisible’ so that it is not
printed.

> data(cells)
> plot(cells)

There’s still a return value from the function, which can be captured by assigning the result
to a variable:

> a <- plot(cells)
> a

NULL

Tip: Many plotting commands return a value which is useful if you want to annotate
the plot. In spatstat the function plot.ppp plots a point pattern and returns
information about the encoding of the marks. After plotting a multitype pattern, to
make a nice legend for the plot, save the result of the plot call and pass it to the
legend command:

> data(lansing)
> a <- plot(lansing)
> legend(-0.25, 0.5, names(a), pch = a)

lansing

o blackoak
A hickory
+ maple

X misc

<& redoak
v whiteoak

Tip: To find out the format of the output returned by a particular function fun,
type help(fun) and read the section headed ‘Value’.

5.3.2 Returning an object

A function which performs a complicated analysis of your data will typically return an object
belonging to a special class. This is a convenient way to handle calculations that yield large or
complicated output. It enables you to store the result for later use, and provides methods for
handling the result.

Copyright (©CSIRO 2010

5.3 Return values 37

Many of the functions in spatstat return an object of a special class. For example, the
value returned by density.ppp is a pixel image (an object of class "im"). This is effectively a
large matrix, giving the values of the kernel estimate of intensity at each point in a fine regular
grid of locations.

> Z <- density(swedishpines, sigma = 10)
> Z

real-valued pixel image
100 x 100 pixel array (any, nx)
enclosing rectangle: [0, 96] x [0, 100] units (one unit = 0.1 metres)

The class of pixel images in spatstat has methods for print, summary, plot and so on.
> summary (Z)

real-valued pixel image
100 x 100 pixel array (any, nx)
enclosing rectangle: [0, 96] x [0, 100] units
dimensions of each pixel: 0.96 x 1 units
(one unit = 0.1 metres)
Image is defined on the full rectangular grid
Frame area = 9600 square units
Pixel values
range = [0.00188947243195949,0.0155470858797917]
integral = 71.3036909843861
mean = 0.00742746781087355

Another example is the command Kest which estimates Ripley’s K-function. The value
returned by Kest is an object of class "fv" (‘function value table’) containing the estimated
values of K(r), obtained using several different estimators, for a range of r values. This class
has methods for print, plot and so on.

> u <- Kest(swedishpines)
> u

Function value object (class fv)
for the function r -> K(r)

Entries:

id label description

r r distance argument r

theo K[pois] (x) theoretical Poisson K(r)

border K[bord] (r) border-corrected estimate of K(r)

trans K[trans] (r) translation-corrected estimate of K(r)

iso K[iso] (r) Ripley isotropic correction estimate of K(r)

Default plot formula:

r

Copyright (©CSIRO 2010

38

Entering point pattern data into spatstat

<environment: 0x5f821a0>

Recommended range of argument r: [O,
Available range of argument r: [O,

Unit of length: 0.1 metres

> plot(u)

1500

K(r)
1000
|

500
1

o 4

r (one unit = 0.1 metres)

24]
24]

6 Entering point pattern data into spatstat

To analyse your own point pattern data in spatstat, you'll need to read the data into R and

convert them into an object of class "ppp".
This section explains how to handle ‘raw’ data in a text file.

Section 7 explains how to

handle data files in other formats (such as ESRI shapefiles).

6.1 Reading raw data into R

It’s good practice to keep a copy of your original data in a text file (where it is not dependent
on changes to software, data formats etc). The data can then be loaded into R using standard

operations.

Two common formats for the data are

e a comma-separated values (csv) file, generated by many spreadsheet packages. To read
data from a csv file into R, use the command read.csv.

e a table format file. The data are arranged in rows and columns, one row for each spatial

point, something like this:

Easting Northing
176.111 32.105
175.989 31.979

Diameter
10.4
7.6

The first line of the file is an (optional) header. To read these data into R, use the command

read.table.

Copyright (©CSIRO 2010

6.2 Creating a ppp object 39

To read these datafiles, type either

> mydata <- read.csv("mydatafile.csv")
> mydata <- read.table("mydatafile.txt", header = TRUE)

In either of these cases, the resulting object mydata is a “data frame” in R. You can print
the data frame by typing its name.
Individual columns of the data frame can be extracted using $. For example

> east <- mydata$Easting
extracts the Easting column of data, and saves it as a vector of numbers, called east.
> east

[1] 176.111 175.989 176.786 176.394 176.501 175.480 175.041 175.909 176.955
[10] 175.232 176.842 176.752 176.166 175.778 175.176 175.124 175.853 175.866

You can also use scan() to read a stream of numbers that you type at the keyboard, or
scan(file="filename") to read a stream of numbers from a file.
6.2 Creating a ppp object
Here is a simple recipe to create a point pattern object from raw data in R.

1. store the x and y coordinates for the points in two vectors x and y.

2. create two vectors xrange, yrange of length 2 giving the x and y dimensions of a rectangle
that contains all the points.

3. create the point pattern object by
> ppp(x, y, xrange, yrange)

The value returned by the function ppp is an object of class "ppp" representing a point
pattern inside a rectangle.

If the natural window for the point pattern is not a rectangle, then you need to use a
command like

> ppp(x, y, window = W)

where W is a window object. See Section 8.5 for details on how to do this.
For example, the following code reads raw data from a text file in table format, and creates
a point pattern:

TRUE)

mydata <- read.table("mydatafile.txt", header
east <- mydata$Easting

north <- mydata$Northing

X <- ppp(east, north, c(174, 178), c(29, 33))

vV VvV Vv V

A slicker way to do the same thing is:

TRUE)

> mydata <- read.table("mydatafile.txt", header
attach (mydata)
X <- ppp(Easting, Northing, c(174, 178), c(29, 33))

VvV Vv

Copyright (©CSIRO 2010

40 Entering point pattern data into spatstat

6.3 Marks

Recall that a ‘mark’ is an additional attribute of each point in a point pattern. For example, in
addition to recording the locations of trees in a forest, we could also record the species, diameter
and height of each tree, a chemical analysis of the leaves of each tree, etc.

Suppose x and y are vectors containing the coordinates of the point locations, as before. If
there are marks attached to the points, store the corresponding marks in a vector m (with one
entry for each point) or in a matrix or data frame m (with one row for each point and one column
for each mark variable).Recall that a ‘mark’ is an additional attribute of each point in a point
pattern. For example, in addition to recording the locations of trees in a forest, we could also
record the species, diameter and height of each tree, a chemical analysis of the leaves of each
tree, etc.

Suppose x and y are vectors containing the coordinates of the point locations, as before. If
there are marks attached to the points, store the corresponding marks in a vector m (with one
entry for each point) or in a matrix or data frame m (with one row for each point and one column
for each mark variable). Then create the marked point pattern by

> ppp(x, y, xrange, yrange, marks = m)

For example, the following code reads raw data from a text file in table format, and creates
a point pattern with a column of numeric marks containing the tree diameters:

> mydata <- read.table("mydatafile.txt", header = TRUE)
> attach(mydata)
> X <- ppp(Easting, Northing, c(174, 178), c(29, 33), marks = Diameter)

An even slicker way to do this is to convert the data frame directly into a point pattern using
the conversion operator as.ppp:

> mydata <- read.table("mydatafile.txt", header = TRUE)
> X <- as.ppp(mydata, owin(c (174, 178), c(29, 33)))

The handling of marks in spatstat depends on what type of data they are. Mark values
may belong to any of the atomic data types: numeric, integer, character, logical, or complex.
They may also be a factor, representing categorical values (see below).

Use the commands is.numeric, is.integer, ..., is.factor to test whether your data
have the intended type. In a matrix, all the entries have the same atomic type, so you can ask
is.numeric(m) where m is a matrix. A data frame is like a matrix except that different columns
may have different types. You can ask is.numeric(m[,2]) to find out if column 2 in the data
frame m contains numeric data.

Here is the typical output from plot.ppp when the marks are numeric:

> data(longleaf)
> plot(longleaf)

0 20 40 60 80
0.000000 1.722522 3.445045 5.167567 6.890090

Copyright (©CSIRO 2010

6.4 Categorical marks 41

longleaf

The last line of output is the return value from plot (longleaf), which indicates the scale used
to plot the marks. The mark value 20 was plotted as a circle of radius 1.72.

6.4 Categorical marks

When the mark is a categorical variable, we have a multitype point pattern. The ‘types’ are the
different levels of the mark variable. The mark values should be stored as a ‘factor’ in
R.

Here’s an example of an installed dataset with categorical marks:

> data(demopat)
> demopat

marked planar point pattern: 112 points

multitype, with levels = A B

window: polygonal boundary

enclosing rectangle: [525, 10575] x [450, 7125] furlongs

The output (from the spatstat function print.ppp) indicates that this is a multitype point
pattern. Here is the vector of marks:

> marks (demopat)

[1]] ABBABBBAAABAABBAAABBAAAABBBAABBBBBAAB
[33] AABBAABBBBABBBBBBBAAABABABBBBBABBAABB
[75] BBBABBAABABBBABABBBBBAABABBBBBAAABABBEB

[112] A
Levels: A B

This output (from the base R system) indicates that marks (demopat) is a factor with levels
A and B.

> m <- marks(demopat)
> is.factor (m)

[1] TRUE

Copyright (©CSIRO 2010

42 Entering point pattern data into spatstat

If the marks are intended to be a categorical variable, ensure that m is stored as
a ‘factor’.
Here is the typical output from plot.ppp when the marks are a factor:

> plot (demopat)

A B
12

demopat

The last line of output indicates how the marks were plotted: the mark A was plotted as
symbol 1 (circle) and mark B was plotted as symbol 2 (triangle).

Notice that the factor levels are sorted alphabetically (by default). This is one of the common
slip-ups with factors in R. To stipulate a different ordering of the levels, do something like

> levels(marks (demopat)) <- c("B", "A")

Tip: whenever you create a factor x, check that the factor levels are as you intended,
using levels(x).

Other ways of adding marks to a point pattern will be described in Section 32.

6.5 Multivariate marks

The marks attached to a point pattern may be multivariate (i.e. several variables are attached
to each point). For example, the finpines point pattern is marked by tree diameter and tree
height.

> data(finpines)
> finpines

marked planar point pattern: 126 points
Mark variables: diameter, height
window: rectangle = [-5, 5] x [-8, 2] metres

To create such a point pattern, the mark data should be supplied as a data frame. It’s
important to check that each column of data has the intended type — especially for columns
that are intended to be factors.

When a point pattern with multivariate marks is plotted, only one of the columns of marks
will be displayed. By default, the first column is selected. You can select another column using
the argument which.marks.

Copyright (©CSIRO 2010

6.6 Checking data 43

> par(mfrow = c(1, 2))

> plot(finpines)

> plot(finpines, which.marks = "height")
> par(mfrow = c(1, 1))

finpines /3 finpines ~ />

6.6 Checking data

It is prudent to check for quirks in the data.

e Print out the coordinate values and marks to check for errors in data entry, and to deter-
mine whether the coordinates have been rounded.

e Duplicated points are surprisingly common in data files (i.e. where two records in the file
refer to the same (x,y) location). Once you have entered the coordinates into R as a two-
column matrix or a data frame D say, you can check for duplication using the command
any (duplicated(D)). If your data are already in the form of a point pattern X, you can
also type any(duplicated(X)) to detect duplication. To remove duplicated points, type
Y <- unique(X).

e Plotting the point pattern is always wise. Look for unexpected patterns, and points that
lie outside the window.

e On a plot of a point pattern X, you can identify an individual point by typing plot(X);
identify (X) then clicking on the point.

The function ppp automatically checks for duplicated points, and for points that lie outside
the specified window.

6.7 Units

A point pattern X may include information about the units of length in which the z and y
coordinates are recorded. This information is optional; it merely enables the package to print
better reports and to annotate the axes in plots.

If the x and y coordinates in the point pattern P were recorded in metres, type

> unitname (P) <- c("metre", "metres")

Copyright (©CSIRO 2010

44 Entering point pattern data into spatstat

at least in Australia or New Zealand. The two strings are the singular and plural forms of the
unit. In Scandinavia and Germany you would type

> unitname (P) <- "meter"

The measurement unit can also be given as some multiple of a standard unit. If, for example,
one unit for the z and y coordinates equals 42 centimetres, type

> unitname(P) <- list("cm", "cm", 42)

Beware that the unitname applies only to the coordinates, and not to the marks, of a point
pattern.

Altering the unitname in an existing dataset is usually not sensible; it simply alters the
name of the unit, without changing the entries in the z and y vectors. If you want to convert
to different units (e.g. from metres to kilometres or from imperial to metric units), use the
command rescale as described in Section 9.2.4. If you want to actually change the coordinates
by a linear transformation, producing a dataset that is not equivalent to the original one, use
affine.

6.8 Other ways to make point patterns

To create a point pattern object we can either
e create one from raw data using the function ppp
e convert data from other formats (including other packages) using as.ppp
e point-and-click on a graphics device using clickppp
e read data from a file using scanpp
e transform an existing point pattern using a variety of tools
e generate a random pattern using one of the simulation routines
e use one of the standard point pattern datasets supplied with the package.

The package help file help(spatstat) lists all the available options.

Note that it is a standard naming convention in R that, for a class "foo", there should
be a ‘creator’ function foo that creates objects of this class from raw numerical data, and a
‘converter’ function as.foo that converts data from other formats into objects of class "foo".
We adhere to this convention in spatstat:

Class ‘ Creator Converter
"ppp" | PPP as.ppp
"owin" | owin as.owin
"im" im as.im

More alternatives for using ppp will be covered in Section 8.5.

Copyright (©CSIRO 2010

45

7 Converting from GIS formats

There is a wide variety of software packages for handling spatial data, especially Geographical
Information Systems (GIS). These packages use many different formats to represent spatial data.
Typically spatstat does not support these formats: this would not be good software design.

Specialised R packages exist for handling different spatial data file formats. The most useful
ones are rgdal, shapefiles and maptools. These packages will make it possible for you to read
your data from a file into an R session. The rgdal package has the most functionality, but can
sometimes be difficult to install, as it requires installation of an external library on your system.
The packages shapefiles and maptools have no such difficulty.

The package sp provides generic support for spatial data types in R. It enables you to convert
between different representations of your data in R.

The usual procedure for converting spatial data is:

1. read your data file into R using a package designed specifically for that file format (e.g.
shapefiles for ESRI shapefiles), converting it into an R dataset;

2. convert this R dataset into a generic format used by sp;

3. convert the generic sp format to the required spatstat format, using sp.

W readxx “
\ “

This procedure has to be followed separately for different types of spatial data. Point pat-
terns, windows and pixel images are handled slightly differently. If your point pattern locations
are supplied as an ESRI shapefile mypoints.shp, then the commands would be

> S <- readShapePoints("myfile.shp")
> SP <- as(S, "SpatialPoints")
> P <- as(SP, "ppp")

The result is a point pattern (object of class "ppp") in spatstat, but you then need to
assign the correct window to it.

For further details, see the package vignette Handling shapefiles in the spatstat package
which is available by typing vignette("shapefiles"). For further information on handling
GIS formats see [24].

Copyright (©CSIRO 2010

46 Windows in spatstat

8 Windows in spatstat

Many commands in spatstat require us to specify a window, study region or domain. It will
be handy to know more about windows in spatstat.

An object of class "owin" (“observation window”) represents a region or window in two-
dimensional space. The window may be

e a rectangle;
e a polygon or polygons, with polygonal holes; or

e an irregular shape represented by a binary pixel image mask.

Polygonal window Binary mask window

D

Rectangular window

Objects of this class are created by the function owin. There are methods for printing and
plotting windows, and numerous geometrical operations.
8.1 Making windows by hand
8.1.1 Rectangular window
To create a rectangular window, type
> owin(xrange, yrange)

where xrange, yrange are vectors of length 2 giving the x and y dimensions, respectively, of
the rectangle.

> owin(c(0, 3), c(1, 2))

window: rectangle = [0, 3] x [1, 2] units
For a square window you can also use square:

> square(5)

window: rectangle = [0, 5] x [0, 5] units

8.1.2 Circular window
For a circular window use disc:
> W <- disc(radius = 3, centre = c(0, 0))

Currently a circular window is represented as a polygon with a large number of edges.

Copyright (©CSIRO 2010

8.1 Making windows by hand 47

8.1.3 Polygonal window

Spatstat supports polygonal windows of arbitrary shape and topology. That is, the boundary
of the window may consist of one or more closed polygonal curves, which do not intersect
themselves or each other. The window may have ‘holes’. Type

> owin(poly = p)
or
> owin(poly = p, xrange, yrange)

to create a polygonal window. The argument poly=p indicates that the window is polygonal
and its boundary is given by the dataset p. Note we must use the “name=value” syntax to give
the argument poly. The arguments xrange and yrange are optional here; if they are absent,
the z and y dimensions of the bounding rectangle will be computed from the polygon.

If the window boundary is a single polygon, then p should be a matrix or data frame with
two columns, or a list with components x and y, giving the coordinates of the vertices of the
window boundary, traversed anticlockwise. For example, the triangle with corners (0,0),
(1,0) and (0,1) is created by

> Z <- owin(poly = list(x = c(0, 1, 0), y = c(0, 0, 1)))
> plot(Z)

Note that polygons should not be closed, i.e. the last vertex should not equal the first
vertex. The same convention is used in the standard plotting function polygon().

If the window boundary consists of several separate polygons, then p should be a list, each
of whose components p[[i]] is a matrix or data frame or a list with components x and y
describing one of the polygons. The vertices of each polygon should be traversed anticlockwise
for external boundaries and clockwise for internal boundaries (holes). For example,
the following creates a triangle with a square hole.

> Z <~ owin(poly = list(list(x = c(0, 8, 0), y = c(0, 0, 8)), list(x = c(2,
+ 2,3, 3,y=c, 3, 3, 2)))
> plot(2)

Copyright (©CSIRO 2010

48 Windows in spatstat

[]

Notice that the first boundary polygon is traversed anticlockwise and the second clockwise,
because it is a hole.
It is often useful to plot a polygonal window with line shading:

> plot(Z, hatch = TRUE)

8.1.4 Binary mask
A window may be defined by a discrete pixel approximation. Type
owin(mask=m, xrange, yrange)

to create the window object. Here m should be a matrix with logical entries; it will be interpreted
as a binary pixel image whose entries are TRUE where the corresponding pixel belongs to the
window.

The rectangle with dimensions xrange, yrange is divided into equal rectangular pixels. The
correspondence between matrix indicesm[i, j] and cartesian coordinates is slightly idiosyncratic:
the rows of m correspond to the y coordinate, and the columns to the z coordinate. The entry
m[i,j] is TRUE if the point (xx[j]1,yy[il) (sic) belongs to the window, where xx, yy are
vectors of pixel coordinates equally spaced over xrange and yrange respectively. The length of
xx is ncol(m) while the length of yy is nrow(m).

In some GIS applications the study region will be given as a binary pixel image. A safe
strategy is to dump the data from the GIS system to a text file, and read the text file into R
using scan. Then reformat it as a matrix, and use owin to create the window object.

To convert a rectangle or polygonal window to a binary mask, use as.mask.

> Z <- owin(poly = list(x = c(0, 1, 0), y = c(0, 0, 1)))
> W <- as.mask(Z)
> plot (W)

Copyright (©CSIRO 2010

8.2 Converting from GIS formats 49

8.2 Converting from GIS formats

If your window (spatial region) is supplied as an “ESRI shapefile” with a name like myfile. shp,
then type the following:

> library(maptools)

> S <- readShapePoly("myfile.shp")
> library(sp)

> SP <- as(S, "SpatialPolygons")

> W <- as(SP, "owin")

The readShapePoly command reads the file myfile.shp and returns an object S of class
"SpatialPolygonsDataFrame". The next command converts this to an object of class "SpatialPolygons"
and the last command converts this in turn into a window (object of class "owin") in spatstat.

For further information on handling GIS formats see [24] or vignette("shapefiles").

8.3 Functions that make a window

Some functions make a window object. They include

as.owin Convert other data to a window object
as.polygonal Convert a window to a polygonal window

as.mask Convert a window to a binary image mask window
disc Create a circular window

clickpoly The user draws a polygon on the screen
bounding.box Bounding box of a window

bounding.box.xy Bounding box of a point pattern

convexhull.xy Convex hull of a point pattern

ripras Ripley-Rasson estimator of window, given only the points
trim.rectangle Cut off side(s) of a rectangle

levelset Level set of a pixel image

solutionset Solution of an equation involving pixel image(s)
tiles List of the tiles in a tessellation.

For example, the dataset bei.extra$elev is a pixel image containing altitude (elevation)
values for a study region. To find the subset where altitude exceeds 145,

> elev <- bei.extra$elev
> W <- levelset(elev, 145, ">")
> plot (W)

Copyright (©CSIRO 2010

50 Windows in spatstat

The result W is a window.

The accompanying dataset bei.extra$grad is a pixel image of the slope (gradient) of the
terrain. To find the subset where altitude is below 140 and slope exceeds 0.1,

> grad <- bei.extra$grad
> V <- solutionset(elev <= 140 & grad > 0.1)
> plot (V)

8.4 Operations on windows

Basic methods for the class "owin" include

print.owin print short description of a window
summary.owin print detailed summary of a window
plot.owin plot a window

Numerous geometrical operations are implemented for window objects. They include:

Copyright (©CSIRO 2010

8.5 Creating a point pattern in any window 51

as.polygonal Convert a window to a polygonal window

as.mask Convert a window to a binary image mask window
as.rectangle Extract the bounding rectangle of a window
area.owin compute window’s area

diameter compute window’s diameter

perimeter compute window’s perimeter length
intersect.owin intersection of two windows

union.owin union of two windows

setminus.owin set difference of two windows

is.subset.owin determine whether one window contains another
complement.owin swap inside and outside

bounding.box Find a tight bounding box for the window
convexhull Convex hull of a window

is.convex Test whether a window is convex

rotate rotate window

shift translate window

affine apply affine transformation

rescale change scale and adjust units

as.mask convert window to binary image mask
pixellate.owin convert window to pixel image
dilate.owin morphological dilation

dilation.owin morphological dilation

erode.owin morphological erosion

erosion.owin morphological erosion

opening.owin morphological opening

closing.owin morphological closing

dilated.areas compute areas of dilated windows
eroded.areas compute areas of eroded windows

border create a border region around a window
inside.owin determine whether a point is inside a window
distmap.owin distance transform image

distfun.owin distance transform function
centroid.owin compute centroid (centre of mass) of window
incircle find largest circle inside window
simplify.owin Approximate window by a polygon
deltametric Measure discrepancy between two windows

8.5 Creating a point pattern in any window

As we saw in Section 6.2, the function ppp() will create a point pattern (an object of class
"ppp") from raw numerical data in R.

Suppose the x,y coordinates of the points of the pattern are contained in vectors x and y of
equal length. Then

ppp(x, y, other.arguments)

will create the point pattern. The ‘other arguments’ must determine a window for the pattern,
in one of two ways:

e the other arguments can be passed to owin to determine a window:

Copyright (©CSIRO 2010

52 Windows in spatstat

ppp(x, y, xrange, yrange) point pattern in rectangle

ppp(x, vy, poly=p) point pattern in polygonal window
ppp(x, y, poly=p, xrange, yrange) point pattern in polygonal window
ppp(x, y, mask=m, xrange, yrange) point pattern in binary mask window

e if Wis a window object (class "owin") then
> ppp(x, y, window = W)
will create the point pattern.

You may already have a window W (an object of class "owin") ready to hand, and now want
to create a pattern of points in this window. For example you may want to put a new point
pattern inside the window of an existing point pattern X; the window is accessed as X$window,
SO type

ppp(x, y, window=X$window)

Copyright (©CSIRO 2010

53

9 Manipulating point patterns

Before proceeding, we need to know more about how to manipulate and interrogate point pattern
data.

9.1 Point pattern objects

A point pattern is represented in spatstat by an object of the class "ppp". This contains the
coordinates of the points, optional ‘mark’ values attached to the points, and a description of the
study region or spatial ‘window’.

9.1.1 Internal Format

WARNING: It is strongly advisable NOT to directly access or modify
the internal components of an object.

It is a “beginner’s mistake” to modify the internal components of a structured object such
as a point pattern (object of class "ppp"). The internal structure of objects in a package can
change from one version of the package to another. It is much safer to use operators defined in
the package to extract and modify information.

However, in the spirit of “open source”, here is a description of the internal format.

A point pattern object P has the following components:

e P$n is the number of points (which may be zero).

e P$x is a numeric vector containing the x coordinates of the points. Its length equals P$n
(and may be zero).

e P3$y is a numeric vector containing the y coordinates of the points. Its length also equals
P$n.

e P$marks contains the marks. It is either NULL, or a vector of length P$n containing the
mark values, or a data frame with P$n rows containing the mark values. The entries of
P$marks may be of any atomic type (character, numeric, integer, logical, complex) or
factor.

e P$window is an object of class "owin" (“observation window”) determining the study
region or spatial ‘window’.

It is possible to extract these components individually; for example, to make a histogram of
the x coordinates you could just type hist (P$x). However, do not assign values to these
components directly, or you may create inconsistencies in the data which cause spatstat to
crash.

To extract or manipulate the data in a point pattern object, use the functions provided in
the package. Important ones are:

npoints(X) number of points in X
marks (X) marks of X

coords (X) coordinates of points in X
as.owin(X) window of X
as.data.frame (X) coordinates and marks of X

marks(X) <- value change the marks of X
coords(X) <- value change the coordinates of X
X [w] change the window of X

Copyright (©CSIRO 2010

54 Manipulating point patterns

9.1.2 A point pattern needs a window

Note especially that, when you create a new point pattern object, you need to specify the spatial
region or window in which the pattern was observed. In spatstat, the observation window is an
integral part of the point pattern. A point pattern dataset consists of knowledge about where
points were not observed, as well as the locations where they were observed. Even something as
simple as estimating the intensity of the pattern depends on the window of observation. It would
be wrong, or at least different, to analyze a point pattern dataset by “guessing” the appropriate
window (e.g. by computing the convex hull of the points). An analogy may be drawn with the
difference between sequential experiments and experiments in which the sample size is fixed a
PTIOTL.

Often, the window of observation is a rectangle, so this requirement just means that we have
to specify the x and y dimensions of the rectangle when we create the point pattern. Windows
with a more complicated shape can easily be represented in spatstat, as described below.

For situations where the window is really unknown, spatstat provides the function ripras
to compute the Ripley-Rasson estimator of the window, given only the point locations.

9.1.3 Order of points

Although a point pattern should (in principle) be treated as an unordered set, the coordinates
are obviously stored in a particular order, and can be addressed using that order.

> data(longleaf)
> as.data.frame(longleaf)[1:5,]

X y marks
1 200.0 8.8 32.9
2 199.3 10.0 53.5
3 193.6 22.4 68.0
4 167.7 35.6 17.7
5 183.9 45.4 36.9

If the marks are a categorical variable, then marks(P) is a factor.

> data(chorley)
> as.data.frame(chorley) [65:60,]

X y marks
55 355.6 413.9 larynx
56 355.5 413.9 larynx
57 355.7 413.9 larynx
58 355.6 414.1 larynx
59 359.0 417.3 1lung
60 353.1 426.9 lung

> type <- marks(chorley)
> is.factor (type)

[1] TRUE

> levels(type)

Copyright (©CSIRO 2010

9.2 Operations on ppp objects 55

[1] "larynx" "lung"
> table(type)

type
larynx lung
58 978

9.2 Operations on ppp objects

Directly manipulating the entries inside an object is not safe. It is also unnecessary, because
these manipulations can be performed using functions or operators.
For point patterns (objects of class "ppp") there are the following operations.

9.2.1 Extracting and altering data

npoints (X) number of points in X
marks (X) marks of X

coords (X) coordinates of points in X
as.owin(X) window of X
as.rectangle(X) bounding rectangle of X
as.data.frame (X) coordinates and marks of X

marks(X) <- value change the marks of X
coords(X) <- value change the coordinates of X
X [w] change the window of X

9.2.2 Extracting a subset of a point pattern

Recall that in R the subset operator is []. If x is a vector of numbers, then x[s] extracts an
element or subset of x. The subset index s can be

e a positive integer: x[3] means the third element of x;

e a vector of positive integers indicating which elements to extract: x[c(2,4,6)] extracts
the 2nd, 4th and 6th elements of x;

e a vector of negative integers indicating which elements mnot to extract: x[-1] means all
elements of x except the first one;

e a vector of logical values, of the same length as x, with each TRUE entry of s indicating
that the corresponding entry of x should be extracted, and FALSE indicating that it should
not be extracted. For example x[x > 3.1] extracts those elements of x which are greater
than 3.1.

To extract a subset of a point pattern in spatstat, we also use the subset operator []. If
X is a point pattern then X[s] is also a point pattern, consisting of those points of X selected by
the subset index s, where s can be any of the three types listed above, (Recall that the points
in a point pattern object are stored in a particular order; this is the order in which they are
indexed by s.)

> data(bei)
> bei

Copyright (©CSIRO 2010

56 Manipulating point patterns

planar point pattern: 3604 points
window: rectangle = [0, 1000] x [0, 500] metres

> beil[1:10]

planar point pattern: 10 points
window: rectangle = [0, 1000] x [0, 500] metres

It is also possible to extract the subset defined by a spatial region. If X is a point pattern
and W is a spatial window (object of class "owin") then X[W] is the point pattern consisting of
all points of X that lie inside W.

> W <- owin(c (100, 800), c(100, 400))
> W

window: rectangle = [100, 800] x [100, 400] units
> bei[W]

planar point pattern: 918 points
window: rectangle = [100, 800] x [100, 400] units

Tip: You may need to put quotes around the subset operator in some contexts.
The generic subset operator is [but the help file is summoned by typing help("[").
The subset method for point patterns is called [.ppp but the help file is summoned

by typing help("[.ppp").

The command split.ppp allows you to divide a point pattern into sub-patterns, and the
command by .ppp allows you to perform an operation on each sub-pattern.

9.2.3 Fiddling with marks
To extract the marks from a point pattern, use marks:
> m <- marks(X)
To add or change marks, use marks<-
> marks(X) <- whatever
To delete marks from a point pattern, assign the marks to NULL:
> marks(X) <- NULL

For convenience, you can also perform these operations inside an expression, using the func-
tion unmark to remove marks and the binary operator %marky to add marks:

> data(redwood)

> radii <- rexp(redwood$n, rate = 10)
> X <- redwood J/mark}), radii

> X

Copyright (©CSIRO 2010

9.2 Operations on ppp objects 57

marked planar point pattern: 62 points
marks are numeric, of type double
window: rectangle = [0, 1] x [-1, O] units

> unmark (X)

planar point pattern: 62 points
window: rectangle = [0, 1] x [-1, O] units

For a point pattern with real-valued marks, the method cut.ppp for the generic function
cut will divide the range of mark values into several discrete bands, yielding a point pattern
with categorical marks:

3)
c(0, 1, 10, Inf))

> Y <- cut(X, breaks
> Y <- cut(X, breaks
>Y

marked planar point pattern: 62 points
multitype, with levels = (0,1] (1,10] (10, Inf]
window: rectangle = [0, 1] x [-1, O] units

9.2.4 Changing scales and units

A scalar dilation can be applied using affine. For example, the Swedish Pines data were
recorded in decimetres. To convert the coordinates to metres, we could type

> data(swedishpines)

> X <- affine(swedishpines, mat = diag(c(1/10, 1/10)))
> unitname (X) <- c("metre", "metres")

> X

planar point pattern: 71 points
window: rectangle = [0, 9.6] x [0, 10] metres

The command rescale performs the same function:

> data(swedishpines)
> X <- rescale(swedishpines, 10)
> X

planar point pattern: 71 points
window: rectangle = [0, 9.6] x [0, 10] metres

Beware that this does not change the marks in the point pattern. If your marks represent
tree diameter and you want to rescale them as well, this must be done by hand.

9.2.5 Geometrical transformations

The commands rotate, shift and affine apply two-dimensional rotation, vector shifts, and
affine transformations, respectively.

Copyright (©CSIRO 2010

58 Manipulating point patterns

9.2.6 Random perturbations of a point pattern

It is sometimes useful to randomise the data, for example for hypothesis testing. The command
rshift will apply the same random shift to each point, while rjitter will apply a different
random shift to each point. The command quadratresample performs a block resampling
procedure in which the window is divided into rectangles and these rectangles are randomly
resampled.

9.3 Example

We will use one of the standard point pattern datasets that is installed with the package. The
NZ trees dataset represent the positions of 86 trees in a forest plot 153 by 95 feet.

> data(nztrees)
> nztrees

planar point pattern: 86 points
window: rectangle = [0, 153] x [0, 95] feet

> plot (nztrees)

nztrees
0,
o) o o o
¢} o o 0°
o o
o
P o o
(o]
")
o 8o o °
o
9 o o
o o o] ° o o
o 8 o 00°
b o o o o
o o o
o o o
o o
oy o o o © °
° o
o 0 o o
o
o 0O o
o o o
oo 0

To get an impression of local spatial variations in intensity, we plot a kernel density estimate
of intensity.

> contour(density(nztrees, 10), axes = FALSE)

density(nztrees, 10)

B A —

0.006
0008
N 0.01 \

The density surface has a steep slope at the top right-hand corner of the study region.
Looking at the plot of the point pattern itself, we can see a cluster of trees at the top right.

Copyright (©CSIRO 2010

9.3 Example 59

You may also notice a line of trees at the right-hand edge of the study region. It looks
as though the study region may have included some trees that were planted as a boundary or
avenue. This sticks out like a sore thumb if we plot the x coordinates of the trees:

> hist(nztrees$x, nclass = 25)

Histogram of nztrees$x

© -
< -
)
o 4
[T T
0 50 100

We might want to exclude the right-hand boundary from the study region, to focus on the
pattern of the remaining trees. Let’s say we decide to trim a 5-foot margin off the right-hand
side.

First we create the new, trimmed study region:

10
|
l

|

1
150

> chopped <- owin(c(0, 148), c(0, 95))
or more slickly,

> win <- nztrees$window

v

chopped <- trim.rectangle(win, xmargin = c(0, 5), ymargin = 0)
> chopped

window: rectangle = [0, 148] x [0, 95] feet

(Notice that chopped is not a point pattern, but simply a rectangle in the plane.)
Then, using the subset operator [.ppp, we simply extract the subset of the original point
pattern that lies inside the new window:

> nzchop <- nztrees[chopped]
We can now study the ‘chopped’ point pattern:
> summary (nzchop)

Planar point pattern: 78 points
Average intensity 0.00555 points per square foot

Window: rectangle = [0, 148]1x[0, 95]feet
Window area = 14060 square feet
Unit of length: 1 foot

> plot(density(nzchop, 10))
> plot (nzchop, add = TRUE)

Copyright (©CSIRO 2010

60 Manipulating point patterns

density(nzchop, 10)

T T
0.015 0.02

T
0.01

0.005

Removing the right margin seems to have produced a much more uniform pattern.

9.4 Splitting and combining point patterns

Sometimes it is useful to split a point pattern dataset into several sub-patterns, and perform
some calculations on each sub-pattern.

9.4.1 Splitting a point pattern into sub-patterns

The powerful R command split has a method for point patterns. This enables the user to
divide a point pattern into sub-patterns using any suitable criterion.

e If X is a marked point pattern, and the marks are a factor, then split(X) separates the
data points into different point patterns according to their mark value.

e If Z is a pixel image with factor values, then split(X,Z) separates the data points into
different point patterns according to the pixel value of Z at each point.

e If Z is a tessellation, then split(X,Z) separates the point pattern X into sub-patterns
delineated by the tiles of Z.

In each case the result is a list of point patterns. You can then use the R command lapply
to perform any desired operation on each element of the list. For example, to apply adaptive
estimation of intensity to each species of tree in the Lansing Woods data,

> data(lansing)

> V <- split(lansing)

> A <- lapply(V, adaptive.density)
> plot(as.listof(4))

A neater way to operate on sub-patterns is to use by.ppp, a method for the R function
by. The call by(X, INDICES=Z, FUN=f) is essentially equivalent to lapply(split(X,Z), f).
It splits the dataset X into sub-patterns according to Z, then applies the function f to each
sub-pattern. So to apply adaptive estimation of intensity to each species of tree in the Lansing
Woods data,

> data(lansing)
> A <- by(lansing, FUN = adaptive.density)
> plot(4)

Copyright (©CSIRO 2010

9.5 List of operations on point patterns 61

9.4.2 Combining point patterns

Any number of point patterns can be combined to make a single pattern, using superimpose.

> X <- runifpoint(20)
> Y <- runifpoint (10)
> superimpose (X, Y)

planar point pattern: 30 points
window: rectangle = [0, 1] x [0, 1] units

The argument W, if given, specifies the window for the combined point pattern.

> superimpose(X, Y, W = square(2))

planar point pattern: 30 points
window: rectangle = [0, 2] x [0, 2] units

To attach a separate mark to each component pattern, use argument names:

> superimpose (Hooray = X, Boo = Y)

marked planar point pattern: 30 points
multitype, with levels = Hooray Boo
window: rectangle = [0, 1] x [0, 1] units

9.5 List of operations on point patterns

Here’s a summary of basic operations available for a point pattern X.

Copyright (©CSIRO 2010

62 Manipulating point patterns

X print basic info

print(X) print basic info

summary (X) print detailed summary

npoints(X) number of points

coords (X) extract coordinates of points

coords (X)<-value assign new coordinates to points

marks (X) extract marks from point pattern

marks (X)<-value assign new marks to point pattern

unmark (X) remove marks

marks (X) <-NULL remove marks

as.owin(X) extract window of point pattern

X [subset] subset of point pattern

plot(X) plot a point pattern

superimpose (X1, X2,...) combine several point patterns
duplicated(X) detect duplicated points

unique (X) remove duplicated points

identify(X) point-and-click to identify individual points
cut(X, ...) classify points into groups

split(X) divide pattern into sub-patterns

by (X, ...) apply function to sub-patterns
discretise(X) discretise coordinate values

pixellate(X) approximate point pattern by pixel image
as.im(X) approximate point pattern by pixel image
rotate(X, ...) rotate entire point pattern and window
shift(X, ...) shift entire point pattern and window
affine(X, ...) affine transformation

density (X) kernel smoothed intensity estimate
smooth.ppp (X) spatial interpolation of mark values
convexhull (X) convex hull of point pattern

delaunay (X) Delaunay triangulation of point pattern
dirichlet (X) Dirichlet-Voronoi tessellation based on point pattern
periodify(X) make several translated copies of point pattern
rlabel (X) random re-labelling of multitype point pattern
rshift (X) random shifting of points

Copyright (©CSIRO 2010

63

10 Pixel images in spatstat

An object of class "im" represents a pixel image. It specifies a rectangular grid of locations
(“pixels”) in two dimensional space, and a numerical value for each pixel. The pixel values
can be real numbers, integers, complex numbers, single characters or strings, logical values or
categorical values. A pixel’s value can also be NA, meaning that it is not defined at that location.

A pixel image represents a spatial function Z(u) in many different contexts. It may contain
experimental data (such as a map of terrain elevation) or computed values (such as a kernel
estimate of point process intensity) or it may be directly obtained from a camera (such as a
satellite image).

10.1 Creating a pixel image
10.1.1 Creating an image from raw data

To create a pixel image from raw data, use im:
> im(mat, xcol, yrow)

where mat is a matrix containing the pixel values. The pixel values could have been generated
by hand, or read from a file.

The correspondence between matrix indices mat [i,j] and cartesian coordinates is slightly
idiosyncratic: the rows of m correspond to the y coordinate, and the columns to the x coordinate.

The argument xcol is a vector of equally-spaced x coordinate values corresponding to the
columns of mat, and yrow is a vector of equally-spaced y coordinate values corresponding to
the rows of mat. These vectors determine the spatial position of the pixel grid. The length of
xcol is ncol(mat) while the length of yrow is nrow(mat). If mat is not a matrix, it will be
converted into a matrix with nrow(mat) = length(yrow) and ncol(mat) = length(xcol).

> vec <- seq(-5, 5, length = 1200) + rnorm(1200)

> mat <- matrix(vec, nrow = 30, ncol = 40)

> noisy <- im(mat, xcol = seq(0, 4, length = 40), yrow = seq(0,
+ 3, length = 30))

> plot(noisy)

noisy

-5

Copyright (©CSIRO 2010

64 Pixel images in spatstat

10.1.2 Factor valued images

For some strange reason, R does not allow matrices with categorical (factor) values, and many
operations that create factors in R will convert a matrix to a vector.

> cutvec <- cut(mat, 3)
> is.factor(cutvec)

[1] TRUE
> is.matrix(cutvec)
[1] FALSE

Although mat was a matrix, cutvec is a vector, with factor values.
To create a pixel image with categorical values, leave the pixel values as a vector, and let
the im reshape it:

> cutnoise <- im(cutvec, xcol = seq(0, 1, length = 40), yrow = seq(0,
+ 1, length = 30))
> cutnoise

factor-valued pixel image

factor levels:

(1] "(-7.33,-2.43]" "(-2.43,2.47]" "(2.47,7.37]"

30 x 40 pixel array (ny, nx)

enclosing rectangle: [-0.012821, 1.0128] x [-0.017241, 1.0172] units

> plot(cutnoise)

cutnoise

(-2.43,2.47] (2.47,7.37)

(-7.33,-2.43]

[Another alternative is to create an integer-valued matrix, and assign a levels attribute to
it. This will be interpreted as a matrix with categorical values. |

10.1.3 Converting a function to an image

The command as.im will convert other types of data to a pixel image.
A function f (x,y) can be converted into a pixel image. This makes it easy to create a pixel
image in which the pixel values are defined by an algebraic formula in the x and y coordinates.

Copyright (©CSIRO 2010

10.2 Inspecting an image

vV VvV + + V

f <- function(x, y) {

}

X2+ y"2

w <- owin(c(-1, 1), c(-1, 1))
Z <- as.im(f, w)

The second argument of as.im is a window object (class "owin") specifying the domain of

the image.

10.1.4 Functions that return a pixel image

Functions that return an object of class "im" include:

10.2

as.im
density.ppp
density.psp
pixellate.ppp
pixellate.psp
pixellate.owin
distmap.owin
distmap.ppp
distmap.psp
setcov
connected
predict.ppm
[.im
shift.im
rescale.im
eval.im
cut.im
split.im
by.im
interp.im
blur

converts other data to a pixel image

kernel smoothing of point pattern

kernel smoothing of line segment pattern
approximate point pattern by pixel image
approximate line segment pattern by pixel image
approximate window by pixel image
distance function of window

distance function of point pattern

distance function of line segment pattern
geometric covariance function of a window
identify connected components of a window
fitted intensity of a point process model
subset of an image (or look up pixel values)
vector shift of image domain

rescaling of image domain

evaluate any expression involving images
convert numeric image to factor image
divide pixel image into sub-images

apply function to subsets of pixel image
spatial interpolation of image

spatial blurring and extrapolation of image

Inspecting an image

10.2.1 Basic information

For basic information about an image Z, use the following;:

Copyright (©CSIRO 2010

66

Pixel images in spatstat

Z print basic information
print(Z) print basic information
summary (Z) print detailed information
dim(Z) pixel raster dimensions (y,)
nrow(Z) number of rows (y coordinate)
ncol(Z) number of columns (z coordinate)
range(Z) range of pixel values

max (Z) maximum of pixel values
min(Z) minimum of pixel values

mean (Z) mean of pixel values
median(Z) median of pixel values
quantile(Z, quantiles of pixel values
sum(Z) sum of pixel values

integral.im(Z) sum of pixel values times pixel area
To compute other numerical summaries of pixel values that are not on this list, you can
extract the pixel values using as.matrix(Z) then apply the desired operation.

10.2.2 Plotting an image

Methods for plotting an image object include:
plot.im display as colour image
contour.im contour plot
persp.im perspective plot of surface
These are methods for generic functions, so you would type plot(Z), contour (Z) or persp(Z)
to display a pixel image Z

> opa <- par(mfrow = c(1, 3))
> data(redwood)

> D <- density(redwood)

> plot (D)

> persp(D)

> contour (D)

> par(opa)

120

100

80

ﬁk\\@o

60

40

20

For plot.im, note that the default colour map for image plots in R has only 12 colours
and can convey a misleading impression of the gradation of pixel values in the image. Use the
argument col to control the colour map.

> opa <- par(mfrow = c(1, 2))
> plot (D)

Copyright (©CSIRO 2010

10.2 Inspecting an image 67

> plot(D, col = grey(seq(1, 0, length = 512)))

v

> par(opa)

T
120
120

T T
80 100
100

80

I
60
60

40
40

20
20

In the example above, the argument col was a vector of colour data. The range of pixel
values in the image Z was mapped to these colours. Unfortunately this means that if we plot
two images Z1, Z2 using the same col vector, the interpretation of the colours will be different!
To avoid this, set the argument col to be an object of the special class "colourmap", created by
the function colourmap. An object of this class specifies a mapping between numerical values
and colours.

> mymap <- colourmap(grey(seq(1, 0, length = 512)), range = c(0,
+ 140))
> plot(D, col = mymap)

D

40 60 80 100 120 140

20

See help(colourtools) for tools that manipulate colours.

For persp.im, see also the help for persp.default for the names of various arguments to
control the appearance of the plot. For example, the viewing direction is controlled by the angles
theta and phi.

> persp(density(redwood), theta = 30)

Copyright (©CSIRO 2010

68

Pixel images in spatstat

density(redwood)

N\ AORORIRN
QRN
R
X

RN
RN
RN

(poompai)Alsuap

2
LR

DR
ooy,
DAL
S
et ety

Similarly for contour.im, consult also the help file for contour.default to control the

appearance of the contours.

For some inspiring examples of perspective and contour plots with beautiful colour schemes
and shading, see the R graphics demonstration by typing demo (graphics).

10.2.3 Exploratory analysis

To inspect an image, the following are useful.

as.matrix extract matrix of pixel values from image

cut.im convert numeric image to factor image
hist.im histogram of pixel values
ecdf.im cumulative distribution function of pixel values

For an image Z with any type of values, plot(cut(zZ, 3)) will divide the pixel values into
3 bands, and display the image with the 3 bands rendered in 3 different colours.

To study the relation between two or more images, it’s useful to display the pairs plot, a
scatterplot of the corresponding pixel values of each image. See pairs.im.

> data(lansing)

> pairs(density(split(lansing)[c(2, 3, 5)]))

Copyright (©CSIRO 2010

10.3 Manipulating images 69

T
1600

T
1200

hickory

T
800

T
400

1000

600
1

maple

200
1

T
500

redoak "

T
300

100

400 800 1200 1600 100 300 500

This command divided the Lansing Woods point pattern dataset into 6 sub-patterns of
different tree species, extracted the 3 most common species, computed the kernel smoothed
intensity estimate for each species, and then displayed scatterplots of the intensity estimates for
each pair of species. The plot suggests that hickory and maple trees are strongly segregated
from one another (since a high density of hickories is strongly associated with a low density of
maples).

10.3 Manipulating images

10.3.1 Subsets of an image

The subset operator [has a method for pixel images, [.im:

> X[s]
> X[S, drop = TRUE]

The subset to be extracted is determined by the index argument S.

e If Sis a point pattern, or a 1ist(x,y), then the values of the pixel image X at these points
are extracted, and returned as a vector.

e If S is a window (an object of class "owin"), the values of the image inside this window
are extracted. The result is a pixel image if possible, and a numeric vector otherwise (see
help("[.im") for details).

Copyright (©CSIRO 2010

70 Pixel images in spatstat

e If S is a pixel image with logical values, it is interpreted as a window (with TRUE inside
the window).

The logical argument drop determines whether pixel values that are undefined are omitted
(drop = TRUE) or returned as the value NA (drop=FALSE).

See help("[.im") for full details.

The subset operator can be used to look up the value of a pixel image at a single point:

> data(bei)
> elev <- bei.extra$elev
> elev[list(x = 142, y = 356)]

[1] 147.08
or to display a subregion:

> S <- owin(c (200, 300), c(100, 200))
> plot(elev[S])

-

elev[S]

T
1405 141 1415 142 1425 143 1435

[
—

This can even be performed interactively, using the R function locator to click on a point
in the window:

> elev[locator(1)]

10.3.2 Computation with images

The handy function eval.im allows us to perform pixel-by-pixel calculations on an image or on
several compatible images.
If Z is a pixel image, to take the logarithm of each pixel value,

> logZ <- eval.im(log(Z))

If A and B are two pixel images with compatible grids of pixels (i.e. having the same numbers
of pixels and the same coordinate locations), then to find the sum of the corresponding pixel
values,

> C <- eval.im(A + B)

The expressions may involve constants and functions as well, so long as the expression is
‘parallelised’.

Copyright (©CSIRO 2010

71

> W <- eval.im(sin(pi * Z))
>V <- eval.im(Z > 3)
> U <- eval.im(ifelse(Z > 3, 42, Z))

Other functions which manipulate images include the following:

shift.im vector shift of an image

cut.im convert numeric image to factor image
split.im divide pixel image into sub-images
by.im apply function to subsets of pixel image
interp.im spatially interpolate an image

levelset threshold an image (produces a window)

solutionset find the region where a statement is true (produces a window)

11 Tessellations

A “tessellation” is a division of space into non-overlapping regions (“tiles”).

Tessellation

Tessellations have several uses in spatstat. The tessellation may be ‘real’; for example,
a continent divided into states or provinces. The tessellation may be completely artificial, for
example, the rectangular quadrats which we use in quadrat counting. Or the tessellation may
be computed from other data, for example, the Dirichlet tessellation defined by a set of points.

11.1 Creating a tessellation

An object of class "tess" represents a tessellation. Currently spatstat supports three kinds of
tessellations:

e rectangular tessellations in which the tiles are rectangles with sides parallel to the
coordinate axes;

e tile lists, tessellations consisting of a list of windows, usually polygonal windows;

e pixellated tessellations, in which space is divided into pixels and each tile occupies a
subset of the pixel grid.

Copyright (©CSIRO 2010

72 Tessellations

All three types of tessellation can be created by the command tess.
To create a rectangular tessellation:

> tess(xgrid = xg, ygrid = yg)

where xg and yg are vectors of coordinates of vertical and horizontal lines determining a
grid of rectangles. Alternatively, if you want to divide a rectangular window W into rectangles
of equal size, you can type

> quadrats (W, nx, ny)

where nx,ny are the numbers of rectangles in the x and y directions, respectively. A common
use of this command is to create quadrats for a quadrat-counting method.
To create a tessellation from a list of windows,

> tess(tiles = z)

where z is a list of objects of class "owin". The windows should not be overlapping; currently
spatstat does not check this. This command is commonly used when the study region is divided
into administrative regions (states, départements, postcodes, counties) and the boundaries of
each sub-region are provided by GIS data files.

To create a tessellation from a pixel image,

> tess(image = Z)

where Z is a pixel image with factor values. Each level of the factor represents a different tile
of the tessellation. The pixels that have a particular value of the factor constitute a tile. This
command is often used to separate the landcover types in a landcover image (a pixel image in
which each pixel is labelled by the type of vegetation or land use at that location) into different
regions.

The command as.tess can also be used to convert other types of data to a tessellation.

11.2 Computed tessellations

There are two commands which compute a tessellation from a point pattern.

The command dirichlet (X) computes the Dirichlet tessellation or Voronoi tessellation of
the point pattern X. The tile associated with a given point of the pattern X is the region of space
which is closer to that point than to any other point of X. The Dirichlet tiles are polygons. The
command dirichlet (X) computes these polygons and intersects them with the window of X.

> X <- runifpoint (42)
> plot(dirichlet (X))

Copyright (©CSIRO 2010

11.3 Operations involving a tessellation 73

dirichlet(X)

The command delaunay(X) computes the Delaunay triangulation of the point pattern X.
Strictly speaking this is not a tessellation but a network or graph, formed by joining some of the
points of X by straight lines. Two points of X are joined if their Dirichlet tiles share a common
edge. The resulting network forms a set of non-overlapping triangles. These triangles cover the
convex hull of X rather than the entire window of X.

> plot(delaunay (X))

delaunay(X)

11.3 Operations involving a tessellation

There are methods for print, plot and [for tessellations.

Use the command tiles to extract a list of the tiles in a tessellation. The result is a list
of windows ("owin" objects). This can be handy if, for example, you want to compute some
characteristic of the tiles in a tessellation, such as their areas or diameters:

> X <- runifpoint(10)

> V <- dirichlet(X)

> U <- tiles(V)

> unlist(lapply (U, area.owin))

Copyright (©CSIRO 2010

74 Tessellations

Tile 1 Tile 2 Tile 3 Tile 4 Tile 5 Tile 6 Tile 7
0.17096279 0.09645337 0.02587679 0.18646932 0.15352600 0.07760811 0.03357145
Tile 8 Tile 9 Tile 10

0.01904539 0.15038824 0.08609854

Tessellations can be used to classify the points of a point pattern, in split.ppp, cut.ppp
and by .ppp. If X is a point pattern and V is a tessellation, then

e cut (X,V) attaches marks to the points of X identifying which tile of V each point falls into;

e split(X,V) divides the point pattern into sub-patterns according to the tiles of V, and
returns a list of the sub-patterns;

e by (X,V,FUN) divides the point pattern into sub-patterns according to the tiles of V, applies
the function FUN to each sub-pattern, and returns the results as a list.

> par(mfrow = c(1, 3))

> X <- runifpoint (100)

> plot (X)

> Z <- dirichlet(runifpoint (16))
> plot(Z)

> plot(cut(X, Z))

NN
w w
NS
[$20Ne)]
[e))}

8 910 11 12 13 14 15 16
8 910 11 12 13 14 15 16

> par (mfrow = c(1, 1))

X z cut(X, 2)

> plot(split(X, Z))

Copyright (©CSIRO 2010

11.3 Operations involving a tessellation 75

split(X, 2)

1
5
9
13
3
o o
o

If we plot two tessellations on the same spatial domain, what we see is another tessellation.
The “intersection” (or “overlay” or “common refinement”) of two tessellations X and Y is the
tessellation whose tiles are the intersections between tiles of X and tiles of Y. The command
intersect.tess computes the intersection of two tessellations.

> opa <- par(mfrow = c(1, 3))
> plot(X)

> plot(Y)

> plot(intersect.tess(X, Y))
> par (opa)

X Y intersect.tess(X, Y)

]

RNVN
e

Copyright (©CSIRO 2010

76 Tessellations

Other operations for tessellations include:
bdist.tess compute distance from tile to boundary line
chop.tess divide tessellation along a line
rpoislinetess generate tessellation based on random lines

Copyright (©CSIRO 2010

11.3 Operations involving a tessellation 77

PART III. INTENSITY

Finally we can start working on statistical methods for analysing point pattern data. Part III of
the workshop discusses how to investigate the intensity of a point pattern, and its dependence

on covariates.

Copyright (©CSIRO 2010

78 Exploring intensity

12 Exploring intensity

When we analyse numerical data, we often begin by taking the sample mean. The analogue of
the mean or expected value of a random variable is the intensity of a point process.

‘Intensity’ is the average density of points (expected number of points per unit area). In-
tensity may be constant (‘uniform’ or ‘homogeneous’) or may vary from location to location
(‘inhomogeneous’). Investigation of the intensity should be one of the first steps in analysing a
point pattern.

12.1 Uniform intensity
12.1.1 Theory

If the point process X is homogeneous, then for any sub-region B of two-dimensional space, the
expected number of points in B is proportional to the area of B:

E[N(X N B)] = Aarea(B)

and the constant of proportionality A is the intensity. Intensity units are numbers per unit
area (length_Q). If we know that a point process is homogeneous, then the empirical density of
points,

n(x)

A= area(V)

is an unbiased estimator of the true intensity A.

12.1.2 Implementation in spatstat

To compute the estimator \ in spatstat, use summary.ppp:

> data(swedishpines)
> summary (swedishpines)

Planar point pattern: 71 points
Average intensity 0.0074 points per square unit (one unit = 0.1 metres)

Window: rectangle = [0, 96]x[0, 100]units

Window area = 9600 square units
Unit of length: 0.1 metres

The estimated intensity is A = 0.0074 points per square unit. To extract this intensity value,
type

> lamb <- summary (swedishpines)$intensity
> lamb

[1] 0.007395833

The units are decimetres, so this is 0.74 points per square metre.

Copyright (©CSIRO 2010

12.2 Inhomogeneous intensity 79

12.2 Inhomogeneous intensity
12.2.1 Theory

In general the intensity of a point process will vary from place to place. Assume that the
expected number of points falling in a small region of area du around a location u is equal to
M) du. Then A\(u) is the “intensity function” of the process, satisfying

E[N(X N B)| = / Alu) du
B
for all regions B.
More generally there could be singular concentrations of intensity (e.g. earthquake epicentres
may be concentrated along a fault line) so that an intensity function does not exist. Then we
speak of the “intensity measure” A defined by

A(B) = E[N(X N B)]

for each B C R?, assuming the expectation is finite.

If it is suspected that the intensity may be inhomogeneous, the intensity function or intensity
measure can be estimated nonparametrically by techniques such as quadrat counting and kernel
smoothing.

In quadrat counting, the window W is divided into subregions (‘quadrats’) Bj,..., B, of
equal area. We count the numbers of points falling in each quadrat, n; = n(x N B;) for j =
1,...,m. These are unbiased estimators of the corresponding intensity measure values A(B;).

The usual kernel estimator of the intensity function is

n

Mu) = e(u) Y w(u—), (1)

i=1

where x(u) is the kernel (an arbitrary probability density) and
e(u)™ = / K(u —v)dv (2)
W
is an edge effect bias correction. Clearly X(u) is an unbiased estimator of

A (u) = e(u) /W K(u — v)A(v) dv,

a smoothed version of the true intensity function A\(u). The choice of smoothing kernel involves
a tradeoff between bias and variance.
Intensity can also be estimated using parametric methods, as we explain in Section 15.

12.2.2 Implementation in spatstat

Quadrat counting is performed in spatstat by the function quadratcount.

> data(bei)
> quadratcount(bei, nx = 4, ny = 2)

X
y [0,250] (250,500] (500,750] (750,1e+03]
(250,500] 666 677 130 481
[0,250] 544 165 643 298

Copyright (©CSIRO 2010

80 Exploring intensity

> @ <- quadratcount(bei, nx = 6, ny = 3)
> plot(bei, cex = 0.5, pch = "+")
> plot(Q, add = TRUE, cex = 2)

The value returned by quadratcount is an object belonging to the special class "quadratcount".
We have used the plot method for this class to get the display above.

Kernel density (or intensity) estimation using an isotropic Gaussian kernel is implemented
in spatstat by the function density.ppp, a method for the generic command density.

> den <- density(bei, sigma = 70)
> plot(den)
> plot(bei, add = TRUE, cex

0.5)

den

0.02

T
0.015

T
0.01

0.005

The value returned by density.ppp is a pixel image (object of class "im"). This class has
methods for print, summary, plot, contour (contour plots), persp (perspective plots) and so
on.

> persp(den)

Copyright (©CSIRO 2010

12.2 Inhomogeneous intensity

81

den

1211
%
%

N
N
N
§
N
N

110700500

7

77),
e s s

mminane

i
ERNEN
R RR AR

”
7
7
.
nik
st
nix

> contour(den, axes = FALSE)

den
)
%, 0018
.
0.014
0.004

0.008
0.01
0.012
0.014
0.016
% 018

/

%0y,

Alternatively, there is an adaptive estimator of intensity which uses a fraction f of the
data to construct a Dirichlet tessellation, then forms an intensity estimate that is constant in

each tile of the tessellation:

> aden <- adaptive.density(bei, f = 0.01, nrep = 10)

> plot(aden, main = "Adaptive intensity")
> plot(bei, add = TRUE, cex = 0.5)

Adaptive intensity

I
0.01 0.02 0.03 0.04 0.05

The value returned by adaptive.density is also a pixel image (object of class "im").

Copyright (©CSIRO 2010

82 Dependence of intensity on a covariate

13 Dependence of intensity on a covariate

13.1 Spatial covariates

Often we want to know whether the intensity of points depends on the values of a covariate. For
example, the tropical rainforest point pattern dataset bei comes with an extra set of covariate
data bei.extra, which contains a pixel image of terrain elevation bei.extra$elev and a pixel
image of terrain slope bei.extra$grad. It is of interest to determine whether the trees prefer
steep or flat terrain, and whether they prefer a particular altitude.

> data(bei)

> slope <- bei.extra$grad
> par(mfrow = c(1, 2))

> plot(bei)

> plot(slope)

>

par (mfrow = c(1, 1))

slope

0 005 01 015 02 025 03

13.2 Quadrats determined by a covariate

In quadrat counting methods, any choice of quadrats is permissible. From a theoretical view-
point, the quadrats do not have to be rectangles of equal area, and could be regions of any
shape.

Quadrat counting is more useful if we choose the quadrats in a meaningful way. One way to
do this is to define the quadrats using covariate information.

For the tropical rainforest data bei, it might be useful to split the study region into several
sub-regions according to the terrain slope.

> data(bei)

> Z <- bei.extra$grad

> b <- quantile(Z, probs = (0:4)/4)

> Zcut <- cut(Z, breaks = b, labels = 1:4)
> V <- tess(image = Zcut)

> plot (V)

> plot(bei, add = TRUE, pch = "+")

Copyright (©CSIRO 2010

13.3 Relative distribution estimate 83

The call to quantile gave us the quartiles of the slope values, so the four tiles in the
tessellation V have equal area (ignoring discretisation effects). In other words, we have divided
the study region into four zones of equal area according to the terrain slope.

We can now use this tessellation to study the point pattern bei. We could invoke the
commands split, cut or by to divide the points according to this tessellation and manipulate
the sub-patterns.

The command quadratcount also works with tessellations:

> gb <- quadratcount(bei, tess = V)
> gb

tile
1 2 3 4
271 984 1028 1321

> plot(gb)

qb

?“ :

L J

The text annotations show the number of trees in each region. Since the four regions have
equal area, the counts should be approximately equal if there is a uniform density of trees.
Obviously they are not equal; there appears to be a strong preference for steeper slopes.

13.3 Relative distribution estimate

Let us assume that the intensity of the point process is a function of the covariate Z. At any
spatial location u, let A(u) be the intensity of the point process, and Z(u) the value of the
covariate. Then we are assuming
Au) = p(Z(u))

where p is a function that we want to investigate, telling us how the intensity of points depends
on the value of the covariate.

Kernel smoothing can be used to estimate the function p, using methods of relative distri-
bution or relative risk, as explained in [11, 5].

Copyright (©CSIRO 2010

84 Dependence of intensity on a covariate

> plot(rhohat(bei, slope))

rhohat(bei, slope)

— rho
hi
lo

p(slope)
0.015
|

0.010
|

0.005
|

W T AT T
0.00 0.05 0.10 0.15 0.20 0.25 0.30
slope

The plot is an estimate of the intensity p(z) as a function of terrain slope z. It indicates
that the Beilschmiedia trees are relatively unlikely to be found on flat terrain (where the slope
is less than 0.05) compared to steeper slopes.

Additional capabilities will be added into spatstat in the near future.

13.4 Distance map

The dataset copper gives the locations of copper deposits in a survey region, and also the
location of geological lineaments (which are mostly geological faults). It is conjectured that
copper is more likely to be deposited close to a fault.

> data(copper)

> X <- rotate(copper$SouthPoints, pi/2)
> L <- rotate(copper$SouthLines, pi/2)

> plot(X, pch = 16, main = "copper data")
> plot(L, add = TRUE)

copper data

Copyright (©CSIRO 2010

13.4 Distance map 85

To apply the methods described above, the covariate information contained in the map of
geological faults L must be converted into a covariate that is a function Z(u) of spatial location
u. A natural choice is the distance function

Z(u) = distance from u to L

This can be computed by the command distmap, which returns a pixel image containing the
values Z(u) at a fine grid of pixels u.

> Z <- distmap(L)
> plOt(L, lwd = 2, main = uu)
> contour (Z, add = TRUE)

T
=

2

Having created this covariate image we can now apply the other techniques such as relative
distributions.

> plot(rhohat (X, Z), xlab = "Distance to nearest fault")

rhohat(X, Z)
n
N
S 4
© — rho
o hi
N
S lo
o
n
-
a4
o
N 9
T 3 -
S}
n
o
S
o
o
o
S
o
O I T TR TIN I | 1T T T T I
T T T T T T
0 1 2 3 4 5

Distance to nearest fault

Copyright (©CSIRO 2010

86 Dependence of intensity on a covariate

A slightly more sophisticated version of distmap is the command distfun. Whereas distmap
returns a pixel image at a certain spatial resolution, distfun returns a function with arguments
(x,y) that can be evaluated at any spatial location.

> f <- distfun(L)
> f

Distance function for line segment pattern
planar line segment pattern: 90 line segments
window: rectangle = [-158.233, -0.19] x [-0.335, 35] km

> f(-42, 10)
[1] 2.387029

In most commands in spatstat where a pixel image is required, a distfun can be used in its
place. This increases the precision of many calculations. It is usually advisable to call distfun,
unless you really need a pixel image.

Copyright (©CSIRO 2010

13.4 Distance map 87

PART IV. POISSON MODELS

Part IV of the workshop discusses how to assess whether a pattern is completely random, and
how to model a random pattern with a spatial trend.

Copyright (©CSIRO 2010

88 Tests of Complete Spatial Randomness

14 Tests of Complete Spatial Randomness

The basic ‘reference’ or ‘benchmark’ model of a random point pattern is the uniform Poisson
point process in the plane with intensity A, sometimes called Complete Spatial Randomness
(CSR). Its basic properties are
e the number of points falling in any region A has a Poisson distribution with mean A x
area(A)

e given that there are n points inside region A, the locations of these points are i.i.d. and
uniformly distributed inside A
e the contents of two disjoint regions A and B are independent.

For historical reasons, many researchers are focussed on establishing that their data do not
conform to this model. The logic is that, if a point pattern is completely random, then there
is nothing “interesting” happening (because the points are completely unpredictable, and have
no trend or association with anything else). Statisticians would say that the uniform Poisson
process often serves as the ‘null model’ in a statistical analysis.

14.1 Definition

The homogeneous Poisson process of intensity A > 0 has the properties

PP1): the number N(X N B) of points falling in any region B is a Poisson random variable;
PP2): the expected number of points falling in B is E[N(X N B)] = A - area(B);
PP3): if By, By are disjoint sets then N(XNB;) and N(XNDBy) are independent random variables;

PP4): given that N(X N B) = n, the n points are independent and uniformly distributed in B.

The list is redundant; (PP2) and (PP3) are sufficient.

This process is often called “Complete Spatial Randomness” (CSR) especially in biological
science. Under CSR, points are independent of each other and have the same propensity to be
found at any location.

It is easy to simulate the Poisson process directly by following the properties (PP1)—(PP4).
In spatstat, use the command rpoispp (by convention, random data generators have names
beginning with r).

> plot(rpoispp(100))

rpoispp(100)
o?
o
o o ° o
o o o °
o © o o
o
o q
o o o
° o o o o
°© ° S %o
° ° 000
° o
© o
o o, 8
o
] ° o
o o Q)
o o ° %0 o
o o o
3 o o o o o
o
o 00
0 ° o ° o
o <]
o

Copyright (©CSIRO 2010

14.2 Quadrat counting tests for CSR 89

Conceptually, if we discretise a homogeneous Poisson process into infinitesimal pixels, the
indicators I are independent and identically distributed, with success probability P{I =1} =
AdA where dA is the infinitesimal area of a pixel.

To develop some intuition about completely random patterns, it’s useful to repeat the com-
mand plot (rpoispp(100)) several times (use the up-arrow key to recall the previous command
line) so that you see several replicates of the Poisson process. In particular you will notice that
the points in a homogeneous Poisson process are not ‘uniformly spread’: there are empty gaps
and clusters of points.

The command rpoispp has arguments lambda (the intensity) and win (the window in which
to simulate). The default window is the unit square.

> data(letterR)
> plot(rpoispp(100, win = letterR))

rpoispp(100, win = letterR)

If you want to simulate a Poisson process conditionally on a fixed number of points, use the
command runifpoint.

> runifpoint (100, win = letterR)

planar point pattern: 100 points
window: polygonal boundary
enclosing rectangle: [2.017, 3.93] x [0.645, 3.278] units

14.2 Quadrat counting tests for CSR

In classical literature, the homogeneous Poisson process (CSR) is usually taken as the appropriate
‘null’” model for a point pattern. Our basic task in analysing a point pattern is to find evidence
against CSR.

A classical test for the null hypothesis of CSR is the x? test based on quadrat counts. As
explained earlier, the window W is divided into subregions (‘quadrats’) Bj,..., B, of equal
area. We count the numbers of points falling in each quadrat, n; = n(xN Bj) for j =1,...,m.
Under the null hypothesis of CSR, the n; are i.i.d. Poisson random variables with the same
expected value. The Pearson x? goodness-of-fit test can be used.

> quadrat.test(nzchop, nx = 3, ny = 2)

Copyright (©CSIRO 2010

90 Tests of Complete Spatial Randomness

Chi-squared test of CSR using quadrat counts

data: mnzchop
X-squared = 5.0769, df = 5, p-value = 0.4066

The value returned by quadrat.test is an object of class "htest" (the standard R class
for hypothesis tests). Printing the object (as shown above) gives comprehensible output about
the outcome of the test. Inspecting the p-value, we see that the test does not reject the null
hypothesis of CSR for the (chopped) New Zealand trees data.

The return value quadrat.test also belongs to the special class "quadrat.test". Plotting
the object will display the quadrats, annotated by their observed and expected counts and the
Pearson residuals (observed counts n; at top left; expected count at top right; Pearson residuals
at bottom).

> M <- quadrat.test(nzchop, nx = 3, ny = 2)
> M

Chi-squared test of CSR using quadrat counts

data: nzchop
X-squared = 5.0769, df = 5, p-value = 0.4066

> plot (nzchop)
> plot (M, add = TRUE, cex = 2)

nzchop

9 13°0 14 213 | 17 13
’ -L1 b ,0.28 O 9;1?1)
X o 8o © o

47 %13 | 9 13|12 .13
© oLl | -1 .|?-028

The p-value can also be extracted by

> M$p.value

[1] 0.4065648

14.3 Critique

Since this kind of technique is often used in the applied literature, a few comments are appro-
priate.

The main critique of the quadrat test approach is the lack of information. This is a goodness-
of-fit test in which the alternative hypothesis H; is simply the negation of Hy, that is, the
alternative is that “the process is not a homogeneous Poisson process”. A point process may
fail to satisfy properties (PP1)—(PP4) either because it violates (PP2) by having non-uniform

Copyright (©CSIRO 2010

14.4 Kolmogorov-Smirnov test of CSR 91

intensity, or because it violates (PP3)—(PP4) by exhibiting dependence between points. There
are too many types of departure from Hy.

The usual justification for the classical x? goodness-of-fit test is to assume that the counts
are independent, and derive a test of the null hypothesis that all counts have the same expected
value. Invoking it here is slightly naive, since the independence of counts is also open to question
here.

Indeed we can also turn things around and view the y? test as a test of the Poisson distri-
butional properties (PP2)-(PP3) assuming that the intensity is uniform. The Pearson x? test

statistic)
Zj (nj —n/m)

X% =
n/m

(where n = > ;nj is the total number of points) coincides, up to a constant factor, with the
sample variance-to-mean ratio of the counts n;, which is often interpreted as a measure of
over/under-dispersion of the counts n; assuming they have constant mean.

The power of the quadrat test depends on the size of quadrats, and falls to zero for quadrats
which are either very large or very small. The power also depends on the alternative hypothesis,
in particular on the ‘spatial scale’ of any departures from the assumptions of constant intensity
and independence of points. The choice of quadrat size carries an implicit assumption about
the spatial scale.

14.4 Kolmogorov-Smirnov test of CSR

Typically a more powerful test of CSR is the Kolmogorov-Smirnov test in which we compare
the observed and expected distributions of the values of some function 7.

We specify a real-valued function T'(z,y) defined at all locations (x,y) in the window. We
evaluate this function at each of the data points. Then we compare this empirical distribution
of values of T" with the predicted distribution of values of T" under CSR, using the classical
Kolmogorov-Smirnov test.

In spatstat the spatial Kolmogorov-Smirnov test is performed by kstest. This function is
generic. The method for point patterns, kstest.ppp, performs the Kolmogorov-Smirnov test
for CSR.

If X is the data point pattern, then

> kstest (X, covariate)

performs the test, where covariate is the spatial covariate that will be used. Here covariate
can be a pixel image, a function(x,y) in the R language, or one of the strings "x" or "y"
indicating one of the Cartesian coordinates.

For example, let’s consider the nzchop data and choose the function 7" to be the x coordinate,
T(z,y) = x. This means we are simply comparing the observed and expected distributions of
the = coordinate.

> kstest (nzchop, "x")

Spatial Kolmogorov-Smirnov test of CSR

data: covariate x evaluated at points of nzchop

and transformed to uniform distribution under CSR
D = 0.0719, p-value = 0.7882
alternative hypothesis: two-sided

Copyright (©CSIRO 2010

92 Tests of Complete Spatial Randomness

The result of kstest is an object of class "htest" (the standard R class for hypothesis
tests) and also of class "kstest" so that it can be printed and plotted. The print method
(demonstrated above) reports information about the hypothesis test such as the p-value. The
plot method displays the observed and expected distribution functions.

> KS <- kstest(nzchop, "x")
> plot (KS)
> pval <- KS$p.value

Spatial Kolmogorov-Smirnov test of CSR
based on distribution of x coordinate
p-value= 0.7882

1.0

0.6 0.8
1

probability

0.4

0.2

0.0
|

0 50 100 150
Sometimes this test generates a warning message about tied values. Typically this occurs
because the coordinates in the dataset have been rounded to the nearest integer, so that there
are tied observations.

14.5 Using covariate data

We are often interested in testing whether the point pattern intensity depends on a covariate. For
example, our preliminary analysis of the tropical rainforest pattern bei in Section 13.2 suggested
that the density of trees depends on terrain slope. To test this formally we can divide the region
into irregular quadrats according to the terrain slope, and apply the x? test. The command
quadrat.test accepts a tessellation and uses the tiles of the tessellation as the quadrats:

> data(bei)

> Z <- bei.extra$grad

> b <- quantile(Z, probs = (0:4)/4)

> Zcut <- cut(Z, breaks = b, labels = 1:4)
> V <- tess(image = Zcut)

> quadrat.test(bei, tess = V)

Chi-squared test of CSR using quadrat counts

data: Dbei
X-squared = 661.8402, df = 3, p-value < 2.2e-16

Copyright (©CSIRO 2010

14.5 Using covariate data 93

Because of the large counts in these regions, we can probably ignore concerns about inde-
pendence, and conclude that the trees are not uniform in their intensity.

A more powerful test (if that were needed!) is the Kolmogorov-Smirnov test using the slope
covariate:

> KS <- kstest(bei, Z)
> plot(KS)
> KS

Spatial Kolmogorov-Smirnov test of CSR

data: covariate Z evaluated at points of bei

and transformed to uniform distribution under CSR
D = 0.1948, p-value < 2.2e-16
alternative hypothesis: two-sided

Spatial Kolmogorov—Smirnov test of CSR
based on distribution of covariate ...Z...
p-value= 0

1.0

probability
0.6 0.8
!

0.4

0.2

T T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30

z
The Kolmogorov-Smirnov test would typically be preferred if the covariate Z has continuously-
varying numerical values. If the covariate is a factor or discrete variable, then the Kolmogorov-
Smirnov test is ineffective because of tied values, and the x? test based on quadrat counts would
be preferable.

Copyright (©CSIRO 2010

94 Tests of Complete Spatial Randomness

14.6 Berman’s tests

Berman [20] proposed two tests for the dependence of a point process on a spatial covariate.
These tests are optimal against a certain class of alternatives. They are performed by the
command bermantest which is analogous to kstest.

> B <- bermantest(bei, Z)
> plot(B)
> B

Berman Z1 test of CSR

data: covariate Z evaluated at points of bei
Z1 = 10.844, p-value < 2.2e-16
alternative hypothesis: two-sided

Berman Z1 test of CSR
based on distribution of covariate ...Z...
Z1 statistic = 10.84
p-value= 2.13e-27

probability
0.6 0.8 1.0
1

0.4

0.2
1

T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30

z
Two vertical lines show the mean values of these distributions. If the model is correct, the
two curves should be close; the test is based on comparing the two vertical lines.
When the covariate Z is the distance to a spatial pattern, another useful diagnostic is Foxall’s
J-function [40], available using Jfox.

Copyright (©CSIRO 2010

95

15 Maximum likelihood for Poisson processes

If we are willing to assume (tentatively) that the points are independent, then we can apply
some decent statistical methods to the investigation of the intensity.

15.1 Inhomogeneous Poisson process

The inhomogeneous Poisson process with intensity function A(u), u € R?, is a modification of
the homogeneous Poisson process, in which properties (PP2) and (PP4) above are replaced by

(PP2’): the number N(X N B) of points falling in a region B has expectation

E[N(XQB)]:/B)\(u)du.

(PP4’): given that N(X N B) = n, the n points are independent and identically distributed, with
common probability density f(u) = A(u)/I, where I = [A(u) du.

This process can also be simulated using rpoispp using the same properties. The intensity
argument lambda can be a constant, a function(x,y) giving the values of the intensity function
at coordinates x,y, or a pixel image containing the intensity values at a grid of locations.

> lambda <- function(x, y) {
+ 100 * (x + y)

+ }

> plot(rpoispp(lambda))

rpoispp(lambda)

o ©
o
OO o
o o oo ©
o oo o o
o &L o
o o [}
=) o
) oO %
o
© o o
o)
o o
o © o °
o Q °
o
[e] o
o, o
o o o 0 ©
o Oo o
o
)
oo 0°
o Q
o o o
o
o o o
o
o
a o

If we discretise an inhomogeneous Poisson process, the indicators I are independent, but
have unequal success probabilities, P {I(u) = 1} = \(u) dA.

The inhomogeneous Poisson process is a plausible model for point patterns under several
scenarios. One is random thinning: suppose that a homogeneous Poisson process of intensity
0 is generated, and that each point is either deleted or retained, independently of other points.
Suppose the probability of retaining a point at the location w is p(u). Then the resulting process
of retained points is inhomogeneous Poisson, with intensity A\(u) = Bp(u).

Consider, for example, a model of plant propagation which assumes that seeds are randomly
dispersed according to a Poisson process, and seeds randomly germinate or do not germinate,
independently of each other, with a germination probability that depends on the local soil
conditions. The resulting pattern of plants is an inhomogeneous Poisson process.

Copyright (©CSIRO 2010

96 Maximum likelihood for Poisson processes

15.2 Likelihood methods

The log-likelihood for the homogeneous Poisson process with intensity A is
log L(A\;x) = n(x)log A — Aarea(W) (3)
where n(x) is the number of points in the dataset x. The maximum likelihood estimator of X is

5o)
~ area(WW)
which is also an unbiased estimator. The variance of \ is var[X] = A/ area(W).
Consider an inhomogeneous Poisson process with intensity function Ag(u) depending on a
parameter 6. The log-likelihood for 6 is

log L(8;x) = > log Ag(:) — /W Ao (u) du (4)
i=1

This is a well-behaved likelihood; for example if log Ag(u) is linear in €, then the log-likelihood
is concave, so there is a unique MLE. However, the MLE 0 is not analytically tractable, so it
must be computed using numerical algorithms such as Newton’s method.

The usual asymptotic theory of maximum likelihood applies: under suitable large sample
conditions, the MLE of 8 is asymptotically normal. If we wish to test CSR, the likelihood ratio
test statistic

R =2log i((?)

is asymptotically x? under CSR, and this gives an asymptotically optimal test of CSR against
the alternative of an inhomogeneous Poisson process with intensity Ag(u).

15.3 Fitting Poisson processes in spatstat

Mark Berman and Rolf Turner [21] (see also [47, 25, 48]) developed a clever computational device
for finding the MLE of by exploiting a formal similarity between the Poisson log-likelihood (4)
and that of a loglinear Poisson regression.

The Berman-Turner algorithm is implemented in spatstat. The intensity function A\g(u)
must be loglinear in the parameter 9:

log Ag(u) = 6 - S(u) (5)

where S(u) is a real-valued or vector-valued function of location u. The form of S is arbitrary so
this is not much of a restriction. In practice S(u) could be a function of the spatial coordinates
of u, or an observed covariate, or a mixture of both. Assuming (5), the log-likelihood (4) is a
convex function of #, so maximum likelihood is well-behaved.

15.3.1 Model-fitting function

The fitting function is called ppm (‘point process model’) and is very closely analogous to the
model fitting functions in R such as 1m and glm. The statistic S(u) is specified by an R lan-
guage formula, like the formulas used to specify the systematic relationship in a linear model or
generalised linear model. The basic syntax is:

> ppm(X, “trend)

Copyright (©CSIRO 2010

15.3 Fitting Poisson processes in spatstat 97

where X is the point pattern dataset, and “trend is an R formula with no left-hand side. This
should be viewed as a model with log link, so the formula ~trend specifies the form of the
logarithm of the intensity function.

To fit the homogeneous Poisson model:
> ppm(bei, ~1)
Stationary Poisson process

Uniform intensity: 0.007208

To fit an inhomogeneous Poisson model with an intensity that is log-linear in the cartesian
coordinates, i.e. Ag((z,y)) = exp(fy + 61z + H2y),

> ppm(bei, “x + y)
Nonstationary Poisson process
Trend formula: "x + y
Fitted coefficients for trend formula:
(Intercept) X y
-4.7245290274 -0.0008031288 0.0006496090
Here x and y are reserved names that always refer to the cartesian coordinates. In the output,

the ‘fitted coefficients’ are the maximum likelihood estimates of 0y, 81, 02, the coefficients of the
‘linear predictor’. The fitted intensity function is

Xo((,y)) = exp (—4.724529 + —0.000803 + 0.00065) .

To fit an inhomogeneous Poisson model with an intensity that is log-quadratic in the cartesian
coordinates, i.e. such that log Ag((x,y)) is a quadratic in x and y:

> ppm(bei, “polynom(x, y, 2))
Nonstationary Poisson process
Trend formula: “polynom(x, y, 2)

Fitted coefficients for trend formula:
(Intercept) polynom(x, y, 2)[x] polynom(x, y, 2) [yl

-4.275762e+00 -1.609187e-03 -4.895166e-03
polynom(x, y, 2)[x"2] polynom(x, y, 2)[x.y] polynom(x, y, 2)[y~2]
1.625968e-06 -2.836387e-06 1.331331e-05

Essentially any kind of model formula can be used, involving the reserved names x and y
and any covariates (as we explain later).

To fit a model with constant but unequal intensities on each side of the vertical line z = 500,
the explanatory variable S(u) should be a factor with two levels, Left and Right say, taking
the value Left when the location u is to the left of the line z = 500.

Copyright (©CSIRO 2010

98 Maximum likelihood for Poisson processes

> side <- function(z) factor(ifelse(z < 500, "left", "right"))
> ppm(bei, “side(x))

Nonstationary Poisson process
Trend formula: “side(x)

Fitted coefficients for trend formula:
(Intercept) side(x)right
-4.8026460 -0.2792705

When factors are involved, the interpretation of the coefficients depends on which ‘contrasts’
are in force. By default the ‘treatment contrasts’ are assumed. This means that the treatment
effect is taken to be zero for the first level of the factor, and the estimated treatment effects for
other levels are effectively estimates of the difference from the first level. In this case "left"
comes alphabetically before "right", so by default, the first level is "left". The fitted model

1S
exp(—4.8026) if z < 500

Ao((2,y)) = { exp(—4.8026 + (—0.2793)) if z > 500

Rather than relying on such interpretations, it is prudent to use the command predict to
compute predicted values of the model, as explained in Section 15.4 below.

15.3.2 Models involving spatial covariates

It is also possible to fit an inhomogeneous Poisson process model with an intensity function
that depends on an observed covariate. Let Z(u) be a covariate that has been measured at
every location u in the study window. Then Z(u), or any transformation of it, can serve as the
statistic S(u) in the parametric form (5) for the intensity function.

The point pattern dataset bei is supplied with accompanying covariate data bei.extra.
The covariates are the elevation (altitude) and the slope of the terrain at each location in the
window, given as two pixel images bei.extra$elev and bei.extra$grad.

> data(bei)
> grad <- bei.extra$grad
> plot(grad)

005 01 015 02 025 03

0

To fit the inhomogeneous Poisson model with intensity which is a loglinear function of slope,
ie.

Au) = exp(Bo + 1 Z(u)) (6)

where [y, f1 are parameters and Z(u) is the slope at location u, we type

Copyright (©CSIRO 2010

15.4 Fitted models 99

> ppm(bei, “slope, covariates = list(slope = grad))
Nonstationary Poisson process
Trend formula: “slope

Fitted coefficients for trend formula:
(Intercept) slope
-5.390553 5.022021

In the call to ppm, the argument covariates should be a list of name=value pairs that provide
the covariate data for the model. Every variable name that appears in the model formula should
match one of the names in this list. Each value should be either a pixel image, a function(x,y)
in the R language, a window of class "owin", or a single number.

The printout includes the fitted coefficients (g, 31 so the fitted model is

A(u) = exp(—5.390553 + 5.022021 Z(u)). (7)

It might be more appropriate to fit the inhomogeneous Poisson model with intensity that is
proportional to slope,

Au) = BZ(u) (8)
where again Z(u) is the slope at u. Equivalently
log A(u) = log 8 + log Z(u). 9)

There is no coefficient in front of the term log Z(u) in (9), so this term is an ‘offset’. To fit this
model,

> ppm(bei, “offset(log(slope)), covariates = list(slope = grad))
Nonstationary Poisson process
Trend formula: ~offset(log(slope))

Fitted coefficients for trend formula:
(Intercept)
-2.427127

The fitted coefficient is the constant log # appearing in (9), so converting back to the form
(8), the fitted model is

Mu) = e 242727 7(4) = 0.0883 Z(u).

15.4 Fitted models

The value returned by the model-fitting function ppm is an object of class "ppm" that represents
the fitted model. This is analogous to the fitting of linear models (1m), generalised linear models
(glm) and so on.

Copyright (©CSIRO 2010

100 Maximum likelihood for Poisson processes

15.4.1 Standard operations

The following standard operations on fitted models in R can be applied to
(i.e. these operations have methods for the class "ppm"):

print print basic information

summary print detailed summary information
plot plot the fitted intensity

predict compute the fitted intensity

fitted compute the fitted intensity at data points
update re-fit the model

coef extract the fitted coefficient vector
vcov variance-covariance matrix of 8
anova analysis of deviance

logLik log-likelihood value

formula extract the model formula

terms extract the terms in the model

model.matrix compute the design matrix
For information on these methods, see print.ppm, summary.ppm, plot
ing commands also work on "ppm" objects:
step stepwise model selection
dropl one step model deletion
ATC Akaike Information Criterion

> fit <- ppm(bei, “x + y)
> fit

Nonstationary Poisson process

Trend formula: "x + y

Fitted coefficients for trend formula:
(Intercept) X y
-4.7245290274 -0.0008031288 0.0006496090

> plot(fit, how = "image", se = FALSE)

Fitted trend

T T
0.01 0.012

T
0.008

0.006

0.004

> predict(fit, type = "trend")

real-valued pixel image
50 x 50 pixel array (ny, nx)
enclosing rectangle: [0, 1000] x [0, 500] metres

point process models

.ppm etc. The follow-

Copyright (©CSIRO 2010

15.4 Fitted models 101

> predict(fit, type = "cif", ngrid = 256)

real-valued pixel image
256 x 256 pixel array (ny, nx)
enclosing rectangle: [0, 1000] x [0, 500] metres

> coef (fit)

(Intercept) b4 y
-4.7245290274 -0.0008031288 0.0006496090

> vecov(fit)

(Intercept) bq y
(Intercept) 1.854091e-03 -1.491267e-06 -3.528289e-06
X -1.491267e-06 3.437842e-09 1.208410e-14
y -3.528289e-06 1.208410e-14 1.338955e-08

> sqrt(diag(vcov(fit)))

(Intercept) bq y
4.305915e-02 5.863311e-05 1.157132e-04

> round(vcov(fit, what = "corr"), 2)

(Intercept) X y
(Intercept) 1.00 -0.59 -0.71
X -0.59 1.00 0.00
y -0.71 0.00 1.00

This is the fitted model with intensity function
Ao((z,y)) = exp (6o + b1z + Oay) (10)

with the following estimates:

i |0 var(6;) standard deviation
0| -4.724529 0.001854091 0.04305915

1] -0.0008031288 3.437842e-09 5.863311e-05
2

0.000649609 1.338955e-08 0.0001157132

It is also possible to compute the standard error of the fitted intensity Ag(u) at each location
u, as a pixel image. Use predict (fit, type="se") or plot(fit, se=TRUE).

> SE <- predict(fit, type = "se")
> plot(SE, main = "standard error of fitted intensity")

standard error of fitted intensity

4e-04

3e-04

2e-04

Copyright (©CSIRO 2010

102 Maximum likelihood for Poisson processes

If the model formula involves transformations of the original covariates, then model .matrix (fit)
gives the design matrix whose columns contain these transformed covariates, and model . images (fit)
gives a list of pixel images of these transformed covariates.

> fit <- ppm(bei, “sqrt(slope) + x, covariates = list(slope = grad))
> mo <- model.images(fit)
> mo

(Intercept)

real-valued pixel image

100 x 100 pixel array (ny, nx)

enclosing rectangle: [0, 1000] x [0, 500] metres

sqrt (slope)

real-valued pixel image

100 x 100 pixel array (ny, nx)

enclosing rectangle: [0, 1000] x [0, 500] metres

X @
real-valued pixel image

100 x 100 pixel array (ny, nx)

enclosing rectangle: [0, 1000] x [0, 500] metres

> plot(mo[[2]])

mol[2]]

0.5

0.2 0.3 0.4

0.1

It is also possible to plot the ‘effect’ of a single covariate in the model. The command
effectfun computes the intensity of the fitted model as a function of one of its covariates. This
is chiefly useful if the model only has one covariate.

> fit <- ppm(bei, “slope, covariates = list(slope = grad))
> plot(effectfun(fit, "slope"))

Copyright (©CSIRO 2010

15.4 Fitted models 103

effectfun(fit, "slope")

0.015 0.020
| |

0.010
|

0.005

T T T T T T T
0.00 0.05 010 015 020 0.25 0.30

slope

15.4.2 Model selection

Analysis of deviance for nested Poisson point process models is implemented in spatstat as
anova.ppm. The first model should be a sub-model of the second.

> fit <- ppm(bei, “slope, covariates = list(slope = grad))
> fitnull <- update(fit, ~1)
> anova(fitnull, fit, test = "Chi")

Analysis of Deviance Table

Model 1: .mpl.Y 7 1
Model 2: .mpl.Y ~ slope
Resid. Df Resid. Dev Df Deviance P(>|Chil)
1 20507 18728
2 20506 18346 1 382.25 < 2.2e-16 **x*

Signif. codes: O *** 0.001 *x 0.01 * 0.05 . 0.1 1

This effectively performs the likelihood ratio test of the null hypothesis of a homogeneous
Poisson process (CSR) against the alternative of an inhomogeneous Poisson process with in-
tensity that is a loglinear function of the slope covariate (6). The p-value is extremely small,
indicating rejection of CSR in favour of the alternative. (Please ignore the columns Resid.Df
and Resid.Dev which are artefacts of the discretisation. Only the deviance difference and the
difference in degrees of freedom are valid.)

Note that standard Analysis of Deviance requires the null hypothesis to be a sub-model of the
alternative. Unfortunately the model (8), in which intensity is proportional to slope, does not
include the homogeneous Poisson process as a special case, so we cannot use analysis of deviance
to test the null hypothesis of homogeneous Poisson against the alternative of an inhomogeneous
Poisson with intensity (8).

One possibility here is to use the Akaike Information Criterion AIC for model selection.

> fitprop <- ppm(bei, ~offset(log(slope)), covariates = list(slope = grad))
> fitnull <- ppm(bei, ~1)
> AIC(fitprop)

Copyright (©CSIRO 2010

104 Maximum likelihood for Poisson processes

[1] 42496.65

> AIC(fitnull)

[1] 42763.92

The smaller AIC favours the model (8) with intensity is proportional to slope.

Automatic model selection can be performed using step. By default, this performs stepwise
deletion. Starting from the fitted model, the procedure considers each term in the model, and
determines whether the term should be deleted (according to AIC). The deletion giving the

biggest improvement in AIC is carried out. This is applied recursively until no more terms can
be deleted.

> X <- rpoispp(100)
> fit <- ppm(X, “x + y)
> step(fit)

Start: AIC=-580.96

“x +§

Df AIC
- X 1 -582.29
-y 1 -581.91
<none> -580.96

Step: AIC=-582.29

y

Df AIC
-y 1 -583.25
<none> -582.29

Step: AIC=-583.25
1

Stationary Poisson process

Uniform intensity: 85

15.5 Simulating the fitted model

A fitted Poisson model can be simulated automatically using the function rmh or simulate.ppm.

> X <- rmh(fitprop)
> plot (X, main = "realisation of fitted model")

Copyright (©CSIRO 2010

15.5 Simulating the fitted model 105

It is possible to perform conditional simulation (conditional on the number of points, on
the configuration of points in a particular subregion, or on the presence of certain points). See
rmhcontrol for details.

Copyright (©CSIRO 2010

106 Checking a fitted Poisson model

16 Checking a fitted Poisson model

After fitting a point process model to a point pattern dataset, we should check that the model is a
good fit (‘goodness-of-fit’), and that each component assumption of the model was appropriate
(‘validation’). This section presents some techniques available for checking a fitted Poisson
model.

Model checking can be either ‘formal’ or ‘informal’. Formal techniques are based on detailed
probabilistic assumptions about the data, and allow us to make probabilistic statements about
the outcome. They include hypothesis tests (x? tests, goodness-of-fit tests, Monte Carlo tests)
and Bayesian model selection.

In contrast, ‘informal’ tools do not impose assumptions on the data and their interpretation
depends on human judgement. A typical example is the residual, defined for each observation by
(residual) = (observed) - (fitted). If the model is a good fit, then the residuals should
be ‘noise’, centred around zero.

16.1 Goodness-of-fit

A goodness-of-fit test is a formal test of the null hypothesis that the model is true, against the
very general alternative that the model is not true.

The x? goodness-of-fit test based on quadrat counts can be applied to a fitted Poisson model,
homogeneous or inhomogeneous. Under the null hypothesis, the quadrat counts are independent
Poisson variables with different mean values, and the means are estimated by the fitted model.

> data(bei)

> fit <- ppm(bei, ~x)

> M <- quadrat.test(fit, nx = 4, ny = 2)
> M

Chi-squared test of fitted Poisson model fit using quadrat counts

data: data from fit
X-squared = 711.5036, df = 6, p-value < 2.2e-16

If (as in this case) the formal goodness-of-fit test rejects the fitted model, we would then
like to gain an informal impression of the type of departure from the model (i.e. in what way
the data appear to depart from the predictions of the model) so that we may formulate a better
model. To do this we can inspect the residual counts.

> plot(bei, pch = ".")
> plot(M, add = TRUE, cex = 1.5, col = "red")

Copyright (©CSIRO 2010

16.2 Validation using residuals 107

The plot displays, for each quadrat, the observed number of points (top left), the predicted
number of points according to the model (top right), and the Pearson residual (bottom) defined
by
(observed) — (expected)

vexpected

If the original data were Poisson, this transformation approximately standardises the residuals
so that they have mean zero and variance 1 when the model is true. A Pearson residual of —14
is a gross departure from the fitted model.

The Kolmogorov-Smirnov test can also be applied to a fitted Poisson model, with homoge-
neous or inhomogeneous intensity.

Pearson residual =

> kstest(fit, "y")

Spatial Kolmogorov-Smirnov test of inhomogeneous Poisson process

data: covariate y evaluated at points of bei

and transformed to uniform distribution under fit
D = 0.1068, p-value < 2.2e-16
alternative hypothesis: two-sided

This uses the method kstest.ppm for the generic function kstest.

16.2 Validation using residuals
16.2.1 Residuals

Residuals from the fitted model are an important diagnostic tool in other areas of applied
statistics, but in spatial statistics they have only recently been developed ([52, 60], [58, pp.
49-50], [12]). R

For a fitted Poisson process model, with fitted intensity A(u), the predicted number of points
falling in any region B is [, X(u) du. Hence the residual in each region B C R? is defined [12]
to be the observed minus predicted number of points falling in B: [12]

R(B):n(xmB)—/BX(u)du (11)

where x is the observed point pattern, n(x N B) the number of points of x in the region B, and
A(u) is the intensity of the fitted model.

Copyright (©CSIRO 2010

108 Checking a fitted Poisson model

These residuals are closely related to the residuals for quadrat counts that were used above.
Taking the set B to be one of our quadrats, the ‘observed’ quadrat count is n(x N B). The
‘expected’ quadrat count is Aarea(B) if the model is CSR, or more generally I Au) du if the
model is an inhomogeneous Poisson process. Hence the ‘raw residual’ is observed -- expected
= n(xNB)— [Au) du.

16.2.2 Residual measure

Equation (11) defines the total residual for any region B, large or small.

Intuitively the residuals can be visualised as an electric charge, with unit positive charge at
each data point, and a diffuse negative charge at all other locations u, with density X(u) If the
model is true, then these charges should approximately cancel.

If we’d like to visualise this electric charge, one way is to plot the observed points and the

fitted intensity function together:

> data(bei)

> fit <- ppm(bei, “x + y)

> plot(predict (fit))

> plot(bei, add = TRUE, pch = "+")

predict(fit)

T T
0.01 0.012

I
0.008

0.006

0.004

Each data point should be visualised as a charge of +1, while the colour image indicates a
negative charge density. If the model is true then these positive and negative charges should
even out to zero.

16.2.3 Smoothed residuals

A more useful way to visualise the residuals is to smooth them.

> data(bei)
> fitx <- ppm(bei, “x)
> diagnose.ppm(fitx, which = "smooth")

Smoothed raw residuals

Copyright (©CSIRO 2010

16.2 Validation using residuals 109

This is an image plot of the ‘smoothed residual field’
s(u) = A(u) — Af(w) (12)
where X(u) is the nonparametric, kernel estimate of the intensity,

n(x)

/)\\(u) = e(u) Z K(u — x;)

i=1

while Af(u) is a correspondingly-smoothed version of the parametric estimate of the intensity
according to the fitted model,

Here « is the smoothing kernel and e(u) is the edge correction (2) on page 79. The difference
(12) should be approximately zero if the model is true.

In this example the smoothed residual image contains a visible trend, suggesting that the
model is inappropriate.

16.2.4 Lurking variable plot

If there is a spatial covariate Z(u) that plays an important role in the analysis, it may be useful
to display a lurking variable plot of the residuals against Z. This is a plot of C(z) = R(B(z))
against z, where

B(z)={ueW:Z(u) <z}

is the region of space where the covariate value is less than or equal to z.

> grad <- bei.extra$grad
> lurking(fitx, grad, type = "raw")

cumulative raw residuals

0.00 0.05 0.10 0.15 0.20 0.25 0.30
covariate
Note that the lurking variable plot typically starts and ends at the horizontal axis, since (for
any model with an intercept term) the total residual for the entire window W must equal zero.
This is analogous to the fact that the residuals in linear regression sum to zero.
The plot also shows approximate 5% significance bands for the cumulative residual C(z) or
C(y), obtained from the asymptotic variance under the model.

Copyright (©CSIRO 2010

110 Checking a fitted Poisson model

This plot indicates that the model is grossly inadequate; the fitted intensity function fails to
capture the dependence of intensity on slope.

It can be helpful to display the derivative C’(z), which often indicates which values of z are
associated with a lack of fit.

> lurking(fitx, grad, type = "raw", cumulative = FALSE)

10000 20000 30000
1 1 1

0
1

marginal raw residuals

-30000 -20000 -10000
1

T T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30

covariate

The derivative is estimated using a smoothing spline and you may need to tweak the smooth-
ing parameters (argument splineargs) to get a useful plot. Also the package currently does
not plot significance bands for C’(z).

Additional techniques described in [5] will soon be added to spatstat.

16.2.5 Four-panel plot

If there are no spatial covariates, use the command diagnose.ppm to plot the residuals:

> data(japanesepines)
> fit <- ppm(japanesepines, “x + y)
> diagnose.ppm(fit)

Copyright (©CSIRO 2010

16.2 Validation using residuals 111

cumulative sum of raw residuals

y coordinate

cumulative sum of raw residuals

x coordinate

This combination of four plots has proved to be a useful quick indication of departure from
the trend in the model.

The bottom right panel is an image of the smoothed residual field.

The top left panel is a direct representation of the residual ‘charge’, with circles representing
the data points (positive residuals) and a colour scheme representing the fitted intensity (negative
residuals). However, it is often difficult to interpret.

The two other panels are lurking variables against one of the cartesian coordinates. For
example, the bottom left panel is a lurking variable plot for the z-coordinate. Imagine a vertical
line which sweeps from left to right across the window. The progressive total residual to the left
of the line is plotted against the position of the line.

In this example, the lurking variable plot for the y coordinate suggests a lack of fit at about
y = 0.15, and the image of the smoothed residual field suggests an excess of positive residuals
at about x = 0.8,y = 0.15, both indicating that the model underestimates the true intensity of
points in this vicinity.

16.2.6 Caveats

The residual plots described above are useful for detecting misspecification of the trend in a fitted
Poisson process model. They are not very useful for checking the independence assumption, that
is, for checking the properties (PP3)—(PP4) of a Poisson process listed on page 88.

Effective diagnostics of independence or dependence between points include the K-function
(section 19.4) and a Q—Q plot of the residuals (section 28.2.3).

Copyright (©CSIRO 2010

112 Spatial logistic regression

17 Spatial logistic regression

A popular technique for analysing point pattern data in Geographical Information Systems is
spatial logistic regression [62, 1]. The spatial domain is divided into a fine grid of pixels; each
pixel is assigned the value y = 1 if it contains at least one data point, and y = 0 otherwise.

. 1
. . . 1 101
1
L] ° 1
o o 11
. 1
L]

[11

. 1

Then logistic regression is used to model the presence probability p = P(Y = 1) as a function
of a covariate z in the form

log —— = fh + A1z
-p

where gy, 81 are parameters to be estimated. Similarly for multiple covariates and so on.

In fact, spatial logistic regression is very close to a Poisson point process model [4]. However,
spatstat provides facilities for performing spatial logistic regression, for comparison purposes.
Models are fitted using the command slrm.

> data(copper)

> X <- rotate(copper$SouthPoints, pi/2)
> L <- rotate(copper$SouthLines, pi/2)
> D <~ distfun(L)

> fit <- slrm(X ~ D)

> fit

Fitted spatial logistic regression model

Formula: X ™D
Fitted coefficients:
(Intercept) D

-4.69015189 0.05211539

slrm produces a “fitted spatial logistic regression model” object of class "slrm". Methods
for this class include print, plot, predict, coef, fitted, update, terms, formula, anova and
logLik. You can also use step for model selection.

Copyright (©CSIRO 2010

113

PART V. INTERACTION

Part V of the workshop explains how to investigate dependence between the points in a point
pattern.

Copyright (©CSIRO 2010

114 Exploring dependence between points

18 Exploring dependence between points

Suppose that a point pattern appears to have constant intensity, and we wish to assess whether
the pattern is Poisson. The alternative is that the points are dependent (they exhibit ‘interac-
tion’).

Classical writers suggested a simple trichotomy between ‘independence’ (the Poisson pro-
cess), ‘regularity’ (where points tend to avoid each other), and ‘clustering’ (where points tend to
be close together). [The concept of ‘clustering’ does not imply that the points are organised into
identifiable ‘clusters’; merely that they are closer together than expected for a Poisson process.|

independent regular clustered
o

One simple diagnostic for dependence between points is a Morishita plot. The spatial domain
is divided into quadrats, and the x? statistic based on quadrat counts is computed. The quadrats
are repeatedly subdivided. The Morishita plot shows the y? statistic against the linear size of
the quadrats. It is computed by the command miplot.

independent regular clustered

Morishita index
2
!
Morishita index
2
!
Morishita index
2
!

Diameter of quadrat Diameter of quadrat Diameter of quadrat

A more sophisticated option is the Fry plot. This is a scatterplot of the vector differences
x; — x; between all pairs of distinct points in the pattern. Suppose you have printed the point
pattern on a sheet of paper. Take a sheet of tracing paper, and mark a red dot in the middle.
Now place the tracing paper over the point pattern, and move it until the red dot coincides with
one of the data points. Now copy all the other data points onto the tracing paper. Repeat this
for every data point, and you have the Fry plot. It is computed by the command fryplot.

Copyright (©CSIRO 2010

115

independent regular clustered
T E T N F - N R T
ko, F, AT T e food T gy b + g PR ERER?
+ + + i + ! T N 4 £
o AT, ,ﬁ}j@ﬂﬁﬁ#&; e o n%ﬁﬁ ST e # é;} o rd R
S N et + + + * + *
P S e T TR # KA N £ S S ti@ﬁ et
R Py N ety PR LA PR A WRAE
7 S i R UL T Gy P KR N LS
+ F35 et T 54 R 5 N B MR e o
et it 0 T B e, WL I e o L R A O S LT
by i
o e B REANE IR TS S R
PRNAS AL 1 PRI) 514 Lo sy PO + S S ST g
#hy ks %*&*ﬁ it St it ho i oy T R Wi A
¥ f‘ﬁf Akl R Wi?**ﬁﬂ’w P e T ﬁ:" e R IR g i’f **f'%:‘f MRS
¥’1 ey ks 4 k2 hey o
Py e e e uEal RIS P R Ty
Fe ik T S AT N) + + 4 LR, ST R R g
[UTENL D g i 0++§:+*' Ly 1 S Lt P T e, ++*% PR w3 3R
H A Sl Y YRy R e O AT A L e T 8 T
o nﬂgﬁr }?ji‘m gﬁJg@t fié‘*‘r fg M d L fz we *;u; Horh e SRS FAdS-
P Lk T TR T b S P A T A o tafr et gt R ¥ 4
LT + FELE Ty +, LSS i SR
o ST L e B LR e et o Thad o e P de
ittt B oA 4 FEE g L # . A + LR R A S
Fﬁ%’**“ﬁﬁ BT T tEe o v gt A ey L R o
hrt, Ml W s o R I S i+ RS R R S A S
bt TR R g by + +f o+ e+ iy A S 5 R Beogripr, e Rty +4
SRR A SN N ik S RNICE S G P INAPITIET NS S NIRRT

While these graphical diagnostics can be very useful for spotting features of the point pattern,
they involve subjective interpretation.

19 Distance methods for point patterns

19.1 Distances

The main classical techniques for investigating interpoint interaction are distance methods, based
on measuring the distances between points. Specifically we may consider

e pairwise distances s;; = ||z; — x;|| between all distinct pairs of points x; and z; (i # j)
in the pattern;

¢ nearest neighbour distances ¢; = min;; s;;, the distance from each point z; to its
nearest neighbour;

e empty space distances d(u) = min; ||u—x;||, the distance from a fixed reference location
u in the window to the nearest data point.

If you need to compute these directly, they are available in spatstat using the functions
pairdist, nndist and distmap respectively. If X is a point pattern object,

e pairdist(X) returns the matrix of pairwise distances.
e nndist(X) returns the vector of nearest neighbour distances.

e distmap(X) returns a pixel image whose pixel values are the empty space distances to the
pattern X measured from every pixel.

> data(cells)

> emp <- distmap(cells)

> plot(emp, main = "Empty space distances")
> plot(cells, add = TRUE)

Copyright (©CSIRO 2010

116 Distance methods for point patterns

Empty space distances

0.15 0.2 0.25

0.1

0.05

S}

Tip: Quite a useful exploratory tool is the Stienen diagram obtained by drawing a
circle around each data point of diameter equal to its nearest neighbour distance:

> plot(X Jmarkj, (nndist(X)/2), markscale = 1, main = "Stienen diagram")

%gg%
D%%g

8%%@8

In order to develop formal statistical analysis, we typically use the empirical cumulative
distribution function of these distances. This is explained in the following subsections.

)

19.2 Empty space distances

It’s easiest to start by explaining the analysis of the empty space distances.
The distance
d(u,x) = min{||u — z;|| : x; € x}

from a fixed location u € R? to the nearest point in a point pattern x, is called the ‘empty
space distance’ or ‘void distance’. It can be computed for all locations u on a fine grid, using
the spatstat function distmap as we saw above.

19.2.1 Edge effects

It is not easy to interpret a histogram of the empty space distances. The empirical distribution of
the empty space distances depends on the geometry of the window W as well as on characteristics
of the point process X.

Copyright (©CSIRO 2010

19.2 Empty space distances 117

Another viewpoint is that the window introduces a sampling bias. Recall that under the
‘standard model’ (Section 2.3) the point process X extends throughout 2-D space, but is observed
only inside W. This leads to bias in the distance measurements. Confining observations to a
window W implies that the observed distance d(u,x) = d(u, X N W) to the nearest data point
inside W, may be greater than the true distance d(u,X) to the nearest point of the complete
point process X.

observed true

19.2.2 Empty space function F

Ignoring the edge problems for a moment, let us focus on the entire point process X.
Assuming X is stationary (statistically invariant under translations), we can define the cu-
mulative distribution function of the empty space distance

F(r)=P{d(u,X) <r} (13)

where u is an arbitrary reference location. If the process is stationary then this definition does
not depend on wu.

The empirical distribution function of the observed empty space distances on a grid of loca-
tions u;, j =1,...,m,

Fr) = 3" 1 {dwy, %) < 7) (14)
J

is a negatively biased estimator of F'(r), for reasons explained above.
Corrections for this ‘edge effect bias’ are required. Many edge corrections are available.
Typically they are weighted versions of the ecdf,

F(r) =" e(uj,r)1 {d(u;,x) < r} (15)

J

where e(u,) is an edge correction weight designed so that F(r) is unbiased. These corrections
are effectively forms of the Horvitz-Thompson estimator of survey sampling fame.

The edge effect problem can also be regarded as a form of censoring (analogous to right-
censoring in survival data), as first pointed out by CSIRO researcher Geoff Laslett [46]. A
counterpart of the Kaplan-Meier estimator is available. For further information see [13].

Copyright (©CSIRO 2010

118 Distance methods for point patterns

Thus, assuming that the point process s homogeneous, we are able to compute an unbiased
and reasonably accurate estimate of the empty space function F' defined by (13).

To interpret this estimate, a useful benchmark is the Poisson process. Notice that d(u, X) > r
if and only if there are no points of X in the disc b(u,r) of radius r centred on u. For a
homogeneous Poisson process of intensity A, the number of points falling in b(u,r) is Poisson
with mean p = Aarea(b(u,r)) = Arr?, so the probability that there are no points in this region
is exp(—p) = exp(—A7rr?). Hence for a Poisson process

Fpois(r) = 1 — exp(=A7r?). (16)

Typically we compare F (r) with the value of Fj,is(7) obtained by plugging in the estimated
intensity A = n(x)/arca(W). Values F(r) > Fpois (1) suggest that empty space distances in the
point pattern are shorter than for a Poisson process, suggesting a regularly space pattern; while
values F(r) < Fois(1) suggest a clustered pattern.

19.2.3 Implementation in spatstat

The function Fest computes estimates of F'(r) using several edge corrections, and the benchmark
value for the Poisson process.

> data(cells)

> plot(cells)

> Fc <- Fest(cells)
> Fc

Function value object (class fv)
for the function r -> F(r)

Entries:

id label description

r r distance argument r

theo Flpois](r) theoretical Poisson F(r)

cs Flecs](x) Chiu-Stoyan estimate of F(r)

rs Flbord] (r) Dborder corrected estimate of F(r)

km F [km] (r) Kaplan-Meier estimate of F(r)

hazard hazard(r) Kaplan-Meier estimate of hazard function lambda(r)

Default plot formula:

. r
<environment: 0x6a251e0>

Recommended range of argument r: [0, 0.085]
Available range of argument r: [0, 0.2975]

Copyright (©CSIRO 2010

19.2 Empty space distances

119

The value returned by Fest is an object of class "fv" (“function value table”).

Tip:
FALSE.

Don’t use F as a variable name! It’s a reserved word — an abbreviation for

This is

effectively a data frame with some extra information. The printout for Fc indicates that the
columns in the data frame are named r, theo, cs, rs, km and hazard. The first column r
contains a sequence of values of the function argument r. The next column theo contains the
corresponding values of F(r) for a homogeneous Poisson process. The columns cs, rs and km
contain different estimates of the empty space function F', namely the Chiu-Stoyan estimator, the
‘reduced sample’ estimator, and the Baddeley-Gill Kaplan-Meier estimator, respectively. The
column hazard contains an estimate of the hazard rate of F', i.e. h(r) = (d/dr)log(l — F(r)), a
by-product of the Kaplan-Meier estimate.

If you don’t want to compute all these estimates (for example, for the sake of efficiency), you
can use the argument correction to specify which estimate or estimates are required.

> Fest(cells, correction
> Fest(cells, correction

> par(pty = "s")

> plot(Fest(cells))

theo

= ”km")
= c("km", "CS"))
label
F [km] (r) Kaplan-Meier estimate

2 rs F[bord] (r) border corrected estimate

1ty col key
1 1 km
2
3 3 «cs
4

Flcs] (xr)

4 theo F[pois] (r)

Chiu-Stoyan estimate

meaning
of F(r)
of F(r)
of F(r)

theoretical Poisson F(r)

Copyright (©CSIRO 2010

120 Distance methods for point patterns

Fest(cells)

0.8
|

0.6

F(r)

0.4

0.2

0.0
|

0.00 0.02 0.04 0.06 0.08

This is a call to plot.fv. The printed output is the return value from plot.fv, which
explains the encoding of the different function estimates using the R graphics parameters 1ty
(line type) and col (line colour).

You'll notice that, by default, the hazard rate hazard was not plotted. The choice of es-
timates to be plotted, and the style in which they are plotted, are controlled by the second
argument to plot.fv, which should be an R language formula involving the identifier names r,
theo, cs, rs, km and hazard. To plot the hazard rate against r,

> plot(Fest(cells), hazard ~ r, main = "Hazard rate of F")

Hazard rate of F

80
1

60
1

hazard(r)

40

20
1

0.00 0.02 0.04 0.06 0.08

To plot only the Kaplan-Meier and Chiu-Stoyan estimators with the theoretical curve,

> plot(Fest(cells), cbind(km, cs, theo) ~ r)

Copyright (©CSIRO 2010

19.2 Empty space distances 121

Fest(cells)

0.8

0.6
|

F(r)

0.4

0.2
|

0.0
|

0.00 0.02 0.04 0.06 0.08

Notice the use of cbind to specify several different graphs on the same plot.

To plot the estimates of F(r) against the Poisson value, in the style of a PP plot:

> plot(Fest(cells), cbind(km, rs, theo) ~ theo)

Fest(cells)

1.0

0.8
|

F(r)
06

0.4

0.2

0.0
|

0.0 0.2 0.4 0.6 0.8 1.0

Foois(r)

(including theo on the left side here gives us the diagonal line).

The symbol . stands for ‘all recommended estimates of the function’. So an abbreviation
for the last command is

> plot(Fest(cells), . ~ theo)

Transformations can be applied to these function values. For example, to subtract the
theoretical Poisson value from the estimates,

> plot(Fest(cells), . - theo ~ r)

Copyright (©CSIRO 2010

122 Distance methods for point patterns

Fest(cells)

0.25
1

F(r) = Foois(r)
0.15 0.20
Il Il

0.10
1

0.05
1

0.00
1

To apply Fisher’s variance stabilising transformation ¢(E(t)) = sinfl(\/(ﬁ(t))),

> plot(Fest(cells), asin(sqrt(.)) ~ r)

Fest(cells)

1.2
1

1.0

asin({F(r))
0.6

0.4

0.2
1

19.3 Nearest neighbour distances

For other types of distances we encounter similar problems. For the nearest neighbour distances
t; = minj; ||x; — 7|, again it is not easy to interpret a histogram of the observed distances.
The empirical distribution of the nearest neighbour distances depends on the geometry of the
window W as well as on characteristics of the point process X. Confining observations to a
window W implies that the observed nearest-neighbour distances are larger, in general, than the
‘true’ nearest neighbour distances of points in the entire point process X. Corrections for this
edge effect bias are required.

19.3.1 G function

Assuming the point process X is stationary, we can define the cumulative distribution function
of the nearest-neighbour distance for a typical point in the pattern,

G(r) =P{d(u, X\ {u}) <r|ueX} (17)

Copyright (©CSIRO 2010

19.3 Nearest neighbour distances 123

where u is an arbitrary location, and d(u, X \ {u}) is the shortest distance from u to the point
pattern X excluding u itself. If the process is stationary then this definition does not depend
on u.

The empirical distribution function of the observed nearest-neighbour distances

G*(r) = %Zl{ti <r} (18)

is a negatively biased estimator of G(r), for reasons we explained above. Many edge corrections
are available. Typically they are weighted versions of the ecdf,

G(r) = e(z;,r)1{t; <r} (19)

i

where e(z;,r) is an edge correction weight designed so that é(r) is approximately unbiased. A
counterpart of the Kaplan-Meier estimator is also available.

For a homogeneous Poisson point process of intensity A, the nearest-neighbour distance
distribution function is known to be

Gpois(1) = 1 — exp(—Amr?). (20)

This is identical to the empty space function for the Poisson process. Intuitively, because points
of the Poisson process are independent of each other, the knowledge that « is a point of X does
not affect any other points of the process, hence G is equivalent to F'.

Interpretation of @(T) is the reverse of ﬁ(r) Values @(T) > Gpois(r) suggest that nearest
neighbour distances in the point pattern are shorter than for a Poisson process, suggesting a
clustered pattern; while values @(r) < Glpois(1) suggest a regular (inhibited) pattern.

The function Gest computes estimates of G(r) using several edge corrections, and the bench-
mark value for the Poisson process.

> Gc <- Gest(cells)
> Gc

Function value object (class fv)
for the function r -> G(r)

Entries:

id label description

r r distance argument r

theo G[pois] (r) theoretical Poisson G(r)

han G[han] (r) Hanisch estimate of G(r)

rs G[bord] (r) border corrected estimate of G(r)

km G[km] (r) Kaplan-Meier estimate of G(r)

hazard hazard(r) Kaplan-Meier estimate of hazard function lambda(r)

Default plot formula:

. r
<environment: 0x6ab90d8>

Recommended range of argument r: [0, 0.15]
Available range of argument r: [0, 0.29539]

Copyright (©CSIRO 2010

124 Distance methods for point patterns

> par(pty = "s")
> plot(Gest(cells))

Gest(cells)

0.8
|

0.6
|

G(r)

0.4

0.2

The estimate of G(r) suggests strongly that the pattern is regular. Indeed, @(r) is zero for
r < 0.07 which indicates that there are no nearest-neighbour distances shorter than 0.07.

Common ways of plotting G include:

G(r) and Ghois(r) plotted against r plot (Gest (X))
G(r) — Gpois(r) plotted against r plot(Gest(X), . - theo ~ r)
G(r) plotted against Gpis(r) in P-P style plot(Gest(X), . ~ theo)

and Fisher’s variance-stabilising transformation ¢(G(t)) = sin~!(1/G(t)) applied to the P-P
plot:

> fisher <- function(x) {
+ asin(sqrt(x))
+
>

}
plot(Gest(cells), fisher(.) ~ fisher(theo))

Gest(cells)

15

— km

han
- theo

1.0

fisher(G(r))

0.5

0.0
1

0.0 0.5 1.0 15

fisher(Gpois(r))

Copyright (©CSIRO 2010

19.4 Pairwise distances and the K function 125

19.4 Pairwise distances and the K function

The observed pairwise distances s;; = ||z; — ;|| in the data pattern x constitute a biased sample
of pairwise distances in the point process, with a bias in favour of smaller distances. For example,
we can never observe a pairwise distance greater than the diameter of the window.

Ripley [54] defined the K-function for a stationary point process so that AK (r) is the expected
number of other points of the process within a distance r of a typical point of the process.

Formally
1

K(r)= XE (X Nblu,r)\ {u}) | uveX]. (21)

For a homogeneous Poisson process, intuitively, the knowledge that v is a point of X does

not affect the other points of the process, so that X\ {u} is conditionally a Poisson process. The
expected number of points falling in b(u,r) is Awr2. Thus for a homogeneous Poisson process

Kpois(r) = (22)
regardless of the intensity.

Numerous estimators of K have been proposed. Most of them are weighted and renormalised
empirical distribution functions of the pairwise distances, of the general form

K(r) = ZZI{IIwZ—%IKT} e(xi, z5;7) (23)

32
Aarea(W T it

where e(u,v,7) is an edge correction weight. The choice of estimator does not seem to be very
important, as long as some edge correction is applied.

Again we usually compare the estimate K (r) with the Poisson K function. Values K (r) >
7r? suggest clustering, while K (r) < 7r? suggests a regular pattern.

In spatstat the function Kest computes several estimates of the K-function.

> Gc <- Kest(cells)
> Gc

Function value object (class fv)
for the function r -> K(r)

Entries:

id label description

r r distance argument r

theo K[pois] (r) theoretical Poisson K(r)

border K[bord](r) border-corrected estimate of K(r)

trans K[trans] (r) translation-corrected estimate of K(r)

iso K[iso] (r) Ripley isotropic correction estimate of K(r)

Default plot formula:

. r
<environment: 0x60d97a8>

Recommended range of argument r: [0, 0.25]
Available range of argument r: [0, 0.25]

Copyright (©CSIRO 2010

126 Distance methods for point patterns

> par(pty = "s")
> plot(Kest(cells))

Kest(cells)

0.20
|

0.15
|

K(D)
0.10
|

0.05
|

0.00
|

0.00 0.05 0.10 0.15 0.20 0.25

r

In this case, the interpretation of all three summary statistics F', G and K is the same:
emphatic evidence of a regular pattern. It is not always the case that these three summaries
give equivalent messages.

A commonly-used transformation of K is the L-function

which transforms the Poisson K function to the straight line Lyeis(r) = 7, making visual assess-
ment of the graph much easier. The square root transformation also approximately stabilises
the variance of the estimator, making it easier to assess deviations.

To compute the estimated L function, use Lest.

> L <- Lest(cells)
> plot(L, main = "L function")

L function

0.25
1

0.20

L

0.10
1

0.05
1

0.00
1

0.00 0.05 0.10 0.15 0.20 0.25

r

Another related summary function is the pair correlation function

g(r) = =

2rr

Copyright (©CSIRO 2010

19.4 Pairwise distances and the K function 127

where K'(r) is the derivative of K. The pair correlation is in some ways easier to interpret than
either K or L, although it is more difficult to estimate. Roughly speaking, the pair correlation
g(r) is the probability of observing a pair of points separated by a distance r, divided by the
corresponding probability for a Poisson process. This is a non-centred correlation which may
take any nonnegative value. The value g(r) = 1 corresponds to complete randomness; for the
Poisson process the pair correlation is gpis(r) = 1. For other processes, values g(r) > 1 suggest
clustering or attraction at distance r, while values g(r) < 1 suggest inhibition or regularity.
To compute the estimated pair correlation function, use pcf.

> plot(pcf(cells))

pcf(cells)

15

1.0

a(n)

0.5

0.0
|

0.00 0.05 0.10 0.15 0.20 0.25

r

Here we have used the method pcf.ppp. This computes a standard kernel estimate which
performs well except at very small values of r. So it is prudent not to read too much into the
behaviour of the pcf close to r = 0.

If you want to try another algebraic transformation of a summary function, the transforma-
tion can be computed using eval.fv. You can also plot algebraic transformations of a summary
function using the ‘plotting formula’ argument to plot.fv. For example, if we have already
computed the K function, we can plot the L function by

> K <- Kest(cells)
> plot (K, sqrt(./pi) ~ r)

and compute the L function using eval.fv:

> K <- Kest(cells)
> L <- eval.fv(sqrt(K/pi))

If you have already computed the K function and wish to derive the pair correlation, there
is another algorithm pcf . fv that calculates g(r) = K'(r)/(27r) by numerical differentiation.

> K <- Kest(cells)
> g <= pcf(K)

Copyright (©CSIRO 2010

128 Distance methods for point patterns

19.5 J function

A useful combination of F' and G is the J function [64]

_1-G@)

1T F 29

J(r)
defined for all » > 0 such that F(r) < 1. For a homogeneous Poisson process, Fpois = Gpois, SO

that
Jpois(r) = 1. (25)

Values J(r) > 1 suggest regularity, and J(r) < 1 suggest clustering,.
An appealing property of the J function is that the superposition X, = X3 U X5 of two
independent point processes X1, Xo has J-function

)

A1
Ji(t) +
())\1—1-)\22

J(t) =
®) Ve

where Ji, Jo are the J-functions of X7, X9 respectively and A1, Ao are their intensities.

The J function is computed by Jest.

The convenient function allstats efficiently computes the F', GG, J and K functions for a
dataset. They can be plotted automatically.

> plot(allstats(cells))

allstats(cells)

19.6 Manipulating and plotting summary functions

As explained above, the summary function commands Fest, Gest, Kest, Lest, pcf etc. return
a function value table (an object of class "fv"). This is a data frame (i.e. it also belongs to
the class "data.frame") with some extra information. One column of the data frame contains

Copyright (©CSIRO 2010

19.6 Manipulating and plotting summary functions 129

values of the distance argument r, while the other columns contain different estimates of the
value of the function, or the theoretical value of the function under CSR.
The following operations are defined on this class:

print.fv print a summary description

plot.fv plot the function estimates

as.data.frame strip extra information (returns a data frame)

$ extract one column (returns a numeric vector)
[.fv extract subset (returns an "fv" object)

with.fv perform calculations with specific columns of data frame
eval.fv perform calculation on all columns of data frame
cbind.fv combine several "fv" objects

collapse.fv combine several redundant "fv" objects

bind.fv combine an "fv" object and a data frame
smooth.fv apply smoothing to function values

stieltjes compute Stieltjes integral with respect to function

To make life easier, there are several options for manipulating the function values.
To manipulate or combine one or more columns of the data frame, it is typically easiest to
use the command with.fv, which is a method for the generic command with. For example:

> data(redwood)

> K <- Kest(redwood)

> y <- with(X, iso - theo)
> x <- with(K, r)

In this case, the results x and y are numeric vectors, where x contains the values of the
distance argument r, and y contains the difference between the columns iso (isotropic correction
estimate) and theo (theoretical value for CSR) for the K-function estimate of the redwood
seedlings data. For this to work, we have to know that K contains columns named r, iso and
theo.

The general syntax is with(X, expr) where X is an "fv" object and expr can be any
expression involving the names of columns of X. The expression can include functions, so long
as they are capable of operating on numeric vectors. The expression can also involve the symbol
. representing “all recommended estimates of the function”. Thus:

> L <- with(K, sqrt(./pi))

computes the estimates of L(r) = /K (r) by all the available edge correction methods. In
this case, the result L is an "fv" object. You can also get a single numeric result, for example

> with(Kest (redwood), max(abs(iso - theo)))
[1] 0.04945199
To plot a transformed function, you can also use the plot method. Its second argument is

a formula in the R language. The left side of the formula represents what curve or curves will
be plotted on the y axis, and the right side determines the x variable for the plot. Thus:

> plot (K, sqrt(./pi) ~ r)

Copyright (©CSIRO 2010

130 Distance methods for point patterns

plots the estimates of L(r) = /K (r), by all the available edge correction methods, against
r. The symbol . again signifies “all recommended estimates of the function”. The left hand side
of the formula may use the command cbind to indicate that several different curves should be
plotted. For example, to plot only two curves, giving the isotropic correction estimate and the
theoretical value of K(r):

> plot (K, cbind(iso, theo) ~ r)

The right-hand side can be any expression that evaluates to a numeric vector, and the left
hand side is any expression that evaluates to a vector or matrix, of compatible dimensions.

To manipulate or combine one or more "fv" objects, use eval.fv. Its argument is an
expression containing the names of "fv" objects. For example

> K <- Kest (redwood)
> L <- eval.fv(sqrt(K/pi))

This can be used to perform computations involving several "fv" objects provided they are
compatible (they must have the same vector of r values).

> K1 <- Kest (redwood)
> K2 <- Kest(runifpoint (redwood$n, redwood$window))
> DK <- eval.fv(K1 - K2)

If these facilities are not sufficient, then direct access to the function values is also possible.
A single column of the data frame can be extracted using the $ operator in the usual way. The
object can also be converted to a data frame using as.data.frame and the entries extracted in
any desired fashion.

19.7 Caveats

The use of summary functions for analysing point patterns has become established across wide
areas of applied science, following Ripley’s influential paper [54] and many subsequent textbooks
[30, 33, 35, 63, 56, 57, 61] until quite recently.

There is a tendency to apply them uncritically and exclusively. It’s important to remember
that

1. the functions F', G and K are defined and estimated under the assumption that the point
process is stationary (homogeneous).

2. these summary functions do not completely characterise the process.

3. if the process is not stationary, deviations between the empirical and theoretical functions
(e.g. K and Kpeis) are not necessarily evidence of interpoint interaction, since they may
also be attributable to variations in intensity.

For an example of caveat 2, here is a point process constructed by Baddeley and Silverman
[16] which has the same K function as the homogeneous Poisson process:

> par (mfrow = c(1, 2))
> X <- rcell(nx = 15)
> plot(X)

> plot (Kest (X))

Copyright (©CSIRO 2010

19.7 Caveats 131

Kest(X)
i
X o
o) UUO Ogocou
Oo%
8 H oo 00%90 10
® oowoo® © ® (‘;!*
0 09 ©000°% @ k)
009 %o 0 00°Q d
ooooo O o0 &, OO
0 0q) OOOOOO %5 S
Ox® 04, §0°9%00 @ o
o o5 0O oO o5 O
Oo%o o o 0o o0 O
o o 000 o 9 s
o © fessd 1
08) %O % o =]
[¢] 0] e}
o
S 00 o, B 0% OoO
0000 ol
o 2’0 om©® %4 8
o

T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25

For an example of caveat 3, we generate an inhomogeneous Poisson pattern and apply the
ordinary K function estimator. The result appears to show clustering, but this is an artefact of
the spatial inhomogeneity.

> par (mfrow = c(1, 2))
> X <- rpoispp(function(x, y) {
+ 300 * exp(-3 * x)
+ 3}
> plot(X)
> plot (Kest (X))
Kest(X)
X
1% Yol
OO% o o o OO . g I
° 5o g 9
S ° & g S |
®
o ° 5 o © g
o o o 00 o
® g° ° o ©o S
Bo @ o S
o oo [Te)
?)Ogd) ;) o° o o g |
o ° @ O o o .
O. —
© T T T T T T

0.00 0.05 0.10 0.15 0.20 0.25

Copyright (©CSIRO 2010

132 Simulation envelopes and goodness-of-fit tests

20 Simulation envelopes and goodness-of-fit tests

Although summary statistics such as the K-function are intended primarily for exploratory
purposes, it is also possible to use them as a basis for statistical inference.

20.1 Envelopes and Monte Carlo tests
20.1.1 Motivation

In Section 19 we examined plots of the K-function to judge whether a point pattern dataset is
completely random. The K-function estimated from the point pattern data, K (r), was compared
graphically with the theoretical K-function for a completely random pattern, Kpeis(r) = 2.
In the toy examples, large discrepancies between K and K ois were observed, indicating that
the toy examples were not completely random patterns.

However, because of random variability, we will never obtain perfect agreement between K
and K, even with a completely random pattern. Try typing plot(Kest (rpoispp(50))) a
few times to get an idea of the inherent variability.

The following plot shows the K-function estimated from the cells dataset (thick line), and
also the K-functions of 20 simulated realisations of CSR with the same intensity (thin lines).

0.15
1

0.10
1

0.05
1

0.00
1

The next plot shows the upper and lower envelopes of the simulated K-functions, that is, the
maximum and minimum values of K (r) for each value of r. The region between the envelopes
is shaded.

0.20
1

0.15
1

0.10
1

0.05
1

0.00
1

0.00 0.05 0.10 0.15 0.20 0.25

Copyright (©CSIRO 2010

20.1 Envelopes and Monte Carlo tests 133

Clearly, the K-function estimated from the cells data lies outside the typical range of values
of the K-function for a completely random pattern.

To conclude formally that there is a ‘significant’ difference between K and Kpois, we use
the language of hypothesis testing. Our null hypothesis is that the data point pattern is a
realisation of complete spatial randomness. The alternative hypothesis is that the data pattern
is a realisation of another, unspecified point process.

20.1.2 Monte Carlo tests

A Monte Carlo test is a test based on simulations from the null hypothesis. The principle was
originated independently by Barnard [18] and Dwass [39]. It was applied in spatial statistics
by Ripley [54, 56] and Besag [22, 23]. See also [41]. Monte Carlo tests are a special case of
randomisation tests which are commonly used in nonparametric statistics.

Suppose the reference curve is the theoretical K function for CSR. Generate M independent
simulations of CSR inside the study region W. Compute the estimated K functions for each of
these realisations, say K (r) for j =1,..., M. Obtain the pointwise upper and lower envelopes
of these simulated curves,

L(r) = minK9(r)
J

U(r) = maxK9(r).
J

For any fixed value of r, consider the probability that K (r) lies outside the envelope [L(r), U(r)]
for the simulated curves. If the data came from a uniform Poisson process, then K (r) and
K (1)(7°)7 .. ,I? (M) (r) are statistically equivalent and independent, so this probability is equal
to 2/(M + 1) by symmetry. That is, the test which rejects the null hypothesis of a uniform
Poisson process when K (r) lies outside [L(r), U(r)], has exact significance level o = 2/(M + 1).
Instead of the pointwise maximum and minimum, one could use the pointwise order statistics
(the pointwise kth largest and k smallest values) giving a test of exact size v = 2k/(M + 1).

20.1.3 Envelopes in spatstat

In spatstat the function envelope computes the pointwise envelopes.

> data(cells)
> E <- envelope(cells, Kest, nsim = 39, rank = 1)

> E

Pointwise critical envelopes for K(r)

Edge correction: iso

Obtained from 39 simulations of CSR

Significance level of pointwise Monte Carlo test: 2/40 = 0.05
Data: cells

Function value object (class fv)

for the function r -> K(r)

Entries:
id label description
r r distance argument r

Copyright (©CSIRO 2010

134 Simulation envelopes and goodness-of-fit tests

obs obs(r) observed value of K(r) for data pattern

theo theo(r) theoretical value of K(r) for CSR

lo lo(r) lower pointwise envelope of K(r) from simulations
hi hi(r) upper pointwise envelope of K(r) from simulations

Default plot formula:

. r
<environment: 0x5d76db8>

Recommended range of argument r: [0, 0.25]
Available range of argument r: [0, 0.25]

> plot(E, main = "pointwise envelopes")

pointwise envelopes

— obs
4 ---- theo
o hi

K()

0.10
|

0.00
|

0.00 0.0 0.10 0.5 0.20 0.25
r
For example if r had been fixed at » = 0.10 we would have rejected the null hypothesis of
CSR at the 5% level. The value M = 39 is the smallest to yield a two-sided test with significance
level 5%.

Tip: A common and dangerous mistake is to misinterpret the simulation envelopes
as “confidence intervals” around K. They cannot be interpreted as a measure of
accuracy of the estimated K function! They are the critical values for a test of the
hypothesis that K(r) = nr?. They assume that the pattern is completely
random. [See Section 21 for ways of making confidence intervals for K (r).]

The value returned by envelope is an object of class "fv" that can be manipulated in
the usual way: you can plot it, transform it, extract columns, and so on (see Section 19.6 on
page 128).

20.1.4 Simultaneous Monte Carlo test

Note that the theory of the Monte Carlo test, as presented above, requires that r be fixed in
advance. If we plot the envelope and check whether the empirical K function ever wanders

Copyright (©CSIRO 2010

20.1 Envelopes and Monte Carlo tests 135

outside the envelope, this is equivalent to choosing the value of r in a data-dependent way, and
the true significance level is higher (less ‘significant’).

To avoid this problem we can construct simultaneous critical bands which have the property
that, under Hy, the probability that K ever wanders outside the critical bands is exactly 5%.

One simple way to achieve this is to compute, for each estimate K (r), its maximum deviation
from the Poisson K function, D = max, |K () — Kpeis(r)|. This is computed for each of the M
simulated datasets, and the maximum value D,,x obtained. Then the upper and lower limits
are

L(r) = 7% — Dipax
U(r) = mr?+ Dpax.

The estimated K function for the data transgresses these limits if and only if the D-value for
the data exceeds Dpax. Under Hy this occurs with probability 1/(M + 1). Thus, a test of size
5% is obtained by taking M = 19.

> E <- envelope(cells, Kest, nsim = 19, rank = 1, global = TRUE)

> plot(E, main = "global envelopes")

global envelopes

— obs
---- theo
hi

0.20
1

K(r)
0.15
!

0.05
|

0.00
1

-0.05

0.00 0.05 0.10 0.15 0.20 0.25

r

A more powerful test is obtained if we (approximately) stabilise the variance, by using the
L function in place of K.

> E <- envelope(cells, Lest, nsim = 19, rank = 1, global = TRUE)

> plot(E, main = "global envelopes of L(r)")

Copyright (©CSIRO 2010

136 Simulation envelopes and goodness-of-fit tests

global envelopes of L(r)

— obs
---- theo

L@

0.10
|

0.05
|

0.00
|

-0.05

T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25

20.1.5 Envelopes for any fitted model

In the explanation above, we assumed that the null hypothesis was CSR (complete spatial
randomness, a uniform Poisson process). In fact the Monte Carlo testing rationale can be
applied to any point process model serving as a null hypothesis. We simply have to generate
simulated realisations from the null hypothesis, and compute the summary function for each
simulated realisation.

To simulate from a fitted point process model (object of class "ppm"), call the envelope
function, giving the fitted model as the first argument of envelope. Then the simulated patterns
will be generated according to this fitted model. The original data point pattern, to which the
model was fitted, is stored in the fitted model object; the original data are extracted and the
summary function for the data is also computed.

The following code fits an inhomogeneous Poisson process to the Beilschmiedia pattern, then
generates simulation envelopes of the L function by simulating from the fitted inhomogeneous
Poisson model.

> data(bei)
> fit <- ppm(bei, “elev + grad, covariates = bei.extra)
> E <- envelope(fit, Lest, nsim = 19, global = TRUE, correction = "border")

> plot(E, main = "envelope for inhomogeneous Poisson")

Copyright (©CSIRO 2010

20.1 Envelopes and Monte Carlo tests 137

envelope for inhomogeneous Poisson

o f’
N A —— obs /
---- mmean g
hi 4
4
S | lo y
—

80

L()
40 60
|

20

0 20 40 60 80 100 120

r (metres)

20.1.6 Envelopes based on any simulation procedure

Envelopes can also be computed using any user-specified procedure to generate the simulated
realisations. This allows us to perform randomisation tests, for example.

The simulation procedure should be encoded as an R expression, which will be evaluated
each time a simulation is required. For example if we type

> sim <- expression(rpoispp(100))

then each time the expression sim is evaluated, it will yield a different random outcome of the
Poisson process with intensity 100 in the unit square.

This expression should be passed to the envelope function as the argument simulate.

The following code generates simulation envelopes for the L function based on simulations
of CSR which have the same number of points as the data pattern.

> data(cells)

> n <- npoints(cells)

> W <- as.owin(cells)

> e <- expression(runifpoint(n, W))

> E <- envelope(cells, Lest, nsim = 19, global = TRUE, simulate = e)

> plot(E, main = "envelope with fixed n")

Copyright (©CSIRO 2010

138 Simulation envelopes and goodness-of-fit tests

envelope with fixed n

— obs
---- mmean -

0.20
|

0.15
|

L@

T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25

20.1.7 Envelopes based on a set of point patterns

Envelopes can also be computed from a user-supplied list of point patterns, instead of the
simulated point patterns generated by a chosen simulation procedure. The argument simulate
can be a list of point patterns:

> data(cells)

> Xlist <- list()

> for (i in 1:99) Xlist[[i]] <- runifpoint(42)

> envelope(cells, Kest, nsim = 99, simulate = Xlist)

The argument simulate can also be an envelope object. This improves efficiency and
consistency if, for example, we are going to calculate the envelopes of several different summary
statistics.

> data(cells)
> EK <- envelope(cells, Kest, nsim = 99, savepatterns = TRUE)
> Ep <- envelope(cells, pcf, nsim = 99, simulate = EK)

In the first call to envelope, the argument savepatterns=TRUE indicates that we want to
save the simulated point patterns. These are stored in the object EK. Then in the second call to
envelope, the simulated patterns are extracted from EK and used to compute the envelopes of
the pair correlation function.

20.1.8 Envelopes based on sample mean & variance

Envelopes can be constructed using the sample mean and sample variance of the simulations.
By default the envelope is the sample mean plus or minus 2 times the sample standard deviation.
This is useful for understanding the variability of the summary function. Be aware that these
envelopes do not have the same significance interpretation.

> envelope(cells, Kest, nsim = 100, VARIANCE = TRUE)

Copyright (©CSIRO 2010

139

21 Spatial bootstrap methods

Spatstat includes some elementary bootstrap methods for estimating the variance and the
distribution of a summary statistic. These can be used to construct confidence intervals for
the true value of K (r), for example.

The function varblock divides the point pattern’s window into several quadrats. The speci-
fied summary statistic is applied to each of the corresponding sub-patterns. Then the pointwise
sample mean, sample variance and sample standard deviation of these summary statistics are
computed. The two-standard-deviation confidence intervals are computed. This is an elemen-
tary bootstrap estimate of the sampling variance of the summary statistic [35, eq. (4.21), p.
52].

> data(finpines)
> Kci <- varblock(finpines, Kest, nx = 3, ny = 3)

> plot(Kci, iso ~ r, shade = c("loiso", "hiiso"), main = "Confidence Interval")

Confidence Interval

12

10
|

KISO(r)

0.0 0.5 1.0 15

The function quadratresample generates a randomly resampled version of the data point
pattern. The spatial domain is divided into several rectangular quadrats of equal shape and size;
the sub-patterns in each quadrat are extracted into a list; and the list is randomly permuted or
resampled. The resampled sub-patterns are replaced in the original domains.

> X <- unmark(finpines)

> Xlist <- quadratresample(X, nx = 4, ny = 4, nsamples = 100)

> E <- envelope(X, Kest, simulate = Xlist, nsim = 100, VARIANCE = TRUE)
> plot(E)

22 Simple models of non-Poisson patterns

A point process that is not Poisson can be said to exhibit ‘interaction’ or dependence between
the points. It’s time to introduce some models for such processes. This section covers simple
models that are derived from the Poisson process, and still retain some of the tractable features
of the Poisson model.

Copyright (©CSIRO 2010

140 Simple models of non-Poisson patterns

22.1 Poisson cluster processes

In a Poisson cluster process, we begin with a Poisson process Y of ‘parent’ points. Each ‘parent’
point y; € Y then gives rise to a finite set Z; of ‘offspring’ points according to some stochastic
mechanism. The set comprising all the offspring points forms a point process X. Only X is

observed.
parents clusters offspring
: /
0 O
... : ﬁ?ﬁe N o % 000 0 O
° ° 0o o o

) zﬁ@/’f@ ° o0 ° 3
3 . ’ %‘U ‘?’I\fé ° S o°c> 2%
Q
N

An example is the Matérn cluster process in which the parent points come from a homoge-
neous Poisson process with intensity x, and each parent has a Poisson (x) number of offspring,
independently and uniformly distributed in a disc of radius r centred around the parent.

The Matérn cluster process can be generated in spatstat using the command rMatClust.
[By convention, random data generators in R always have names beginning with r.]

> plot (rMatClust (kappa = 10, r = 0.1, mu = 5))

rMatClust(kappa = 10, r = 0.1, mu = 5)

° o o
OOO
o
o ° o
o o 8
° 2
0 o
o
R
)
o
° o
o o2 o
o o @ °0 o 9
o @ o
o o
o ° o o © o
o o
o ° oo

Other Poisson cluster processes implemented in spatstat are

e rThomas: the Thomas process, in which each cluster consists of a Poisson(u) number of
random points, each having an isotropic Gaussian N (0, 02I) displacement from its parent.

e rGaussPoisson: the Gauss-Poisson process in which each cluster is either a single point
or a pair of points.

e rNeymanScott: the general Neyman-Scott cluster process in which the cluster mechanism
is arbitrary.

Copyright (©CSIRO 2010

22.2 Cox processes 141

22.2 Cox processes

A Cox point process is effectively a Poisson process with a random intensity function. Let A(u)
be a random function with non-negative values, defined at all locations © € R2. Conditional on
A, let X be a Poisson process with intensity function A. Then X is a Cox process.

A trivial example is the “mixed Poisson” process in which we generate a random variable A
and, conditional on A, generate a uniform Poisson process with intensity A. Following are three
different realisations of this process:

> par(mfrow = c(1, 3))

> for (i in 1:3) {

+ lambda <- rexp(1, 1/100)
+ X <- rpoispp(lambda)

+ plot (X)

+ }

> par(mfrow = c(1, 1))

s B
L3 ® ° 0 o
@@ 0% ° o®
® o o ©
& °© 00 6% 6° °
% of o ®
8 ox, ¥
@ o9 0®o oo, 8
%" 0@ oo
3 LA
°
©0 o °, %
F o e 0 &
. o %o 00 , %
b A 2”8 200 00
o o o
°
° ° P o ° o
o
oo o o %0 80
o
o o
°© o go o o
o o
08 o
15
& ® 9@ o %° °
® < 00 o
o o °¢°
8

Moments of Cox processes are tractable (in terms of the moments of A). The intensity
function of X is A\(u) = E[A(u)].

A Cox model is the analogue of a ‘random effects’ model. It is always overdispersed relative
to a Poisson process (i.e. the variance of the number of points falling in a region, is greater
than the mean). Cox processes are the most convenient models for clustered point patterns. A
particularly interesting and useful class is that of log-Gaussian Cox processes (LGCP) in which
log A(u) is a Gaussian random function [51, 50].

The Matérn Cluster process and the Thomas process are both Cox processes.

Currently there are no functions in spatstat for generating the general Cox process, but
if you have a way of generating realisations of a random function A of interest, then you can
use rpoispp to generate the Cox process. The intensity argument lambda of rpoispp can be a
function(x,y) or a pixel image.

22.3 Thinned processes

‘Thinning’ means deleting some of the points from a point pattern. Under ‘“independent thinning’
the fate of each point is independent of other points. When independent thinning is applied
to a Poisson process, the resulting process of retained points is Poisson. To get a non-Poisson
process we need some kind of dependent thinning mechanism.

In Matérn’s Model I, a homogeneous Poisson process Y is first generated. Any point in Y
that lies closer than a distance r from the nearest other point of Y, is deleted. Thus, pairs of
close neighbours annihilate each other.

> plot(rMaternI(70, 0.05))

Copyright (©CSIRO 2010

142

Simple models of non-Poisson patterns

rMaternl(70, 0.05)

In Matérn’s Model II, the points of the homogeneous Poisson process Y are marked by
‘arrival times’ ¢; which are independent and uniformly distributed in [0,1]. Any point in Y that
lies closer than distance r from another point that has an earlier arrival time, is deleted.

> plot(rMaternII(70, 0.05))

rMaternli(70, 0.05)

o

22.4 Sequential models

In a sequential model, we start with an empty window, and the points are placed into the window

one-at-a-time, according to some criterion.

In Simple Sequential Inhibition, each new point is generated uniformly in the window and
independently of preceding points. If the new point lies closer than r units from an existing
point, then it is rejected and another random point is generated. The process terminates when

no further points can be added.

> plot(xrSSI(0.05, 200))

Copyright (©CSIRO 2010

22.4 Sequential models

143

rSSI(0.05, 200)

0o oo ©0 o

Sequential point processes are the easiest way to generate highly ordered patterns with high

intensity.

Copyright (©CSIRO 2010

144 Model-fitting using summary statistics

23 Model-fitting using summary statistics

Summary statistics can also be used to fit models to data.
In the ‘method of moments’ we estimate a parameter 6 by solving

Eg[S(X)] = 5(x)

where S(x) is the observed value of a statistic S for our data x, and the left side is the theoretical
mean of S for the model governed by parameter 6.

The analogue for point process models is to fit the model by matching a summary statistic
such as the K function to its theoretical value under the model.

23.1 Fitting a cluster process

In a precious few cases, the K function of a point process is known exactly, as an analytic
expression in terms of the model parameters. These happy cases include many Neyman-Scott
cluster processes. For example, the K-function of the Thomas process (Section 22.1, page 140)
with parameters 6 = (k, u, o) is

7“2

1
Ky(r) = mr2 + ~(1 — exp(———
o(r) =mr° + I{(exp(102

))- (26)
We can use this to fit a Thomas model to data. We determine the values of the parameters
0 = (k, p, o) to achieve the best match between Ky(r) and the estimated K-function of the data,
K(r). The best match is determined by minimising the discrepancy between the two functions

over some range [a, b]:
b
D) - |

where 0 < a < b, and where p,q > 0 are indices. This method was originally advocated by Peter
Diggle and collaborators, and is now known as the method of minimum contrast. See [35].

The command kppm fits cluster point process models by the method of minimum contrast.
To fit the Thomas model to the redwood data:

~

R — Ko(r)1| dr (27)

> data(redwood)
> fit <- kppm(redwood, ~1, "Thomas")

The first argument to kppm is a point pattern dataset. The second argument is a formula
(with no left hand side) describing the log intensity of the model; the formula ~1 indicates a
stationary process (see section 25.3 for nonstationary models). The third argument is the name
of the cluster mechanism; currently the only options are "Thomas" and "MatClust".

The fitted model, £it, is an object of class kppm. There are methods for printing and plotting
objects of this class.

> fit

Stationary cluster point process model
Fitted to point pattern dataset redwood
Fitted using the K-function
Cluster model: Thomas process
Fitted parameters:

kappa sigma mu
23.55389789 0.04704965 2.63226071

Copyright (©CSIRO 2010

23.1 Fitting a cluster process 145

> plot(fit)

fit

K-function

o

N

S

n

—

S

=
2

o

-

IS

Te)

o

S

o

o 4 ~

S

T T T T T I
0.00 0.05 0.10 0.15 0.20 0.25

The plot shows the theoretical K function of the fitted Thomas process (fit), three non-
parametric estimates of the K function (iso, trans, border) and the Poisson K function
(theo).

At present, the only cluster process models that can be fitted using kppm are the Thomas
process and the Matérn cluster process. To fit the Matérn cluster process to the redwood data,

> fitM <- kppm(redwood, ~1, "MatClust")

A fitted model returned by kppm can be simulated immediately:

> plot(simulate(fit, nsim = 4))

The command simulate is generic; here we have used the method simulate.kppm.

Simulation envelopes are also available, using the method envelope.kppm.

> plot(envelope(fit, Lest, nsim = 39))

Copyright (©CSIRO 2010

146 Model-fitting using summary statistics

envelope(fit, Lest, nsim = 39)

— obs
---- mmean

0.25
|

0.20
1

0.05
|

0.00
1

T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25

23.2 Fitting cluster models using the pair correlation

Minimum contrast estimation can be applied to any summary statistic. In particular we can
use the pair correlation function instead of the K-function.

> fitp <- kppm(redwood, ~1, "Thomas", statistic = "pcf")
> fitp

Stationary cluster point process model
Fitted to point pattern dataset redwood
Fitted using the pair correlation function
Cluster model: Thomas process
Fitted parameters:

kappa sigma mu
25.30537171 0.03968295 2.45007268

23.3 Fitting other models with known K function

Apart from cluster processes, there are certain other point process models for which the K-
function is known as a function of the model parameters. Minimum contrast methods are also
available for these models.

One special case is the log-Gaussian Cox processes described in detail in [51]. To fit a
log-Gaussian Cox process with exponential covariance function to the redwood data:

> fit <- lgcp.estK(redwood, c(sigma2 = 0.1, alpha = 1))
> fit

Minimum contrast fit (object of class minconfit)
Model: log-Gaussian Cox process
Fitted by matching theoretical K function to Kest(redwood)
Parameters fitted by minimum contrast ($par):
sigma2 alpha

Copyright (©CSIRO 2010

23.4 Generic algorithm for minimum contrast 147

1.0485493 0.0997963

Derived parameters of log-Gaussian Cox process ($modelpar):
sigma?2 alpha mu

1.0485493 0.0997963 3.6028597

Converged successfully after 145 iterations.

Domain of integration: [O , 0.25]

Exponents: p= 2, g= 0.25

The second argument to lgcp.estK gives initial values for the model parameters o2 and a.

The result of 1gcp.estK is an object of class minconfit (representing a ‘minimum contrast
fit’). There are methods for printing and plotting the fit. Simulation of these models has not
yet been implemented in spatstat.

Estimation can also be based on the pair correlation function:

> fit <- lgcp.estpct (redwood, c(sigma2 = 0.1, alpha = 1))
> fit

Minimum contrast fit (object of class minconfit)

Model: log-Gaussian Cox process

Fitted by matching theoretical g function to pcf(redwood)

Parameters fitted by minimum contrast ($par):
sigma?2 alpha

1.30244010 0.07011464

Derived parameters of log-Gaussian Cox process ($modelpar):
sigma?2 alpha mu

1.30244010 0.07011464 3.47591433

Converged successfully after 83 iterations.

Domain of integration: [0.0004883 , 0.25]

Exponents: p= 2, g= 0.25

23.4 Generic algorithm for minimum contrast

The command mincontrast is a generic fitting algorithm for the method of minimum contrast.
It can be used in any context where the theoretical function can be computed exactly from the
model parameters. A basic call to mincontrast is:

> mincontrast (observed, theoretical, starpar)

where observed is an object of class "fv" containing the summary function calculated from
the data; theoretical is a function which returns the theoretical value of the summary function
for a given parameter value; and startpar is a vector of initial values of the model parameters.
For details, see the help file for mincontrast.

For the vast majority of point process models, the true K function Ky(r) is not known
analytically in terms of the parameter 6. In principle we could use Monte Carlo simulation
to determine an approximation to Kjy(r), for any given 6, by generating a large number of
simulated realisations of the process with parameter 8, computing the estimated K-function for
each realisation, and taking the pointwise sample average. It’s possible to do this in spatstat
using the generic algorithm mincontrast. Details are not given here as it is rather fiddly at
present, and will change soon.

Copyright (©CSIRO 2010

148 Exploring local features

24 Exploring local features

The shapley dataset is an example of a point pattern which is clearly not homogeneous. The
data comes from a radioastronomical survey of galaxies in the Shapley Galaxy Concentration:
each point is a galaxy in the distant universe. There are very dense concentrations of galaxies
in some parts of the survey area.

> data(shapley)
> X <- unmark(shapley)
> plOt(X, pch = ”.”’ main = nn)

Exploratory techniques for investigating localised features in a point pattern include LISA
(Local Indicators of Spatial Association), nearest-neighbour cleaning, and data sharpening,.

In LISA methods, a summary statistic is separated into contributions from each of the data
points. For example the K function is expressed as a sum of the local K functions of each of
the data points. These local functions are then compared, and classified into several groups of
functions, perhaps using principal component analysis [2, 29, 28].

The spatstat functions localK, locall, localpcf compute local versions of the K-
function, L-function and pair correlation function, respectively.

Nearest-neighbour cleaning [26] groups the points into two classes — ‘feature’ and ‘noise’ —
on the basis of their nearest-neighbour distances. It is quick and often very useful.

> Z <- nnclean(X, k = 17)
> plot(Z, chars = c(".", "+"), main = "nearest neighbour cleaning")

noise feature
n . n I|+I|

nearest neighbour cleaning

Copyright (©CSIRO 2010

149

In data sharpening [27] the points effectively exert a force of attraction on each other, and
are allowed to move in the direction of the resultant force. This tends to enhance tight linear
concentrations of points.

> Y <- sharpen(X, sigma = 0.5, edgecorrect = TRUE)
> plot(Y, pch = ".", main = "data sharpened")

data sharpened

25 Adjusting for inhomogeneity

If a point pattern is known or suspected to be spatially inhomogeneous, then our statistical
analysis of the pattern should take account of this inhomogeneity.

25.1 Inhomogeneous K function

There is a modification of the K function that applies to inhomogeneous processes [7]. If A\(u)
is the true intensity function of the point process X, then the idea is that each point z; will be
weighted by w; = 1/A(x;).

The inhomogeneous K -function is defined as

Kinhom SC]H < ’I“} uveX (28)

)\
z;€X

assuming that this does not depend on location u. Thus, A(u)K (r) is the expected total ‘weight’
of all random points within a distance r of the point u, where the ‘weight’ of a point z; is 1/A(z;).
If the process is actually homogeneous, then A(u) is constant and Kippom () reduces to the
usual K function (21).
It turns out that, for an inhomogeneous Poisson process with intensity function A(u), the
inhomogeneous K function is
Kinhom, pois(r) = WTQ (29)

exactly as for the homogeneous case.
The standard estimators of K can be extended to the inhomogeneous K function:

. ||z — 24| <
Rt (1) = 5 30 {”x Gl =1) (30)

where e(u,v,7) is an edge correction weight as before, and X(u) is an estimate of the intensity
function A(u).

Copyright (©CSIRO 2010

150 Adjusting for inhomogeneity

The denominator D in (30) is either the area of the window D; = area(W), or

1
D=2 A(z;)

i

which is an unbiased estimator of area(W) if the intensity is correctly estimated. The de-
nominator Do is often preferred on grounds of statistical performance, because it introduces a
data-dependent normalisation.

The inhomogeneous K function is computed by the command Kinhom(X, lambda) where
X is the point pattern and lambda is the estimated intensity function. Here lambda may be a
pixel image, a function(x,y) in the R language, a numeric vector giving the values /)\\(CEZ) at
the data points z; only, or it may be omitted (and will then be estimated from X). By default,
the data-dependent denominator Dy is used.

There remains the question of how to estimate the intensity function A(u). It is usually
advisable to obtain the intensity estimate X(u) by fitting a parametric model, to avoid overfitting.
Here is an example for the tropical rainforest data, using the covariate data to suggest a model
for the intensity.

> data(bei)

> fit <- ppm(bei, “elev + grad, covariates = bei.extra)
> lam <- predict(fit, locations = bei)

> Ki <- Kinhom(bei, lam)

> plot(Ki, main = "Inhomogeneous K function")

Inhomogeneous K function

50000
|

—— bord.modif
-- border .
theo s

20000 30000 40000
| | |
N

10000
|

0
|

T T T T T T T
0 20 40 60 80 100 120

The plot suggests that, even after accounting for dependence on altitude and slope, the trees
still appear to be clustered.

The intensity function A(u) could also be estimated by kernel smoothing the point pattern
data. However, notice that the estimator (30) of the inhomogeneous K function depends on
the estimated intensity values at the data points, /)\\(CCZ) These are positively biased estimates
of the true values A(z;). In order to avoid bias, the value A(x;) should be estimated by kernel
smoothing of the point pattern with the point x; deleted. This “leave-one-out” estimator is
implemented in Kinhom and is invoked when the argument lambda is not given:

> Ki2 <- Kinhom(bei)
> plot(Ki2, main = "Kinhom using leave-one-out")

Copyright (©CSIRO 2010

25.2 Inhomogeneous cluster models 151

1ty col key label
bord.modif 1 1 bord.modif K[bordm] (r)
border 2 2 border K[bord] (r)
theo 3 3 theo K[pois](r)
meaning
bord.modif modified border-corrected estimate of K(r)
border border-corrected estimate of K(r)
theo theoretical Poisson K(r)

(the smoothing parameter o can also be controlled.)
The inhomogeneous analogue of the L-function is defined by

~ 1 ~
Linhom (T) = %Kinhom (T)

This can be computed using Linhom. For an inhomogeneous Poisson process, Linhom (7)) = 7.

The inhomogeneous analogue of the pair correlation function can be defined, similarly to the
homogeneous case, as /)

— Kinhom r
ginhom(r) = T

It has the same interpretation, namely, that ginwom(r) is the probability of observing a pair of
points at certain locations separated by a distance r, divided by the corresponding probability
for a Poisson process of the same (inhomogeneous) intensity.

The inhomogeneous pair correlation function is computed by pcfinhom:

> g <- pcfinhom(bei)

Incidentally there is also a function pcf.fv which will convert any K-function into a pair
correlation function by numerical differentiation. Thus the following is an alternative:

> g <- pcf (Kinhom(bei))

25.2 Inhomogeneous cluster models

The inhomogeneous Poisson process was described in Section 15.1. We can also introduce spatial
inhomogeneity into any of the non-Poisson models described in Section 22.

In the case of Poisson cluster processes (Section 22.1) we can introduce inhomogeneity in
either the parent process or the offspring processes.

To make the parents inhomogeneous, we simply generate the parent points from an inhomo-
geneous Poisson process with some intensity function (u).

To make the clusters inhomogeneous, we use a clever construction by Waagepetersen [65].
For a parent point at location (zg,yp), the offspring are generated from a Poisson process with
intensity G(z,y) = u(x,y)f(x — xo,y — yo), where f(u,v) is either the Gaussian probability
density (for the Thomas process) or the uniform probability density in a disc (for the Matérn
cluster process), and u(z,y) is the reference or modulating intensity. The number of offspring
from a given parent (zg,yo) is a Poisson random variable with mean

Bl(zo, o) = / B(z,y) dzdy = / F(@ - 20,y — yo)ule, y) de dy.

The simulation algorithms rMatClust and rThomas allow both these options. If the parent
intensity parameter kappa is given as a function(x,y) or a pixel image, then the parents are

Copyright (©CSIRO 2010

152 Adjusting for inhomogeneity

Poisson with inhomogeneous intensity kappa. If the offspring mean parameter mu is given as a
function(x,y) or a pixel image, then this determines an inhomogeneous reference density for
the clusters.

> Z <- as.im(function(x, y) {
+ 6 * exp(2 ¥ x - 1)

+ }, owin())

> plot(rMatClust (10, 0.05, Z))

rMatClust(10, 0.05, Z)

o2} [}
°© 2
o o g
o
3
o
o o% o o
&, 00,
o) oo 0 0§o
o
o o O&
oo
&
N %%
o

25.3 Fitting inhomogeneous models by minimum contrast

Minimum contrast methods can be applied to inhomogeneous point process models.

In principle we could fit any model (homogeneous or inhomogeneous) by the method of
minimum contrast using any summary statistic. However, the method works best when we
have an exact formula for the true value of the summary function for the model, expressed as a
function of the parameters of the model.

Waagepetersen [65] pointed out that, if we take a Thomas process or Matérn cluster process
(or in general a Neyman-Scott process) with homogeneous parent intensity x and inhomo-
geneous cluster reference density u(u), then the overall intensity of the process is

Au) = £ p(u)

and the inhomogeneous K-function is the same as it would be if 1 were constant.
Thus, we can fit a Thomas process or Matérn cluster process with inhomogeneous clusters
as follows:

1. estimate the inhomogeneous intensity A(u) of the process.
2. derive an estimate of the inhomogeneous K-function.

3. use the method of minimum contrast to estimate the parent intensity s and the cluster
scale parameter (Gaussian standard deviation or disc radius), exactly as we would in the
homogeneous case.

The command kppm performs this algorithm using a parametric model for the trend:

Copyright (©CSIRO 2010

25.4 Local scaling 153

> data(bei)
> fit <- kppm(bei, “elev + grad, "Thomas", covariates = bei.extra)
> fit

Inhomogeneous cluster point process model
Fitted to point pattern dataset bei
Fitted using the inhomogeneous K-function
Trend formula:“elev + grad

Fitted coefficients for trend formula:
(Intercept) elev grad
-8.55862210 0.02140987 5.84104065
Cluster model: Thomas process
Fitted parameters:

kappa sigma
0.0004290453 5.4110425537

In this example, kppm first estimates the intensity by fitting the model ppm(bei, ~elev+grad, covariat
Then predict.ppm is used to compute the predicted intensity at the data points, and this is
passed to Kinhom to calculate the inhomogeneous K function. The parameters of the Thomas
process are estimated from the inhomogeneous K function by minimum contrast.

The result of kppm can be printed, plotted, simulated and “enveloped” as before.

25.4 Local scaling

Locally-scaled point processes and summary functions [53] provide an alternative to the concept
of locally-weighted K functions (Section 25.1). In essence, the point process is assumed to be
equivalent, in small regions, to a rescaled version of a ‘template’ process, where the template
process is stationary, and the rescaling factor can vary from place to place.

> data(bronzefilter)
> X <- unmark(bronzefilter)

> plot(X)
X
O 0 O U (e} [e) O o [e) O O O S

O%?oooooooooooooomoo OO o 0050 ©00 45 o © o
02692062009 0 0° 0-0 © 0o o0 o 0o ° °
o2 0°0 0 06" 0 o 0 o 060 %55° o o oo © o

0 00055 ©0 600 o 94 oo o o [T o o Ie)
300006)000000 o o OOOOOOOO 0l © o
b © QOOOO 0%0 go 0000000 OOOOOO o OOO o 5 e} o

o 0oo8 00000 o © oo 0.009,0° © o ©
0© O o O (e} [}

0952,900° P0,0L00" 000 o o 000 o o O o
00 00 o P09%0% o o

&°%5°00 %00 © 0o0p0 o ooo© o
5600 050 °0 °% 0500 o ° o o ©
b 080,50 099, 90 ° © 050 005’ %0000 o o o o q
oooo‘féjo $°0°L 6% %500 o000 006099 0o o0 © o °
%Y oo%oooo % 600%°%90, 0 5 5 °0 %004 o o © ©

© 8% 32000, 0 000 0 ©0°°%°% o °0 oo o o o ©
o) o o
P9 026700 4o "0 oo o 0% .o o o ©

002 % o 0o o 0090 00 o o ©
900°50°, o_o 0000 o oo o o o ©
oogoooooooo o0~00p .o 0 5°%% ° ° o °

05%090 09P0 090% o ©_00° 0°®06 o o © o ©

jetege) o o o oo q
20 O%OOOOO 0520505 o 0%, 0°0 00 © o o ©
0 400°900%°%00 o o 0, OOOOOOOOO ° o o
0059 000g 0000, 000,° O o o %0 © o o o ° o

Spatstat provides the commands Kscaled and Lscaled which compute the locally-scaled
K and L functions. Their syntax is similar to Kinhom.

> fit <- ppm(X, “x)
> lam <- predict(fit)
> plot(Kscaled (X, lam), xlim = c(0, 2))

Copyright (©CSIRO 2010

154 Adjusting for inhomogeneity

Kscaled(X, lam)

12
1

10
1

Kscaled(r)

r (normalised units)

Copyright (©CSIRO 2010

25.4 Local scaling 155

PART VI. GIBBS MODELS

Part VI of the workshop explains Gibbs point process models and how to apply them.

Copyright (©CSIRO 2010

156 Gibbs models

26 Gibbs models

One way to construct a statistical model (in any field of statistics) is to write down its probability
density. Advantages of doing this are:

e the functional form of the density reflects its probabilistic properties.
e terms or factors in the density often have an interpretation as ‘components’ of the model.

e it is easy to introduce terms that represent the dependence of the model on covariates,
etc.

This approach is useful provided the density can be written down, and provided the density
is tractable.

Spatial point process models that are constructed by writing down their probability densities
are called ‘Gibbs processes’. Good references on Gibbs point processes are [63, 31].

26.1 Probability densities

It is possible to define probability densities for spatial point processes that live inside a bounded
window W.

The probability density will be a function f(x) defined for each finite configuration x =
{z1,...,2,} of points z; € W for any n > 0. Notice that the number of points n is not fixed,
and may be zero. Apart from this peculiarity, probability densities for point processes behave
much like probability densities in more familiar contexts.

That’s all you need to know for applications. If you’re interested in the mathematical
technicalities, read on; otherwise, skip to section 26.2.

A point process X inside W is defined to have probability density f if and only if, for any
nonnegative integrable function h,

E[h(X)] = e WIh(0)f(0) + e~V Z % /W e /W Wi{zy, ...,z DUz, .. 2} day -+ day
n=1

(31)
where |W| denotes the area of W.
In particular, the probability that X contains exactly n points is

e

:f /W.../W fz1,...,2,})day -+ doy

for n > 1 and py = P{n(X) = 0} = ¢~ WIf(@). Given that there are exactly n points, the
conditional joint density of the locations z1,..., 2z, is f({z1,...,2n})/Pn.

pn=P{n(X) =n} =

26.2 Poisson processes

The uniform Poisson process with intensity 1 has probability density f(x) = 1.
The uniform Poisson process in W with intensity A has probability density

F(x) = a A" (2)
where n(x) is the number of points in the configuration x, and the constant « is

o= =MW

Copyright (©CSIRO 2010

26.3 Pairwise interaction models 157

The inhomogeneous Poisson process in W with intensity function A(u) has probability density

f(x) =« H M) (33)

where the constant « is

a = exp [/Wu -)\(u))du] .

The densities (32) and (33) are products of terms associated with individual points z;. This
reflects the conditional independence property (PP4) of the Poisson process.

26.3 Pairwise interaction models

In order to construct spatial point processes which exhibit interpoint interaction (stochastic
dependence between points), we need to introduce terms in the density that depend on more
than one point. The simplest are pairwise interaction models, which have probability densities
of the form

n(x)

f@ =a] b@)]| |[J]c@iz)) (34)
=1

i<j

where « is a normalising constant, b(u), u € W is the ‘first order’ term, and c(u,v), u,v € W
is the ‘second order’ or ‘pairwise interaction’ term. The pairwise interaction term introduces
dependence between points. The interaction function must be symmetric, ¢(u,v) = ¢(v,u). In
principle we are free to choose any functions b and ¢, provided the resulting density is integrable
(the right side of (31) should be finite when h = 1).

26.3.1 Hard core process

If we take b(u) = 3 and

1 ifflu—v|[>r
C(“’”)—{ 0 if [ju—of| <7 (35)

where ||u — v|| denotes the distance between u and v, and r > 0 is a fixed distance, then the
density becomes

F(x) = { QB")if [|z; —]| > v for all i £ j

0 otherwise

This is the density of the Poisson process of intensity § in W conditioned on the event that no
two points of the pattern lie closer than r units apart. It is known as the (classical) hard core
process.

Copyright (©CSIRO 2010

158 Gibbs models

Hard core process

o o)
o o
o o o
o
o o
o
o o
o
o
o © o
)
o o
o ° o
o ° o
o
o © o © o
o o
P o o
o o
o o © o
o o
o
o o [}
o
o o
o

26.3.2 Strauss process

Generalising the hard core process, suppose we take b(u) = 3 and

1 iffu—v][>r
c(u,v)—{ v i flu—v]| <7 (36)

where v is a parameter. Then the density becomes

f(x) = af")y* ™) (37)

where s(x) is the number of pairs of distinct points in x that lie closer than r units apart.

The parameter v controls the ‘strength’ of interaction between points. If v = 1 the model
reduces to a Poisson process with intensity §. If v = 0 the model is a hard core process. For

values 0 < 7 < 1, the process exhibits inhibition (negative association) between points.

Strauss(y=0.2) Strauss(y=0.7)

O ~ [e]] O [e)
D o o © o q o o O o0 00 o
o) o o o0 o o
(e} o o (o] o [e] CPO o) o o
o
o ° o
o) o o o
o o O o 8 o 000 ©
° o o o o q
o e 0©°
o 9 o o o 00
° 4 o ° o @ o o
o o o O
o o o o~ O
o o © o o ° © 9
o o o o o 0% o 0o O
o o o o @®
© o ° *® o
o
o o @ o
° o o @
o o o o ° 5 O o
o ¢} e o e} o
o o o e}
D ° o ° o o" oo ©
o o 0 o o o
o] o 9) o O)
o
o o o
b ° o °© e ° 0%, 0082 o o
o o 8 o

For v > 1, the density (37) is not integrable. Hence the Strauss process is defined only for
0 <~ <1 and is a model for inhibition between points. This is typical of most Gibbs models.

Copyright (©CSIRO 2010

26.4 Higher-order interactions 159

26.3.3 Other pairwise interaction models

Other pairwise interactions that are considered in spatstat include the Strauss-hard core in-
teraction (with hard core distance h > 0 and interaction distance r > h)

0 ifflu—v||<h
cluv)y=¢ v fh<|lu—v||<r ,
1 if|ju—o||>r

the soft-core interaction (with scale o > 0 and index 0 < k < 1)

the Diggle-Gates-Stibbard interaction (with interaction range p)
i (mlu=)® 1, —
o(u, v) = sm(5) if [lu—v|| <p 7
1 if [lu —v|| > p

the Diggle-Gratton interaction (with hard core distance §, interaction distance p and index k)

0 if [lu—v|| <46
K
c(u,v) = (W) ifo<|lu—vl|<p ,
1 if [lu —v|| > p

and the general piecewise constant interaction in which ¢(||u — vl|) is a step function of ||u — v|]|.

o
— 7 Piecewise constant interaction
U

o o) o

o _| ° o o o° o
o o 0 o o O
© oo

o o

o © o0 O o o

© | ° o
(=) © o © 004 © 00
o o °% o o ©

OO o o o o

<~ O o o o

o O Op 0©° o o

0% ° o o

© [eXe)
o o © o0 4 o
© o oo 6 o © ©°0°
o o © ©° o °0o

o | o © PNe)

T T T T T
0.00 0.05 0.10 0.15 0.20

26.4 Higher-order interactions

There are some useful Gibbs point process models which exhibit interactions of higher order,
that is, in which the probability density has contributions from m-tuples of points, where m > 2.
One example is the area-interaction or Widom-Rowlinson process [17] with probability den-
sity
J(x) = "ty =4 (38)
where « is the normalising constant, 3 > 0 is an intensity parameter, and v > 0 is an interaction
parameter. Here A(x) denotes the area of the region obtained by drawing a disc of radius r
centred at each point x;, and taking the union of these discs. The value v = 1 again corresponds
to a Poisson process, while v < 1 produces a regular process and v > 1 a clustered process.
This process has interactions of all orders. It can be used as a model for moderate regularity or
clustering.

Copyright (©CSIRO 2010

160 Gibbs models

26.5 Conditional intensity

The main tool for analysing a Gibbs point process is its conditional intensity A(u, X). Intuitively
this determines the conditional probability of finding a point of the process at the location u given
complete information about the rest of the process. For formal definitions see [31]. Informally,
the conditional probability of finding a point of the process inside an infinitesimal neighbourhood

of the location u, given the complete point pattern at all other locations, is A\(u, X) du.
[]

For point processes in a bounded window, the conditional intensity at a location w given the
configuration x is related to the probability density f by

fxU{u})
fx)

(for u ¢ x), the ratio of the probability densities for the configuration x with and without the

AMu,x) = (39)

point u added.
The homogeneous Poisson process with intensity A has conditional intensity

AMu,x) =\
while the inhomogeneous Poisson process with intensity function A(u) has conditional intensity
AMu, x) = A(u)

. The conditional intensity for a Poisson process does not depend on the configuration x, because
the points of a Poisson process are independent.
For the general pairwise interaction process (34) the conditional intensity is

n(x)

Au,x) = b(u) [T e(u,). (40)

i=1
For the hard core process,

B if |Ju — ;|| > r for all ¢
0 otherwise

Mu,x) = { (41)

which has the nice interpretation that a point w is either ‘permitted’ or ‘not permitted’ depending
on whether it satisfies the hard core requirement.

For the Strauss process
Mu, x) = B @%) (42)

where t(u,x) = s(xU{u}) — s(x) is the number of points of x that lie within a distance r of the
location w. For v < 1, this has the interpretation that a random point is less likely to occur at
the location wu if there are many points in the neighbourhood.

Copyright (©CSIRO 2010

26.6 Simulating Gibbs models 161

Strauss area—interaction

o o

For the area-interaction process,
Au,x) =y~ Pl (43)

where B(u,x) = A(x U {u}) — A(x) is the area of that part of the disc of radius r centred on u
that is not covered by discs of radius r centred at the other points z; € x. If the points represent
trees or plants, we may imagine that each tree takes nutrients and water from the soil inside a
circle of radius r. Then we may interpret B(u,x) as the area of the ‘unclaimed zone’ where a
new plant at location u would be able to draw nutrients and water without competition from
other plants. For 7 < 1 we can interpret (43) as saying that a random point is less likely to
occur when the unclaimed area is small.

The conditional intensity of a point process determines the probability density, through (39).
Hence we can use the conditional intensity to define a point process. The conditional intensity
is the preferred modelling tool for Gibbs processes: it has a direct interpretation, and it is easier
to handle than the probability density.

26.6 Simulating Gibbs models

Gibbs models can be simulated by Markov chain Monte Carlo algorithms. Indeed, MCMC
algorithms were invented to simulate Gibbs processes [49, 55].

In brief, these algorithms simulate a Markov chain whose states are point patterns. The
chain is designed so that its equilibrium distribution is the distribution of the point process
we want to simulate. If the chain were run for an infinite time, the state would converge in
distribution to the desired point process. In practice the chain is run for a long finite time.
Further details are beyond the scope of this workshop; consult [51, 50] for more information.

Currently spatstat offers the function rmh which simulates Gibbs processes using the
Metropolis-Hastings algorithm.

> rmh(model, start, control)

e model determines the point process model to be simulated (see help(rmhmodel)).
e start determines the initial state of the Markov chain (see help(rmhstart)).

e control specifies control parameters for running the Markov chain, such as the number
of iteration steps (see help(rmhcontrol)).

Copyright (©CSIRO 2010

162 Fitting Gibbs models

In the simplest uses of rmh, the three arguments are lists of parameter values. To generate a
simulated realisation of the Strauss process with parameters § =2,y = 0.7, = 0.7 in a square
of side 10,

> mo <- list(cif = "strauss", par = c(beta = 2, gamma = 0.2, r = 0.7),
+ w = square(10))
> X <- rmh(model = mo, start = list(n.start = 42), control = list(nrep = 1e+06))

The other arguments specify a random initial state of 42 points, and that the algorithm shall
be run for a million iterations.

27 Fitting Gibbs models

27.1 Maximum pseudolikelihood

Maximum likelihood estimation is intractable for most point process models. At the very least
it requires Monte Carlo simulation to evaluate the likelihood (or the score and the Fisher infor-
mation).

A workable alternative, at least for investigative purposes, is to maximise the log pseudolike-
lihood

log PL (6;x) = Z log A(z;x) — /W AMu, x) du. (44)

You may recognise this as being very similar to the likelihood (4) of the Poisson process. In
general it is not a likelihood, but the analogue of the score equation

% logPL(#) =0
is an unbiased estimating equation. Thus the maximum pseudolikelihood estimator is asymp-
totically unbiased, consistent and asymptotically normal under appropriate conditions.

The main advantage of maximum pseudolikelihood is that, at least for popular Gibbs models,
the conditional intensity A(u,x) is easily computable, so that the pseudolikelihood is easy to
compute and to maximise. The main disadvantage is the bias and inefficiency of maximum
pseudolikelihood in small samples.

More computationally-intensive estimation procedures typically use the maximum pseudo-
likelihood estimate as their initial guess. We are implementing such procedures in spatstat as
well.

27.2 Fitting Gibbs models in spatstat

We have already met the function ppm for fitting Poisson point process models. In fact this
function will fit a wide class of Gibbs models.
ppm contains an implementation of the algorithm of Baddeley and Turner [9] for maximum
pseudolikelihood (which extends the Berman-Turner device for Poisson processes to a general
Gibbs process). The conditional intensity of the model, A\g(u,x), must be loglinear in the
parameters 6:
log Ag(u,x) = 0 - S(u,x), (45)

generalising (5), where S(u, x) is a real-valued or vector-valued function of location u and config-
uration x. Parameters 6 appearing in the loglinear form (45) are called ‘regular’ parameters, and

Copyright (©CSIRO 2010

27.2 Fitting Gibbs models in spatstat 163

all other parameters are ‘irregular’ parameters. For example, the Strauss process conditional
intensity (42) can be recast as

log A\(u,x) = log 8 + (log 7)t(u, x)

so that 8 = (log 3,log~y) are regular parameters, but the interaction distance r is an irregular
parameter (technically called a ‘bloody nuisance parameter’).
In spatstat we split the conditional intensity into first-order and higher-order terms:

log Ag(u,x) =n-S(u) + ¢ V(u,x). (46)

The ‘first order term’ S(u) describes spatial inhomogeneity and/or covariate effects. The ‘higher
order term’ V'(u, x) describes interpoint interaction.
The model with conditional intensity (46) is fitted by calling ppm in the form

ppm (X, terms, V)

The first argument X is the point pattern dataset. The second argument ~terms is a model
formula, specifying the first order term S(u) in (46), in the manner described in Section 15.
Thus the first order term S(u) in (46) may take very general forms.

The third argument V is an object of the special class "interact" which describes the
interpoint interaction term V(u,x) in (46). It may be compared to the ‘family’ argument
which determines the distribution of the responses in a linear model or generalised linear model.
Only a limited number of canned interactions are available in spatstat, because they must be
constructed carefully to ensure that the point process exists.

To fit the Strauss process to the cells data using ppm,

> data(cells)
> ppm(cells, ~1, Strauss(r = 0.1))

Stationary Strauss process

First order term:
beta
762.6005

Interaction: Strauss process
interaction distance: 0.1
Fitted interaction parameter gamma: 0.008

Relevant coefficients:
Interaction
-4 .825006

Here Strauss is a special function that creates an ‘interaction’ object (class "interact")
describing the interaction structure of the Strauss process. Notice that we had to specify the
value of the irregular parameter r (more about that later).

To fit the inhomogeneous Strauss process with conditional intensity

A, x) = b(u)y ")
where, say, b(u) is loglinear in the Cartesian coordinates,
logb((z,y)) = Bo + iz + Py
we simply type

Copyright (©CSIRO 2010

164

Fitting Gibbs models

> ppm(cells, “x + y, Strauss(r = 0.1))

Nonstationary Strauss process
Trend formula: "x + y

Fitted coefficients for trend formula:
(Intercept) X y
6.2922384 0.5269869 0.1576416

Interaction: Strauss process
interaction distance: 0.1
Fitted interaction parameter gamma:

Relevant coefficients:
Interaction
-4 .805565

0.0082

To fit an inhomogeneous Strauss process with log-quadratic first order term,

> ppm(cells, “polynom(x, y, 2), Strauss(r

Nonstationary Strauss process
Trend formula: “polynom(x, y, 2)

Fitted coefficients for trend formula:

(Intercept) polynom(x, y, 2)[x]
5.9747220 -0.9375707

0.1))

polynom(x, y, 2)[y]

3.4732733

polynom(x, y, 2)[x"2] polynom(x, y, 2)[x.y] polynom(x, y, 2)[y~2]

1.4970947 -0.1838987

Interaction: Strauss process
interaction distance: 0.1
Fitted interaction parameter gamma:

Relevant coefficients:
Interaction
-4.812711

0.0081

-3.3696109

Copyright (©CSIRO 2010

27.3 Interpoint interactions 165

27.3 Interpoint interactions

Instead of Strauss we may use any of the following functions to create an interaction:

Arealnter () area-interaction process

BadGey () hybrid Geyer saturation process
DiggleGratton() Diggle-Gratton potential
DiggleGatesStibbard() Diggle-Gates-Stibbard potential

Fiksel() Fiksel double exponential potential

Geyer () Geyer’s saturation process

Hardcore() hard core process

LennardJones () Lennard-Jones potential

0rd O Ord model, user-supplied potential
OrdThresh () Ord process, threshold potential
PairPiece() pairwise interaction, piecewise constant
Pairwise() pairwise interaction, user-supplied potential
Poisson() the Poisson point process (the default)
Saturated() general saturated model, user-supplied potential
SatPiece() multiscale saturation process

Softcore() pairwise interaction, soft core potential
Strauss() the Strauss process

StraussHard () the Strauss/hard core point process

(There are three additional ones for multitype point processes, described in section 34.3.2.)

The area-interaction model and the Geyer saturation model are quite handy, as they can be
used to model both clustering and regularity.

> data(redwood)
> ppm(redwood, ~1, Geyer(r = 0.07, sat = 2))

Stationary Geyer saturation process
First order term:
beta

12.39488

Interaction: Geyer saturation process

interaction distance: 0.07
saturation parameter: 2
Fitted interaction parameter gamma: 2.9004

Relevant coefficients:
Interaction
1.064845
> ppm(redwood, ~1, Arealnter(r = 0.03))

Stationary Area-interaction process

First order term:
beta

Copyright (©CSIRO 2010

166 Fitting Gibbs models

36.53100

Interaction: Area-interaction process
disc radius: 0.03
Fitted interaction parameter eta: 15.7515

Relevant coefficients:
Interaction
2.756935

The printout for the area-interaction model uses the “scale-free” parameter eta defined by

7'('7’2

n=°
where v and r are the parameters appearing in the definition (43). Values of 7 greater than 1
suggest clustering.
For more detailed explanation of modelling, see [11].

27.4 Fitted point process models

The result of the ppm call is an object of class "ppm" (‘point process model’). This is very closely
analogous to a fitted linear model (1m) or fitted generalised linear model (glm).

Standard R operations that are defined for fitted point process models (i.e. that have methods
for the class "ppm") include:

print print basic information

summary print detailed summary information
plot plot the fitted (conditional) intensity
predict fitted (conditional) intensity

fitted fitted (conditional) intensity at data points
update re-fit the model

coef extract the fitted coefficient vector 8
vcov variance-covariance matrix of 6
anova analysis of deviance

logLik evaluate log-pseudolikelihood
model.matrix extract design matrix

formula extract trend formula of model
terms extract terms in model formula

(the methods for anova and vcov are only available for Poisson models). The following
functions are also available:

step stepwise model selection

dropl one step backward in model selection
model.images compute images of canonical covariates in model
effectfun fitted intensity as function of one covariate

Plotting a fitted model generates a series of image and contour plots of
e the fitted first order term exp(7) - S(u))
e the fitted conditional intensity \;(u,x) evaluated for the data pattern x

For Poisson models, the two plots are equivalent, and give the fitted intensity function.

Copyright (©CSIRO 2010

27.4 Fitted point process models 167

> fit <- ppm(cells, “polynom(x, y, 2), Strauss(r = 0.1))
> par(mfrow = c(1, 2))
> plot(fit, how = "image", ngrid = 256)

Fitted trend Fitted cif

1400

1000

500

400 600 800 1000

For non-Poisson models, it is also possible to extract and plot the interpoint interaction
function, using fitin.

> model <- ppm(X, ~1, PairPiece(seq(10, 100, by = 10)))
> f <- fitin(model)
> plot(f)

1.0

0.8
|

Pairwise interaction
04 0.6

0.2

0.0
|

0 20 40 60 80 100 120

Distance

Copyright (©CSIRO 2010

168 Fitting Gibbs models

27.5 Simulation from fitted models
A fitted Gibbs model can also be simulated automatically using rmh.

> fit <- ppm(swedishpines, ~1, Strauss(r = 7))
> Xsim <- rmh(fit)
> plot(Xsim, main = "Simulation from fitted Strauss model")

Simulation from fitted Strauss model

The envelope command will also generate simulation envelopes for a fitted model.

\%

plot(envelope(fit, nsim = 39))

envelope(fit, nsim = 39)

1500
I

1000
I

K(r)

r (one unit = 0.1 metres)

27.6 Dealing with nuisance parameters

Irregular parameters, such as the interaction radius r in the Strauss process, cannot be estimated
directly using ppm. Indeed the statistical theory for estimating such parameters is unclear.

For some special cases, a maximum likelihood estimator of the nuisance parameter is avail-
able. For example, for the ‘hard core process’ (Strauss process with interaction parameter v = 0)
with interaction radius r, the maximum likelihood estimator is the minimum nearest-neighbour
distance. Thus the following is a reasonable approach to the cells dataset:

> rhat <- min(nndist(cells))
> rhat <- rhat * 0.99999
> ppm(cells, ~1, Strauss(r = rhat))

Copyright (©CSIRO 2010

27.6 Dealing with nuisance parameters 169

Stationary Strauss process

First order term:
beta
301.0949

Interaction: Strauss process
interaction distance: 0.0836293018068393
Fitted interaction parameter gamma: 0

Relevant coefficients:
Interaction
-20.77031

The analogue of profile likelihood, profile pseudolikelihood, provides a general solution which
may or may not perform well. If § = (¢,n) where ¢ denotes the nuisance parameters and 7 the
regular parameters, define the profile log pseudolikelihood by

PPL(¢, %) = maxlog PL ((9,):x) .

The right hand side can be computed, for each fixed value of ¢, by the algorithm ppm. Then we
just have to maximise PPL(¢) over ¢. This is done by the command profilepl:

> data(simdat)
> df <- data.frame(r = seq(0.05, 2, by = 0.025))
> pfit <- profilepl(df, Strauss, simdat, ~1)

> pfit

Profile log pseudolikelihood values

for model: ppm(simdat, ~1, interaction = Strauss)
fitted with rbord= 2

Interaction: Strauss

with irregular parameter r in [0.05, 2]

Optimum value of irregular parameter: r = 0.275

The result is an object of class profilepl containing the profile log pseudolikelihood func-
tion, the optimised value of the irregular parameter r, and the final fitted model. To plot the
profile log pseudolikelihood,

> plot(pfit)

Copyright (©CSIRO 2010

170

Fitting Gibbs models

ppm(simdat, ~1, interaction = Strauss)

-155 -14.5
| |

log PL
-16.5
!

-17.5
1

T I I I I
0.0 0.5 1.0 15 2.0

r
To extract the final fitted model,
> pfit$fit
Stationary Strauss process

First order term:
beta
2.583110

Interaction: Strauss process
interaction distance: 0.275
Fitted interaction parameter gamma: 0.5631

Relevant coefficients:

Interaction
-0.5743608

There is a summary method for these objects as well.

27.7 Improvements over maximum pseudolikelihood

Maximum pseudolikelihood is quick and dirty. There are statistically more efficient alternatives,

but they are computationally intensive.

Currently we have implemented the easiest of these alternatives, the Huang-Ogata [43] one-
step approximation to maximum likelihood. Starting from the maximum pseudolikelihood esti-
mate Op L, we simulate M independent realisations of the model with parameters épL, evaluate
the canonical sufficient statistics, and use them to form estimates of the score and Fisher in-
formation at # = fpr. Then we take one Newton-Raphson step, updating the value of 6.
The rationale is that the log-likelihood is approximately quadratic in a neighbourhood of the
maximum pseudolikelihood estimator, so that one Newton-Raphson step is almost enough.

To use the Huang-Ogata method instead of maximum pseudolikelihood, add the argument

method="ho".

> fit <- ppm(simdat, ~1, Strauss(r = 0.275), method = "ho")

> fit

Copyright (©CSIRO 2010

171

Stationary Strauss process

First order term:
beta
2.42845

Interaction: Strauss process
interaction distance: 0.275

Fitted interaction parameter gamma: 0.5277

Relevant coefficients:
Interaction
-0.6392568

> vecov(fit)

[,1] [,2]
[1,] 0.01000399 -0.01255788
[2,] -0.01255788 0.04019740

For models fitted by Huang-Ogata, the variance-covariance matrix returned by vcov is com-

puted from the simulations.

28 Validation of fitted Gibbs models

Goodness-of-fit testing and model validation for Poisson models were described in Section 16.
Checking a fitted Gibbs point process model is more difficult. There is little theory available to

support goodness-of-fit tests and the like.
As an example, consider the following data:

> data(residualspaper)
> X <- residualspaper$Fig4b
> plot(X)

We fit a Strauss process model with a log-quadratic intensity term:

> fit <- ppm(X, “polynom(x, y, 2), Strauss(0.05), correction = "isotropic")

The question is how to confirm or validate this model.

Copyright (©CSIRO 2010

172 Validation of fitted Gibbs models

28.1 Goodness-of-fit testing for Gibbs processes

For a fitted Gibbs process, no theory is available to support the x? goodness-of-fit test or the
Kolmogorov-Smirnov test. The predicted mean number of points in a given region is not known
in closed form for a Gibbs process. Thus, the appropriate test statistic for a y? test is not even
available in closed form, let alone the null distribution of this statistic.

Instead, goodness-of-fit for fitted Gibbs models often relies on the summary functions K and
G. The command envelope will accept as its first argument a fitted Gibbs model, and will
simulate from this model to determine the critical envelope.

> plot(envelope(fit, Lest, nsim = 19, global = TRUE))

envelope(fit, Lest, nsim=19, global=TRUE)

0.25
|

0.15
|

L(n

0.00
|

T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25

;
Let’s subtract the theoretical Poisson value L(r) = r to get a more readable plot:

> plot(envelope(fit, Lest, nsim = 19, global = TRUE), . - r ~ r)

envelope(fit, Lest, nsim=19, global=TRUE)

0.02
|

L(r)-r
0.00
!

-0.01

-0.02

T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25

r

This is fairly consistent with a Strauss process.

Copyright (©CSIRO 2010

28.2 Residuals for Gibbs processes 173

28.2 Residuals for Gibbs processes
28.2.1 Definition

Residuals for a general Gibbs model were defined only recently [12, 6]. The total residual in a
region B C R? is defined as

R(B) = n(x N B) — /B Nw, %) du (47)

where again n(x N B) is the observed number of points in the region B, and X(u,x) is the
conditional intensity of the fitted model, evaluated for the data point pattern x. If the fitted
model is correct, the residuals have mean zero.

This definition is similar to the definition of residuals for Poisson processes (Section 16.2)
except that the intensity A(u) of the fitted Poisson process has been replaced by the conditional
intensity A(u,x) of the fitted Gibbs process evaluated for the data point pattern x.

28.2.2 Residual plots

Residuals for Gibbs processes can be plotted using the same techniques as in Section 16.2. Here
is the four-panel plot:

> diagnose.ppm(fit, type = "Pearson")

cumulative sum of Pearson residuals

y coordinate

cumulative sum of Pearson residuals

x coordinate

Copyright (©CSIRO 2010

174 Validation of fitted Gibbs models

At the time of writing, spatstat does not yet display 2¢ significance bands for the lurking
variable plots when the fitted model is not Poisson. The interpretation of the lurking variable
plots is a little more difficult without the significance bands. One tends to place a little more
emphasis on the smoothed residual field. The Pearson residuals should be approzimately stan-
dardised, so that values which are much greater than 2 (in absolute value) suggest a lack of
fit.

The four-panel plot above suggests that the model is a reasonable fit.

28.2.3 Q—Q plots

As we noted in Section 16.2.6, the four-panel residual plot and the lurking variable plot are
useful for detecting misspecification of the trend in a fitted model. They are not very useful for
checking misspecification of the interaction in a fitted model.

An extreme example is provided by the cells dataset. The residual plots for a uniform
Poisson process fitted to the cells data suggest that this is a good model:

> data(cells)
> fitPois <- ppm(cells, ~1)

> diagnose.ppm(fitPois)

cumulative sum of raw residuals

y coordinate

cumulative sum of raw residuals

x coordinate

However, the K-function shows that the cells dataset is clearly not a Poisson pattern, but
has strong inhibition:

Copyright (©CSIRO 2010

28.2 Residuals for Gibbs processes

> par (mfrow = c(1, 2))
> plot(cells)

> plot(Kest(cells))

> par(mfrow = c(1, 1))
cells
o o
o o
(o]
o ° (o] o °
o
o o o
o ° —
o R o © ©° gq <
(o]
o o) (o] © °
o o
o [e]
(o] ° ©
° [e]
(e}
° o]

Interaction between points in a point process corresponds roughly to the distribution of the
responses in loglinear regression. To validate the interaction terms in a point process model, we
should plot the distribution of the residuals. The appropriate tool is a (—Q plot.

> qqplot.ppm(fitPois, nsim =

39)

0.05 0.10 0.15 0.20

0.00

Kest(cells)

— iso

T T

0.00 0.05

data quantile

-20
L

-30
L

10 20 30

Mean quantile of simulations

This shows a Q—Q plot of the smoothed residuals for a uniform Poisson model fitted to the
cells data, with pointwise 5% critical envelopes from simulations of the fitted model. This
indicates that the uniform Poisson model is grossly inappropriate for the cells data.

40

T T T T
0.10 0.15 0.20 0.25

r

Returning to the model we fitted at the start of this chapter:

> qqplot.ppm(fit, nsim

= 39)

Copyright (©CSIRO 2010

176 Validation of fitted Gibbs models

gqgplot.ppm(fit, nsim=39)

100
|

50

data quantile

-50
|

-100 -50 0 50 100
Mean quantile of simulations
This shows a Q—Q plot of the smoothed residuals, with pointwise 5% critical envelopes from
simulations of the fitted model. This suggests that the Strauss model is reasonable.
These validation techniques generalise and unify many existing exploratory methods. For
particular models of interpoint interaction, the Q—Q plot is closely related to the summary
functions F', G and K. See [12].

28.3 New methods

Several new diagnostic tools for validating the interaction term in a point process model will be
published soon [8]. These methods will then be released in spatstat.

Copyright (©CSIRO 2010

28.3 New methods 177

PART VII. MARKED POINT PATTERNS

Part VII of the workshop deals with marked point patterns.

Copyright (©CSIRO 2010

178 Marked point patterns

29 Marked point patterns

29.1 Marked point patterns

Each point in a spatial point pattern may carry additional information called a ‘mark’. For ex-
ample, points which are classified into two or more different types (on/off, case/control, species,
colour, etc) may be regarded as marked points, with a mark which identifies which type they
are. Data recording the locations and heights of trees in a forest can be regarded as a marked
point pattern where the mark attached to a tree’s location is the tree height.

Many of the functions in spatstat handle marked point patterns in which the mark attached
to each point is either

e a continuous variate or “real number”. An example is the Longleaf Pines dataset
(longleaf) in which each tree is marked with its diameter at breast height. The marks
component must be a numeric vector such that marks[i] is the mark value associated
with the ith point. We say the point pattern has continuous marks.

e a categorical variate. An example is the Amacrine Cells dataset (amacrine) in which
each cell is identified as either “on” or “off”. Such point patterns may be regarded as
consisting of points of different “types”. The marks component must be a factor such
that marks[i] is the label or type of the ith point. We call this a multitype point pattern
and the levels of the factor are the possible types.

longleaf

amacrine

Vi

Note that, in some other packages, a point pattern dataset consisting of points of two different
types (A and B say) is represented by two datasets, one representing the points of type A and
another containing the points of type B. In spatstat we take a different approach, in which
all the points are collected together in one point pattern, and the points are then labelled by
the type to which they belong. An advantage of this approach is that it is easy to deal with
multitype point patterns with more than 2 types. For example the classic Lansing Woods dataset
represents the positions of trees of 6 different species. This is available in spatstat as a single
dataset, a marked point pattern, with the marks having 6 levels.

29.2 Formulation

A mark variable may be interpreted as an additional coordinate for the point: for example
a point process of earthquake epicentre locations (longitude, latitude), with marks giving the
occurrence time of each earthquake, can alternatively be viewed as a point process in space-time
with coordinates (longitude, latitude, time).

Copyright (©CSIRO 2010

29.3 Methodological issues 179

A marked point process of points in space S with marks belonging to a set M is mathemati-
cally defined as a point process in the cartesian product S x M. The space M of possible marks
may be ‘anything’. In current applications, typically the mark is either a categorical variable
(so that the points are grouped into ‘types’) or a real number. Multivariate marks consisting of
several such variables are also common.

A marked point pattern is an unordered set

y:{(xl’ml)’-'w(xn’mn)}’ v eW, m;eM

where x; are the locations and m; are the corresponding marks.

29.3 Methodological issues
29.3.1 Should the data be treated as a marked point process?

In a marked point process the points are random. Treating the data as a point process is
inappropriate if the locations are fixed, or if the locations are not part of the ‘response’.

Example 16 Today’s maximum temperatures at 25 Australian cities are displayed on a map.

This is not a point process in any useful sense. The cities are fixed locations. The temper-
atures are observations of a spatial variable at a fixed set of locations. See the R packages sp,
spdep, spgwr for suitable methods.

Example 17 A mineral exploration dataset records the map coordinates where 15 core samples
were drilled, and for each core sample, the assayed concentration of iron in the sample.

This typically should not be treated as a point process. The core sample locations were
chosen by a geologist, and are part of the experimental design. The main interest is in the iron
concentration at these locations. This should probably be analysed as a geostatistical dataset.
See the R packages geoR, geoRglm for suitable methods.

29.3.2 Joint vs. conditional analysis

There are more choices for analysis (and more traps) when marks are present. Schematically, if
we write X for the points and M for the marks, then a statistical model for the marked point
pattern could be formulated in several ways:

e [X] [M|X] — ‘conditional on locations’ — points X are first generated according to a
spatial point process, then marks M are ‘assigned’ to the points by a random mechanism
[M]X];

e [M] [X|M] — ‘conditional on marks’ or ‘split by marks’ — marks M are first generated

according to some random mechanism [M], then they are placed at certain locations X by
point process(es) [X|M];

e [X, M] — ‘joint’ — marked points are generated according to a marked point process.

These approaches typically lead to different stochastic models and have different inferential
interpretations. Correspondingly, there are different null hypotheses that can be tested:

e random labelling: given the locations X, the marks are conditionally independent and
identically distributed;

Copyright (©CSIRO 2010

180 Marked point patterns

e independence of components: the sub-processes X,, of points of each mark m, are inde-
pendent point processes;

e complete spatial randomness and independence (CSRI): the locations X are a uniform
Poisson point process, and the marks are independent and identically distributed. (This
implies both random labelling and independence of components).

These null hypotheses are not equivalent.

The properties of random labelling and independence of components are not equivalent. For
example, take a point process X where nearest neighbour distances are always larger than a
threshold r, and attach random marks to the points. The resulting marked point process cannot
be generated using the independence construction, because if points with different marks are
independent, they can come arbitrarily close to one another.

Example 18 (Ant nests data) Two species of ants build nests in a desert. We want to inves-
tigate ecological interaction between the species, and between different nests of the same species.
The locations of all nests are mapped, and marked by the species.

These data can be analysed as a marked point process consisting of two different types of
points. The ‘mark’ attached to each point is its species (a categorical variable). The most
natural kind of modelling and analysis is either joint [X, M] or split by species [M] [X|M]. We
could also treat one of the species as a covariate and analyse the other species conditional on it.

Example 19 Trees in an orchard are examined and their disease status (infected/not infected)
is recorded. We are interested in the spatial characteristics of the disease, such as contagion
between neighbouring trees.

These data probably should not be treated as a point process. The response is ‘disease
status’. We can think of disease status as a label applied to the trees after their locations have
been determined. Since we are interested in the spatial correlation of disease status, the tree
locations are effectively fixed covariate values. It would probably be best to treat these data
as a discrete random field (of disease status values) observed at a finite known set of sites (the
trees).

29.3.3 Grey areas

There are some ‘grey areas’ which permit several alternative choices of analysis. It could be
appropriate either to analyse the locations and marks jointly (denoted [X, M]), or to analyse
the marks conditional on the locations ([M|X]) or to analyse the locations given the marks
(1X|M)).

One grey area occurs when the locations are random, but may be ancillary for the parameters
of interest.

Example 20 Case-control study of cancer [34, 38]. The domicile locations of all new cases
of a rare cancer are mapped. To allow for spatial variation in the density of the susceptible
population, domicile locations are recorded for a random sample of (matched) controls.

This can be analysed either as a marked point pattern (where the mark is the case/control
label) or, by conditioning on locations, as a random field of case/control values attached to the
known domicile locations.

Copyright (©CSIRO 2010

181

Chorley-Ribble Data

For further discussion of these issues, see [3].

30 Handling marked point pattern data

This section explains how to create a marked point pattern dataset in spatstat, and how to
manipulate it.

30.1 Creating marked point pattern datasets

The marks attached to a point pattern may be stored in a vector (with one entry for each
point) or in a matrix or data frame (with one row for each point and one column for each mark
variable). The mark values can be of any atomic type: numeric, integer, character, factor, logical
or complex.

A marked point pattern dataset can be created using any of the following tools:

PPP create point pattern dataset

as.ppp convert other data to point pattern

superimpose combine several point patterns into a marked point pattern
marks extract marks from a point pattern

marks<- attach marks to a point pattern

J#mark? attach marks to a point pattern

unmark delete marks from a point pattern

scanpp read point pattern data from text file

clickppp create a pattern using point-and-click on the screen

The command ppp can be used to create a marked point pattern dataset from raw data.
The syntax is

> ppp(x, y, ..., marks = m)

where x and y are vectors of equal length containing the (x,y) coordinates, m is either a vector of
the same length as x containing the mark values for each point, or a matrix or data frame with
nrow(m) = length(x) containing the multivariate mark for each point, and ... are arguments
that determine the window for the point pattern.

Copyright (©CSIRO 2010

182 Handling marked point pattern data

Tip: If the marks are a vector and are intended to be a categorical variable (repre-
senting the types in a multitype point pattern),

e cnsure that m is stored as a factor in R.

e when the point pattern X has been created, check that it is multitype using
is.multitype(X).

e check that the factor levels are as you intended, using levels (m) or levels (marks (X))
where X is the marked point pattern. If the factor levels are character strings,
they will be sorted into alphabetical order by default.

e be careful when performing equality/inequality comparisons involving a fac-
tor. Particular danger occurs when the factor levels are strings that represent
integers.

The command as.ppp will convert data in another format (for example, a matrix or data
frame) to a point pattern object of class "ppp". The third and subsequent columns of a matrix
or data frame will be interpreted as containing the marks.

> mydata <- data.frame(x = runif(10), y = runif(10), m = sample(letters[1:3],
+ 10, replace = TRUE))
> as.ppp(mydata, square(1))

marked planar point pattern: 10 points
multitype, with levels = a b c
window: rectangle = [0, 1] x [0, 1] units

If point pattern data are stored in a text file, the command scanpp will read the data and
create a point pattern object of class "ppp". The argument multitype=TRUE will ensure that
the mark values are interpreted as a factor.

> X <- scanpp("myfile.txt", window = square(1), multitype = TRUE)

The command superimpose combines several point patterns within the same window. It
can be used to create a multitype point pattern, if you have already created separate point
patterns containing the points of each type. Suppose X1 and X2 are unmarked point patterns
Then superimpose (A=X1, B=X2) will create a multitype point pattern by attaching the mark
A to each point of X1, attaching the mark B to each point of X2, and combining the points.

X1 X2 superimpose(A = X1, B = X2)

o ° o o & A

o A
o o o o

o)

o o
o o
o o A o
9 ° o o A g

Marks can be attached to an existing point pattern X using the function marks<- as in

> marks(X) <- m

Copyright (©CSIRO 2010

30.2 Inspecting a marked point pattern 183

or using the binary operator %mark,
> Y <- X Jmark/ m

These are convenient when you want to assign new marks to a dataset that are computed
using another variable, or perhaps to randomise the marks in a dataset.

A multitype point pattern can also be created interactively using clickppp, using the argu-
ment types to specify the possible types.

30.2 Inspecting a marked point pattern

Basic tools for inspecting a marked point pattern include the print, plot and summary methods.

> data(amacrine)
> amacrine

marked planar point pattern: 294 points
multitype, with levels = off on
window: rectangle = [0, 1.6012085] x [0, 1] units (one unit = 662 microns)

> summary (amacrine)

Marked planar point pattern: 294 points
Average intensity 184 points per square unit (one unit = 662 microns)

Multitype:

frequency proportion intensity
off 142 0.483 88.7
on 152 0.517 94.9

Window: rectangle = [0, 1.6012085]x[0, 1]units
Window area = 1.60121 square units
Unit of length: 662 microns

> plot(amacrine)

off on
1 2

amacrine

If the marks are a data frame (i.e. if there are several columns of marks), the first column
of marks will be plotted by default. To change this, use the argument which.marks to specify
another column.

Copyright (©CSIRO 2010

184 Handling marked point pattern data

> data(shapley)
> par (mfrow = c(1, 2))
> plot(shapley, which.marks = "V", maxsize = 0.5, main = "Recession velocity")

-20000 0 20000 40000 60000 80000
-0.1303000 0.0000000 0.1303000 0.2605999 0.3908999 0.5211998

> plot(shapley, which.marks = "Mag", maxsize = 0.1, main = "Magnitude")

0 5 10 15 20 25
0.0000000 0.0223914 0.0447828 0.0671742 0.0895656 0.1119570

> par(mfrow = c(1, 1))

Magnitude

You can also convert a marked point pattern into a data frame for closer inspection of the
coordinates and mark values:

> as.data.frame (amacrine)

X y marks
1 0.0224 0.0243 on
2 0.0243 0.1028 on
3 0.1626 0.1477 on

The marks can be extracted using the function marks:

> data(longleaf)
> m <- marks(longleaf)

Beware the possibility that two points with different marks may occupy the same spatial
location. This is not currently detected by ppp since, for a marked point pattern, the function
duplicated.ppp regards two points as identical only when their coordinates and mark values
are identical. To detect duplication of the spatial locations, use duplicated (unmark(X)).

Further tools are presented in the next section.

30.3 Manipulating data
30.3.1 Manipulating marks

The following tools can manipulate the marks in a point pattern:
marks extract marks
marks<- attach marks to a point pattern
%marky attach marks to a point pattern
unmark remove marks from point pattern
For example, the Lansing Woods data are tree locations marked by diameter at breast height
(dbh) in centimetres. To convert the marks from diameters to circular areas,

Copyright (©CSIRO 2010

30.3 Manipulating data 185

> data(lansing)

> d <- marks(lansing)
> a <- (pi/4) * d°2
> marks(lansing) <- a

30.3.2 Separating points of different types

A multitype point pattern can be separated into the sub-patterns of points of each type, using
the split command.

> data(amacrine)
> Y <- split(amacrine)

In fact split is a generic function and the commands above invoke the split method for
the class of point patterns, split.ppp. The result Y is a list of point patterns, with names
that correspond to the type labels. This list also belongs to the class "splitppp" which can be
plotted automatically:

> plot(split(amacrine))

split(amacrine)

o o ,°
o _o©
o o ©
o
o ©
o ©
o o
° o
o
o

o
o
o
o
o

o o0 0 ©

If the marks are a data frame, you will need to specify the splitting/grouping factor explicitly.
For example the nbfires dataset records the location of forest fires, marked by 9 different
variables. To split the fire locations by the cause of the fire,

> data(nbfires)
> Y <- split(nbfires, "cause")

30.3.3 Cutting the numerical scale into bands

For a point pattern with numeric marks, the marks can be converted to a factor, using a method
for the generic function cut. The user specifies a series of cut-points on the numerical scale; all
mark values between two cut-points are given the same label.

For example, the Longleaf Pines data are the locations of trees marked with their diameter
at breast height, dbh, in centimetres. By convention we define “adult” trees to be those with
dbh greater than 30 centimetres. To obtain the bivariate point pattern of adult and juvenile
trees,

> data(longleaf)
> longleaf

Copyright (©CSIRO 2010

186 Handling marked point pattern data

marked planar point pattern: 584 points
marks are numeric, of type double
window: rectangle = [0, 200] x [0, 200] metres

> X <- cut(longleaf, breaks = c(0, 30, 80), labels = c("juvenile",

+ "adult"))
> X

marked planar point pattern: 584 points
multitype, with levels = juvenile adult
window: rectangle = [0, 200] x [0, 200] metres

> par (mfrow = c(1, 2))
> plot(longleaf)

0 20 40 60 80
0.000000 1.722522 3.445045 5.167567 6.890090

> plot(X, main = "cut(longleaf)")

juvenile adult
1 2

> par(mfrow = c(1, 1))

longleaf cut(longleaf)

O % h N o 58 N &
Q.0 O R NN P AAA %0 - A PN NS
@ O Osg"o% A% ® A B8 N A BB o0 é‘;o(?a(
° ®° & 0‘5%0 °
(QQ’OQ ApB goe ® P
O @IO'% AA AAo Aooglmo s ® %o AAA
- A o
?{?‘,8’ C)ée@ é pal 4 & %OO ag® & 2
g Lns, W e R et g
o N a N &
L% PSP S L S
: O @ NN . N ° an
O' A P o A A8 ° AR
O . Bas ® opan S o 9 3
T 2 8 o a4 00 QOA B PG
b %oo A & Pl a
05% O R T it
Ba A A & 2o ® 4
%@3 SR EE TS T
C ATH & °© 0ooOA AAA “
@ A%ﬁﬁ . ° aa 0o '
o @% Al PN A © Oo o é’o@
O O o o O AAA a0 oa A 48 o .
6~ &P LaTatan tu g
G 82 A 2 an A 4
o

If the marks are a data frame, use the second argument z to specify which column should
be used for the cut. For example, to classify New Brunswick fires into three groups by fire size,

> data(nbfires)
> Y <- cut(nbfires, "fnl.size", breaks = 4)

Copyright (©CSIRO 2010

187

31 Exploratory tools for multitype point patterns

This section covers some tools for exploratory data analysis of multitype point patterns (i.e.
where the marks are categorical).

31.1 Intensity

The Lansing Woods data give the locations of 6 species of trees in a forest in Michigan. Ele-
mentary estimates of the frequency distribution of species, and the intensity of each species, are
available from summary . ppp.

> data(lansing)
> summary (lansing)

Marked planar point pattern: 2251 points
Average intensity 2250 points per square unit (one unit = 924 feet)

Pattern contains duplicated pointsx

Multitype:

frequency proportion intensity
blackoak 135 0.0600 135
hickory 703 0.3120 703
maple 514 0.2280 514
misc 105 0.0466 105
redoak 346 0.1540 346
whiteoak 448 0.1990 448

Window: rectangle = [0, 1]1x[0, 1]units
Window area = 1 square unit
Unit of length: 924 feet

It’s sensible to examine the sub-patterns of different types separately, using split.ppp.

> plot(split(lansing))

Copyright (©CSIRO 2010

188 Exploratory tools for multitype point patterns

split(lansing)

blackoak hickory

misc whiteoak
R oo hd :. TE o .
o @ e g%oﬁ @
SR B het s
08&9% "_ 06 og @'3?;’ @
B : 5 o°°%°°0 %oo ®

00 o 3

°o o 9 .:, o 8 k'

o 80 &° oo 95% H99
P o % R |

It would be useful to compute and plot a separate estimate of intensity for each type of tree.
This is possible using the functions density.splitppp and plot.listof. They are invoked

simply by typing
> plot(density(split(lansing)), ribbon = FALSE)

density(split(lansing))

blackoak hickory maple

misc redoak whiteoak

The relative proportions of intensity could then be computed by taking ratios of these den-
sities, using eval.im. This is done more neatly using the command relrisk (which will also
select the bandwidth automatically by cross-validation if it is not specified).

> plot(relrisk(lansing), zlim = c(0, 1))

Copyright (©CSIRO 2010

31.2 Simple summaries of neighbouring marks 189

relrisk(lansing)

blackoak hickory maple
- - —
© © ©
S oS oS
© © ©
= = =
< < <
oS oS S
o~ N N
IS o o
o o o
misc redoak whiteoak
- - —
© 0 ©
S o o
© © ©
= = =
< < <
o o o
o~ N N
S S S
o o o

In the context of the Lansing Woods data, these tools are searching for evidence of segregation
between the different species of trees. Segregation occurs when the intensities of different species
are negatively associated.

Parametric estimates of intensity can be obtained using ppm, fitting a Poisson model with
an intensity function that may depend on location and/or on the marks. See below.

Evidence for segregation in a multitype point pattern can also be assessed using the Kolmogorov-
Smirnov test kstest and other specialised tests.

31.2 Simple summaries of neighbouring marks

We are often interested in the marks that are attached to the close neighbours of a typical point.
For a multitype point pattern, the function marktable compiles a contingency table of the
marks of all points within a given radius of each data point:

> data(amacrine)
> M <- marktable(amacrine, R = 0.1)
> M[1:10,]

mark
point off
1

[e]
B

©O© 0 N O 01 W N
W WL WNPWPdPND -
NP, EE,NWEE P WND -

—
o

Copyright (©CSIRO 2010

190 Exploratory tools for multitype point patterns

More general summaries of the marks of neighbours can be obtained using the function
markstat. For example, to compute the average diameter of the 5 closest neighbours of each
tree in the Longleaf Pines dataset,

> md <- markstat(longleaf, mean, N = 5)
> md[1:10]

[1] 43.40 43.40 48.58 21.70 48.38 53.32 40.28 29.82 24.92 21.70

31.3 Distance methods and summary functions
If X and Y are two point pattern objects, then

e crossdist(X,Y) computes the matrix of distances from each point of X to each point of
Y.

7

e nncross(X,Y) finds, for each point in X, the nearest point of Y and the distance to this
point.

The summary functions F', G, J and K (and other functions derived from K, such as L
and the pair correlation function) have been extended to multitype point patterns, using such
distances.

31.3.1 A pair of types

Assume the multitype point process X is stationary. Let X; denote the sub-pattern of points of

type j, with intensity A;. Then for any pair of types ¢ and j,
e Fj;(r) is the empty space function for X;.

e G;j(r) is the distribution function of the distance from a point of type i to the nearest
point of type j

e K;j(r) is 1/)A; times the expected number of points of type j within a distance r of a
typical point of type i.

e L;j(r) is the corresponding L-function

Kij(r)

s

Lij(r) =

e g;j(r) is the corresponding analogue of the pair correlation function

) — i
9is(r) 27r
where Kj;(r) is the derivative of K;.
e J;; is defined as
_ 1 =Gy(r)
T =T

The functions G;j, K;j, Lij, gij, Jij are called “cross-type” or “i-to-j” summary functions. They
are computed in spatstat by Gcross, Kcross, Lcross, pcfcross and Jcross respectively.

Copyright (©CSIRO 2010

31.3 Distance methods and summary functions 191

> data(amacrine)
> amacrine

> plot(Gcross(amacrine, "on", "off"))

Gcross(amacrine, "on", "off")

0.8
|

0.6

GCrossen, ()
0.4

0.2

T T T T T T T
0.00 0.01 0.02 0.03 0.04 0.05 0.06

r (one unit = 662 microns)

The interpretation of the cross-type summary functions is similar, but not identical, to that
of the original functions F', G, K etc:

e if X; is a uniform Poisson process (CSR), then F;(r) = 1 — exp(—\;mr?).

e if X, is a uniform Poisson process (CSR) and is independent of X;, then G;j(r) =1 —
exp(—A;mr?).

e if X; and X; are independent, then K;;(r) = nr?, L;;j(r) = r, gij(r) = 1, Gij(r) = F;(r)
and Jij(r) = 1.

Here ‘independent’ means that the two point processes are probabilistically independent.

31.3.2 All pairs of types

The command alltypes enables the user to compute the cross-type summary functions between
all pairs of types simultaneously. For example, to compute G;;(r) for all ¢ and j in the amacrine
cells data, we would use alltypes(amacrine, "G"). The result is automatically displayed as
an array of plot panels.

> plot(alltypes(amacrine, "G"))

Copyright (©CSIRO 2010

192 Exploratory tools for multitype point patterns

array of G functions for amacrine.

off on

0.6
1

GCrossqf, on(r)
0.4

off
Gerossqf, of(r)

00 01 02 03 04 05 06 07
0.2
I

000 001 0.2 003 004 0.05 006 000 001 0.02 003 004 0.05 006

r (one unit = 662 microns) T (one unit = 662 microns)

06
Il
onr)
04 06
Il

on

GCrosson, off(r)
0.4

GCrossen,
0.2

0.2

0.0
0.0

000 001 0.02 003 004 0.05 006 000 001 0.02 003 004 0.05 0.06

r (one unit = 662 microns) T (one unit = 662 microns)

For example the top right panel shows the cumulative distribution function of the distance
from an “off” cell to the nearest “on” cell.

The result of alltypes is a ‘function array’ (object of class "fasp") which can be indexed
by row and column subscripts. If the point pattern has a large number of possible types, you
can compute the array of all possible pairwise GG functions, then use the subscript operator to
inspect a subset of the array.

> data(lansing)
> a <- alltypes(lansing, "G")

> plot(a[2:3, 2:3])

Copyright (©CSIRO 2010

31.3 Distance methods and summary functions

193

array of G functions for lansing.

hickory

maple

hickory

GCrosSickory, hickory!

Gerosshickory, mapie(r)

0.000 0.005 0.010 0.015 0.020 0.025 0.030

r (one unit = 924 feet)

0.000 0.005 0.010 0.015 0.020 0.025 0.030

r (one unit = 924 feet)

0.8
1
\

0.6
1

maple
GCrossmapie, hickory(r)
0.4

0.2

0.0

GCrossmapie, mapie(r)

0.8

0.6

0.4

0.2

0.0

0.000 0.005 0.010 0.015 0.020 0.025 0.030

r (one unit = 924 feet)

31.3.3 One type to any type

0.000 0.005 0.010 0.015 0.020 0.025 0.030

r (one unit = 924 feet)

Also defined are the “i-to-any” summaries

point of any type;

Gie (1), the distribution function of the distance from a point of type i to the nearest other

Kie(r) is 1/X times the expected number of points of any type within a distance r of a

typical point of type i. Here A = > j Aj is the intensity of the entire process X.

Jie 18 defined by

Lie(7) is the corresponding L-function

gin(r) = Zel0)
1- Gio
Jio(1) = T=F0)

gie(7) is the corresponding analogue of the pair correlation function

These are computing by Gdot, Kdot, Ldot, pcfdot and Jdot respectively, or using alltypes.

> plot(Gdot (amacrine, "on"))

Copyright (©CSIRO 2010

194 Exploratory tools for multitype point patterns

Gdot(amacrine, "on")

0.8
1

0.6
1

Gdotyn(r)
0.4

0.2

0.0
1

T T T T T T T
0.00 0.01 0.02 0.03 0.04 0.05 0.06

r (one unit = 662 microns)

> plot(alltypes(amacrine, "Gdot"))

array of Gdot functions for amacrine.

0.6 0.8
1

off
Gdotog(r)
0.4

0.2

0.0

000 0.01 0.02 003 0.04 0.05 0.06

r (one unit = 662 microns)

on
Gdoton(r)

000 0.01 0.2 003 0.04 0.05 0.06

r (one unit = 662 microns)

31.3.4 Plotting and manipulating function arrays

A function array (object of class "fasp") can be printed and plotted using methods for this
class. It can also be manipulated in various ways.
The plot method is similar to plot.fv and allows the function values to be transformed:

> aG <- alltypes(amacrine, "G")
> fisher <- function(x) asin(sqrt(x))
> plot(aG, fisher(.) ~ fisher(theo))

Copyright (©CSIRO 2010

31.3 Distance methods and summary functions 195

array of G functions for amacrine.

off on

15
15

1.0
1.0

05
L

05
fisher(Gerosse, on(r))

off
fisher(Gerosso, of(r))

0.0
L
0.0
L

T T
0.0 0.5 1.0 15 0.0 05 1.0 15

fisher(Gerosspos()) fisher(Gerosspois())

on

10 15
()

10 15

05
L

fisher(Gerossn,of(r))
0.5
!

fisher(Gerosson,

0.0 0.5 1.0 15 0.0 05 1.0 15

fisher(Gerosspos(1)) fisher(Gerosspois())

As mentioned above, the function array can be indexed by array subscripts.
> data(lansing)
> a <- alltypes(lansing, "G")
> dim(a)
> b <- af[2:3, 2:3]
Calculations can be performed on all the functions in the array using eval.fasp.
> aGfish <- eval.fasp(asin(sqrt(aG)))
31.3.5 Mark connection function

The mark connection function between types ¢ and j in a stationary multitype point process is

AiXigii (1)
() = 2]
A2g(r)
This can be interpreted as the conditional probability, given that there is a point of the process at
a location u and another point of the process at a location v separated by a distance ||u—wv|| = r,

that the first point is of type 7 and the second point is of type j.
The command markconnect computes estimates of the mark connection function.

> data(amacrine)
> markconnect (amacrine, "on", "off")

We can use alltypes to compute the mark connection function p;; for all pairs of types 4
and j:

> plot(alltypes(amacrine, markconnect))

Copyright (©CSIRO 2010

196 Exploratory tools for multitype point patterns

array of markconnect functions for amacrine.

off on

0.45
L

Por, on(r)
A

off

Pot,on(1)

0.35
L

0.25
L

0.00 0.05 0.10 0.15 0.20 0.25

T T T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25

 (one unit = 662 microns) (one unit = 662 microns)

0.45
L I
0.30
L1

Pon,or(r)
0.20
.

0.35
L

on
L

o)
0.10

0.25
L

T T T T T T T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25

 (one unit = 662 microns) (one unit = 662 microns)

31.3.6 Mark equality function

The composite

p(r) = ZPM(T)

can be interpreted as the conditional probability, given that there is a point of the process at a
location u and another point of the process at a location v separated by a distance ||u —v|| =,
that the two points have the same type.

This is sometimes called the mark equality function. It is a special case of a more general
technique of “mark correlation” which we discuss in Section 32.2. To compute the mark equality
function of a multitype point pattern, use markcorr.

> plot (markcorr (amacrine))

markcorr(amacrine)

10
I

0.8
I

k(1)
06

0.4
I

0.2
I

0.0
I

T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25

1 (one unit = 662 microns)

This plot indicates that nearby points tend to have different types.

Copyright (©CSIRO 2010

31.4 Randomisation tests 197

31.4 Randomisation tests

Simulation envelopes of summary functions can be used to test various null hypotheses for
marked point patterns.

31.4.1 Poisson null

The null hypothesis of a homogeneous Poisson marked point process can be tested by direct
simulation, using envelope as before. For example, using the cross-type K function as the test
statistic,

> data(amacrine)
> E <- envelope(amacrine, Kcross, nsim = 39, i = "on", j = "off")
> plot(E, main = "test of marked Poisson model")

test of marked Poisson model

0.20
|

0.15
|

Kon, (1)

0.10
|

0.05
|

0.00
|

0.00 0.05 0.10 0.15 0.20 0.25

r (one unit = 662 microns)

Notice that the arguments i and j here do not match any of the formal arguments of
envelope, so they are passed to Kcross. This has the effect of calling Kcross (X, i="on", j="off")
for each of the simulated point patterns X. Each simulated pattern is generated by the homoge-
neous Poisson point process with intensities estimated from the dataset amacrine.

31.4.2 Independence of components

It’s also possible to test other null hypotheses by a randomisation test. We discussed two popular
null hypotheses:

e random labelling: given the locations X, the marks are conditionally independent and
identically distributed;

e independence of components: the sub-processes X,, of points of each mark m, are inde-
pendent point processes.

In a randomisation test of the independence-of-components hypothesis, the simulated pat-
terns X are generated from the dataset by splitting the data into sub-patterns of points of one
type, and randomly shifting these sub-patterns, independently of each other. The shifting is
performed by rshift:

> E <- envelope(amacrine, Kcross, nsim = 39, i = "on", j = "off",
+ simulate = expression(rshift(amacrine, radius = 0.25)))

Copyright (©CSIRO 2010

198 Exploratory tools for multitype point patterns

v

plot(E, main = "test of independent components')

test of independent components

0.20
1

—— obs
---- mmean
hi

lo

0.15
1

Kon, or(r)
0.10
I

0.05
1

0.00
1

T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25

r (one unit = 662 microns)

The independence-of-components hypothesis seems to be accepted in this example.
Under the independence hypothesis,

Kii(r) = mr?
Gij(r) = F(r)
Jij(r) = L

while the “i-to-any” functions have complicated values. Thus, we would normally use Kj; or J;;
to construct a test statistic for independence of components.

31.4.3 Random labelling

In a randomisation test of the random labelling null hypothesis, the simulated patterns X are
generated from the dataset by holding the point locations fixed, and randomly resampling the
marks, either with replacement (independent random sampling) or without replacement (ran-
domly permuting the marks). The resampling operation is performed by rlabel.

Under random labelling,

Jio(r) = J(r)
Kio(r) = K(r)
Gie(r) = G(r)

(where G, K, J are the summary functions for the point process without marks) while the other,
cross-type functions have complicated values. Thus, we would normally use something like
Kie(r) — K(r) to construct a test statistic for random labelling.

To do this, cook up a little function to evaluate Jio(r) — J(r):

> Jdif <- function(X, ..., i) {

+ Jidot <- Jdot(X, ..., i = i)

+ J <- Jest(X, ...)

+ dif <- eval.fv(Jidot - J)

+ return(dif)

+ }

> E <- envelope(amacrine, Jdif, nsim = 39, i = "on", simulate = expression(rlabel (amacrine)))

Copyright (©CSIRO 2010

31.4 Randomisation tests 199

> plot(E, main = "test of random labelling")

test of random labelling

< — obs
c 7 ---- mmean
hi
lo
o~
8
= o
R
(s}
]
3
o~
S 4
]
st
S 4
]
©
S 4
T T T T T T T
0.00 0.01 0.02 0.03 0.04 0.05

r (one unit = 662 microns)

The random labelling hypothesis also seems to be accepted.

31.4.4 Arrays of envelopes

To compute a simulation envelope for the function Kj;; for each pair of types ¢ and j, use
alltypes with the argument envelope=TRUE.

> aE <- alltypes(amacrine, Kcross, nsim = 39, envelope = TRUE)
> plot(aE, sqrt(./pi) - r " r, ylab = "L(r)-r")

array of envelopes of Kcross functions for amacrine.

off on

0.010
1

o
3
o
8 8
5] =
S
o
T3 T
P s g
5 5 S 8
o~ =
S
S 4
! 0
S
) < A
3 S
S T
T
T T T T T T T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25
r (one unit = 662 microns) r (one unit = 662 microns)
o
3
=
0
& 8
S o
. N
< 8 I g
§ I 27 g 9
o~
S
0 Cl
8 T
s |
? I
3
S 4
T
T T T T T T T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25
r (one unit = 662 microns) r (one unit = 662 microns)

Copyright (©CSIRO 2010

200 Exploratory tools for marked point patterns

31.5 Adjusting for inhomogeneity

Inhomogeneous versions of the multitype K function, L function and pair correlation function
also exist.

The command names are Kdot . inhom, Kcross. inhom, Ldot . inhom, Lcross. inhom, pcfdot . inhom
and pcfcross.inhom. They require separate estimates of the intensities of the first and second
types of points. Again these intensities can be estimated by kernel smoothing.

> data(lansing)
> plot(Kcross.inhom(lansing, "whiteoak", "maple", sigma = 0.15))

Kcross.inhom(lansing, "whiteoak”, "maple”, sigma = 0.15)

— iso
-~ trans
border

0.10
I

Kinhom,nicoak, mapie(r)

0.00 0.05 0.10 0.15 0.20 0.25

r (one unit = 924 feet)

32 Exploratory tools for marked point patterns

32.1 Numeric marks: distribution and trend

For a point pattern with marks that are numeric (real numbers or integers) or logical values,
the mark values can be extracted using the marks function and inspected using the histogram
or kernel density estimate:

> data(longleaf)
> hist (marks(longleaf))

Histogram of marks(longleaf)

Q
©
>
[3) |
c
(7]
>
o
o |
=
L
o
N
o -

I T T T 1
0 20 40 60 80

marks(longleaf)

Copyright (©CSIRO 2010

32.1 Numeric marks: distribution and trend 201

To assess spatial trend in the marks, one way is to form a kernel regression smoother. The
smoothed mark value at location u € R? is

> mik(u — ;)
> k(u— ;)

where k is the smoothing kernel, and m; is the mark value at data point x;. This is computed
by smooth.ppp:

m(u) =

> plot(smooth.ppp(longleaf))

smooth.ppp(longleaf)

25

20

15

The plot shows that there is a region of younger trees in the northeast of the study region.
If the marks are a data frame, the result of smooth.ppp will be a list of pixel images, one for
each mark variable.

You can also use cut.ppp followed by split.ppp to look for spatial inhomogeneity of the
marks:

> data(spruces)
> plot(split(cut(spruces, breaks = 3)))

split(cut(spruces, breaks = 3))

(0.16,0.23] (0.23,0.3] (0.3,037]

oo
o o o ° o
°

Other facilities include markvar which calculates a smoothed estimate of the local variance
of the mark values.

Copyright (©CSIRO 2010

202 Exploratory tools for marked point patterns

32.2 Mark correlation function

The “mark correlation function” ps(r) of a stationary marked point process Y is a measure of
the dependence between the marks of two points of the process a distance r apart [61]. It is
informally defined as

E[f(My, My)]
p1() = BT D)

where M7, My are the marks attached to two points of the process separated by a distance r,
while M, M’ are independent realisations of the marginal distribution of marks.

Here f is any function f(mq, mg) with two arguments which are possible marks of the pattern,
and which returns a nonnegative real value. Common choices of f are:

e for continuous real-valued marks, f(my,mg) = mimsy;
e for categorical marks (multitype point patterns), f(mq,mg) = 1{my = ma};
e for marks taking values in [0, 27|, f(my, ma) = sin(m; — ma).

Note that ps(r) is not a “correlation” in the usual statistical sense. It can take any nonneg-
ative real value. The value 1 suggests “lack of correlation”: under random labelling, p¢(r) = 1.
The interpretation of values larger or smaller than 1 depends on the choice of function f.

The mark correlation function is computed in spatstat by markcorr. It has the syntax
> markcorr (X, f)

where X is a point pattern and f is an R language function.

> data(spruces)
> plot(markcorr (spruces))

markcorr(spruces)

1.00
I

0.95
I

0.85
I

T (metres)

The plot suggests a slight negative association between the sizes of nearby trees. This is
somewhat hard to interpret.

The cumulative version of the mark correlation is computed by markcorrint.

A concept closely related to the mark correlation, based on the nearest neighbour of each
point rather than all neighbours at a given distance, is computed by nncorr.

Copyright (©CSIRO 2010

32.3 Reverse conditional moments 203

32.3 Reverse conditional moments

Schlather et al [59] defined the functions E(r) and V(r) to be the conditional mean and condi-
tional variance of the mark attached to a typical random point, given that there exists another
random point at a distance r away from it. More formally,

E(T) - EOu[M(O)]
V(r) = Eou[(M(0) — E(u))’]

where Ey, denotes the conditional expectation given that there are points of the process at the
locations 0 and u separated by a distance r, and where M (0) denotes the mark attached to the
point 0.

These functions may serve as diagnostics for dependence between the points and the marks.
If the points and marks are independent, then E(r) and V (r) should be constant (not depending
on r).

These functions are computed using Emark and Vmark.

> plot(Emark(spruces))

Emark(spruces)

0.255
I

0.250
I

0.245

E()

0.240
I

0.235

0.230
I

T (metres)

Looking at the y axis scale we see that a slight drop in mean value (by about 10%) occurs
near the origin. This plot suggests that a tree with a very close neighbour tends to have a
diameter slightly smaller than average. The function Emark is bsimpler to interpret than the
mark correlation function.

Copyright (©CSIRO 2010

204 Multitype Poisson models

33 Multitype Poisson models

This section covers multitype Poisson process models: basic properties, simulation, and fitting
models to data.

33.1 Theory
33.1.1 Complete spatial randomness and independence

A uniform Poisson marked point process in R? with marks in M can be defined in the following
equivalent ways.

e randomly marked Poisson process (Poisson [X], iid [M|X]): a Poisson point process of
locations X with intensity [is first generated. Then each point x; is labelled with a
random mark m;, independently of other points, with distribution P{M; = m} = p,, for

m e M.

e superposition of independent Poisson processes (iid [M], Poisson [X|M]): for each possible
mark m € M, a Poisson process X,, is generated, with intensity (,,. The points of X,,
are tagged with the mark m. Then the processes X,, with different marks m € M are
superimposed, to yield a marked point process.

e Poisson marked point process (jointly Poisson [X, M]): a Poisson process on R? x M is
generated, with intensity function A(u,m) = 3, at location u and mark m.

These constructions are equivalent when 3, = p;, 3. See the lovely book by Kingman [45].

Since the established term CSR (‘complete spatial randomness’) is used to refer to the
uniform Poisson point process, I propose that the uniform marked Poisson point process should
be called ‘complete spatial randomness and independence’ (CSRI).

33.1.2 Inhomogeneous Poisson marked point processes

A inhomogeneous Poisson marked point process Y with ‘joint’ intensity A(u,m) for locations u
and mark values m is simply defined as an inhomogeneous Poisson point process on R? x M
with intensity function A(u,m).

Let’s restrict attention to the case of categorical marks, where M is finite. Then the process
Y has the following properties:

e The locations X, obtained by removing the marks, constitute an inhomogeneous Poisson
process in R? with intensity function

Blu) = Au,m).
m
e Conditional on the locations X, the marks attached to the points are independent. For a
point z; the conditional distribution of the mark m; is P{M; = m} = A(z;,m)/B(x;).

e The sub-process X,,, of points with mark m, is an inhomogeneous Poisson point process
with intensity G, (u) = A(u, m).

e The sub-processes X,,, of points with different marks m are independent processes.

Copyright (©CSIRO 2010

33.2 Simulation

205

33.2 Simulation

Realisations of Poisson marked point processes can be generated by ‘hand’, using rmpoispp.
The first argument of this command specifies the intensity or intensity function A(u,m). It can
be a constant, a vector of constants, or an R function.

c(1, 2))

par (mfrow =

V V. V Vv Vv VvV

c(1, 1))

par (mfrow =

CSRY, intensity A=100, B=100

b NN =~
A [e]
o N A °
o

o]

300 * exp(-3 * x)
}, types = C(HAH, HBH))

}

par (mfrow = c(1, 2))
plot (X1, main = "")
plot(X2, main = "")
c(1, 1))

VVVVV + +V + +V

par (mfrow =

lamb <- function(x, y, m) {
ifelse(m == "A", 300 * exp(-4 * x), 300 * exp(-4 * (1 - x)))

CSRI, intensity A=100, B=20

Xunif <- rmpoispp(100, types = c("A", "B"), win
plot(Xunif, main = "CSRI, intensity A=100, B=100")
Xunif <- rmpoispp(c(100, 20), types = c("A", "B"), win
plot(Xunif, main = "CSRI, intensity A=100, B=20")

square (1))

= square(1))

A

%o

A

o

o

[e)

O
A Do &° o
® oo °

X1 <- rmpoispp(function(x, y, m) {

X2 <- rmpoispp(lamb, types = c("A", "B"))

Copyright (©CSIRO 2010

206 Multitype Poisson models

_D@ o a0 o o) A
o o
MED Ao OrO o A
A A A A
8 o e % 0 os ° 5
o ® N
N R o o o
io% A 2 © Z A ° o A AA
N o o A o}
N 4 loN A
) & A o © o o A
A o a oA A o o 9 o o A A a8 2
A oo Ao DA o &) An A
A 8 A R o, & o AA
o o
h PR o0 o 8 o o op © A
o La A o o °,
8no A L o 4
AL a0 N o A A 4
LN ° A A o ® ° a
A OA A o ° A An
oAb A o o A& fo R
A A Go0 o A A
o A o A o A
o A A A N S
oo 9 o5 a A A
B o A 8 00 o %
g 06 %o ° Bn A B
[¢) AN A Oo °
ABgo A ° o ° s & a
o o o © &

33.3 Fitting Poisson models

Poisson marked point process models may be fitted to point pattern data using ppm. Currently
the methods are only available for multitype point processes (categorical marks).

33.3.1 Probability densities

Let W C R? be the study region, and M the (finite) set of possible marks. Then a marked
point pattern is a set

y={(x1,m1),...,(zn,mn)}, = €W, meM, n>0

of pairs (z;,m;) of locations x; with marks m;. It can be viewed as a point pattern in the
Cartesian product W x M.

The probability density of a marked point process is a function f(y) defined for all marked
point patterns y including the empty pattern (.

The process with probability density f(y) =1 is the uniform Poisson marked point process
with intensity 1 for each mark. That is, for this model, the sub-process of points with mark
m; = m is a uniform Poisson process with intensity 1. If the marks are removed, we obtain a
Poisson point process with intensity equal to |M|, the number of possible types.

The uniform Poisson marked point process with intensity A(u,m) = [, has probability
density

n(y)
fly) = exp (d (- ﬁm)|W|> 11 8m

meM i=1
= oxp (doa —Bm)!W!> IT spm®
meM meM

where n,,(y) is the number of points in y having mark value m.
The inhomogeneous Poisson marked point process with intensity function A\(u, m), at location
u € W and mark m € M, has probability density

n(y)
f(y) =exp (Z /W(l — Au,m) du) H Az, my). (48)

meM

Copyright (©CSIRO 2010

33.3 Fitting Poisson models 207

33.3.2 Maximum likelihood

For the multitype Poisson process with intensity function A\(u,m) at location v € W and mark
m € M, the loglikelihood is, up to a constant,

log L = Z log A(x;,m;) — Z /W AMu, m) du. (49)
i=1

meM

where m; is the mark attached to data point x;. This is formally equivalent to the loglikelihood
of a Poisson loglinear regression, so the Berman-Turner algorithm can again be used to maximise
the loglikelihood.

33.3.3 Model-fitting in spatstat

Poisson marked point process models are fitted to data using ppm.

The trend formula in the call to ppm may involve the reserved name marks as a variable.
This refers to the marks of the points. Since the marks are categorical, marks is treated as a
factor variable for modelling purposes.

To fit the homogeneous multitype Poisson process (CSRI), equation (50), we call

> ppm (X, “marks)

The formula “marks indicates that the trend depends only on the marks, and not on spatial
location; since marks is a factor, the trend has a separate constant value for each level of marks.
This is the model (50).

Note that if we had typed

> ppm(X, ~1)

this would have fitted the special case of CSRI where the intensities (,, are equal, 3, = « say,
for all possible marks. That model is only appropriate if we believe that all mark values are
equally likely.

For the Lansing Woods data, the minimal model that makes sense is (50), so we call

> ppm(lansing, “marks)

Stationary multitype Poisson process
Possible marks:
blackoak hickory maple misc redoak whiteoak

Trend formula: “marks

Intensities:
beta_blackoak beta_hickory beta_maple beta_misc beta_redoak
135 703 514 105 346
beta_whiteoak
448

Since lansing is a multitype point pattern (its marks are categorical), the variable marks in
the formula is a factor. The model has one parameter/coefficient for each level of the factor, i.e.
one coefficient for each type of point. In other words, this is the homogeneous Poisson marked
point process with intensity (,, for points of mark m.

Copyright (©CSIRO 2010

208 Multitype Poisson models

You'll notice that the parameter estimates Bm coincide with those obtained from summary . ppp
above. That is a consequence of the fact that the maximum likelihood estimates (obtained by
ppm) are also the method-of-moments estimates (obtained by summary.ppp).

A more complicated example is

> ppm(lansing, “marks + x)

Nonstationary multitype Poisson process
Possible marks:
blackoak hickory maple misc redoak whiteoak

Trend formula: "marks + x

Fitted coefficients for trend formula:
(Intercept) markshickory marksmaple marksmisc marksredoak
4.94294727 1.65008211 1.33694849 -0.25131442 0.94116400
markswhiteoak b:¢
1.19951845 -0.07581624

This is the marked Poisson process whose intensity function A((z,y,m)) at location (z,y)
and mark m satisfies

log \((z,y,m)) = am + P

where a4, ..., aq and § are parameters. The intensity is loglinear in =, with a different intercept
for each mark, but the same slope (“parallel loglinear regression”). In the printout above, the
fitted slope parameter (3 is B =-0.07581624. As discussed in Section 15.3 on page 98, the fitted
coefficients a,, for the categorical mark are interpreted in the light of the ‘contrasts’ in force.
The default is the treatment contrasts, and the first level of the mark is blackoak, so in this
case the fitted coeflicient for m=blackoak is 4.942947, while the fitted coefficient for m=hickory
is 4.942947 + 1.650082 = 6.593029 and so on.

> ppm(lansing, “marks * x)

Nonstationary multitype Poisson process
Possible marks:
blackoak hickory maple misc redoak whiteoak

Trend formula: “marks * x

Fitted coefficients for trend formula:

(Intercept) markshickory marksmaple marksmisc marksredoak
5.2378062 1.4424915 0.6795604 -0.8482907 0.6916392
markswhiteoak x markshickory:x marksmaple:x marksmisc:x
1.0901772 -0.7063987 0.4511157 1.3243326 1.2138278
marksredoak:x markswhiteoak:x
0.5380413 0.2421379

The symbol * here is an ‘interaction’ in the usual sense for linear models. The fitted model
is the marked Poisson process with

log A((w,y,m)) = o + B

Copyright (©CSIRO 2010

33.3 Fitting Poisson models 209

where a1, ...,a¢ and fy,..., O are parameters. The intensity is loglinear in x with a different
slope and intercept for each mark.

The result of ppm is again an object of class "ppm" representing a fitted point process model.
To plot the fitted intensity and conditional intensity of the fitted model, use plot.ppm. For a
multitype point process you will get a separate plot for each possible mark value.

More complicated examples are:

> ppm(lansing, “marks * polynom(x, y, 2))
> ppm(lansing, "marks * harmonic(x, y, 2))
33.3.4 Facilities available

A fitted multitype Poisson process model can be manipulated using any of the methods available
for the class ppm:

print print basic information
summary print detailed summary information
plot plot the fitted (conditional) intensity
predict fitted (conditional) intensity
fitted fitted (conditional) intensity at data points
update re-fit the model
coef extract the fitted coefficient vector 8
vcov variance-covariance matrix of 6
anova analysis of deviance
loglik evaluate log-pseudolikelihood
model.matrix extract design matrix
formula extract trend formula of model
terms extract terms in model formula
The following functions are also available:
step stepwise model selection
dropl one step backward in model selection
model .images compute images of canonical covariates in model
effectfun fitted intensity as function of one covariate

A fitted multitype Poisson process model can be simulated automatically using rmh.ppm or
simulate.ppm.

Copyright (©CSIRO 2010

210 Gibbs models for multitype point patterns

34 Gibbs models for multitype point patterns

Gibbs point process models (section 26) are also available for marked point processes, and can
be fitted to data using ppm. Currently the methods are only implemented for multitype point
processes (categorical marks), so we restrict attention to this case.

34.1 Gibbs models

Much of the theory of Gibbs models described in Section 26 carries over immediately to multitype
point processes.

34.1.1 Conditional intensity

The conditional intensity A(u, X) of an (unmarked) point process X at a location u was defined
in section 26.5. Roughly speaking A\(u,x)du is the conditional probability of finding a point
near u, given that the rest of the point process X coincides with x.

For a marked point process Y the conditional intensity is a function A((u,m),Y) giving a
value at a location u for each possible mark m. For a finite set of marks M, we can interpret
A((u,m),y) du as the conditional probability finding a point with mark m near u, given the rest
of the marked point process.

The conditional intensity is related to the probability density f(y) by

A m)y) =)

for (u,m) ¢ y.

For Poisson processes, the conditional intensity A((u,m),y) coincides with the intensity
function A(u,m) and does not depend on the configuration y. For example, the homogeneous
Poisson multitype point process or “CSRI” (Section 33.1.1) has conditional intensity

A(u,m),y) = Bm (50)

where (3,,, > 0 are constants which can be interpreted in several equivalent ways (section 26.5).
The sub-process consisting of points of type m only is Poisson with intensity 3,,. The process
obtained by ignoring the types, and combining all the points, is Poisson with intensity § =
> i Bm- The marks attached to the points are i.i.d. with distribution p,, = /3.

34.1.2 Pairwise interactions
A multitype pairwise interaction process is a Gibbs process with probability density of the form

n(y)

F) =a [T bmea) | | T emim, (wiiz)) (51)
i=1

1<j

where b,,(u), m € M are functions determining the ‘first order trend’ for points of each type,
and ¢,y (u,v),m, m" € M are functions determining the interaction between a pair of points of
given types m and m’. The interaction functions must be symmetric, ¢, m/ (U, V) = € (v, 1)
and ¢,y = Gy m- The conditional intensity is

n(y)

A, m);y) = bm(w) [T cmom: (u,). (52)

=1

Copyright (©CSIRO 2010

34.1 Gibbs models 211

34.1.3 Pairwise interactions not depending on marks

The simplest examples of multitype pairwise interaction processes are those in which the inter-
action term ¢, p(u,v) does not depend on the marks m,m’. For example, we can take any of
the interaction functions c(u,v) described in section 26.3 and use it to construct a marked point
process.

Such processes can be constructed equivalently as follows [14]:

e an unmarked Gibbs process is generated with first order term b(u) = > -1 bm(u) and
pairwise interaction c(u,v).

e cach point x; of this unmarked process is labelled with a mark m; with probability distri-
bution P{m; = m} = b;(z;)/b(z;) independent of other points.

If additionally the intensity functions are constant, b,,(u) = B, then such a point process
has the random labelling property.

34.1.4 Mark-dependent pairwise interactions

Various complex kinds of behaviour can be created by postulating a pairwise interaction that
does depend on the marks.
A simple example is the multitype hard core process in which (3, (u) = 8 and

1 if f|u —vl| >

0 if [Ju— || < rrs (53)

Cmm (U, V) = {
where 7y, pr = Ty > 0 is the hard core distance for type m with type m’. In this process, two
points of type m and m’ respectively can never come closer than the distance 7, .

By setting 7, ,,» = 0 for a particular pair of marks m,m’ we effectively remove the in-
teraction term between points of these types. If there are only two types, say M = {1,2},
then setting 712 = 0 implies that the sub-processes X; and Xy, consisting of points of types
1 and 2 respectively, are independent point processes. In other words the process satisfies the
independence-of-components property.

The multitype Strauss process has pairwise interaction term

1 if [Ju — v|| > rpm
Y i | =] < Ty

Cm,m/ (ua ’U) = { (54)
where 7, ,, > 0 are interaction radii as above, and 7, ,,v > 0 are interaction parameters.

In contrast to the unmarked Strauss process, which is well-defined only when its interaction
parameter 7 is between 0 and 1, the multitype Strauss process allows some of the interaction
parameters 7, ,,» to exceed 1 for m # m/, provided one of the relevant types has a hard core
(Ym,m = 0 0r Yty = 0).

If there are only two types, say M = {1,2}, then setting 712 = 1 implies that the sub-
processes X1 and Xo, consisting of points of types 1 and 2 respectively, are independent Strauss
processes.

The multitype Strauss-hard core process has pairwise interaction term

0 if [Ju — v|| < P
cm,m’(u7 U) - Ym,m’ if hm,m/ < Hu B UH < Tm,m/ (55)
1 if [Ju —v|| > rp

where 7, ,,v > 0 are interaction distances and 7, ,,,» > 0 are interaction parameters as above,
and Ay, p, are hard core distances satisfying hy, /= Ry and 0 < Ay s < Ty -

Copyright (©CSIRO 2010

212 Gibbs models for multitype point patterns

34.2 Pseudolikelihood for multitype Gibbs processes

Models can be fitted by maximum pseudolikelihood. For a multitype Gibbs point process with
conditional intensity A\((u,m);y), the log pseudolikelihood is

n(y)
log PL = Zlog)\((azi,mi);y) - Z / A(u,m);y) du. (56)
i—1 mem W

The pseudolikelihood can be maximised using an extension of the Berman-Turner device [9)].

34.3 Fitting Gibbs models to multitype data

Marked point process models may be fitted to point pattern data using ppm. Currently the
methods are only available for multitype point processes (categorical marks).

34.3.1 Interactions not depending on marks

The model-fitting function ppm expects an argument interaction that specifies the interpoint
interaction structure of the point process. The default is ‘no interaction’, corresponding to a
Poisson process.

On page 165 there is a list of interpoint interactions for modelling unmarked point patterns.
These interactions can also be used, without modification, to fit models to multitype point
patterns.

For example

> ppm(lansing, “marks, Strauss(0.07))

fits a multitype version of the Strauss process (section 26.3.2) in which the conditional intensity
is

)‘((u7 m)? Y) = Bth(U7y) : (57)

Here 3, are constants which account for the unequal abundance of the different species of tree.
The other quantities are the same as in (42). The interaction between two trees is assumed to be
the same for all species, and is controlled by the interaction parameter + and interaction radius
r = 0.07. For example, this includes the case ¥ = 0 where no two trees (whatever species they
belong to) come closer than 0.07 units apart, a ‘multitype hard core process’.

34.3.2 Interactions depending on marks

There are two additional interpoint interactions defined in spatstat for multitype point pat-

terns:
MultiStrauss the multitype Strauss process

MultiStraussHard multitype hybrid hard core / Strauss process

In these models, the interaction between two points depends on the types of the points as
well as their separation.

In the multitype Strauss process (54), for each pair of types i and j there is an interaction
radius 7;; and interaction parameter v;;. In simple terms, each pair of points, with marks 7 and j
say, contributes an interaction term +; ; if the distance between them is less than the interaction
distance r; ;. These parameters must satisfy r;; = r;; and ~;; = vj;. The conditional intensity is

M(u,i),y) = 6 [T i ™Y (58)

J

Copyright (©CSIRO 2010

34.3 Fitting Gibbs models to multitype data

213

where ¢; j(u,y) is the number of points in y, with mark equal to j, lying within a distance r; ;

of the location u.

To fit the stationary multitype Strauss process to the dataset betacells, we must specify

the matrix of interaction radii r;;:

> data(betacells)

> r <- 30 * matrix(c(1, 2, 2, 1), nrow = 2, ncol = 2)

> ppm(betacells, ~1, MultiStrauss(c("off", "on"), r), rbord = 60)

Stationary Multitype Strauss process
Possible marks:
off on

First order terms:
beta_off beta_on
0.0001373652 0.0001373652

Interaction: Pairwise interaction family
Interaction: Multitype Strauss process
2 types of points

Possible types:

[1] "off" "on"

Interaction radii:

off on
off 30 60
on 60 30
Fitted interaction parameters gamma_ij:
off on

off 0.0000 0.8303
on 0.8303 0.0000

Relevant coefficients:
markoffxoff markoffxon markonxon
-17.2378706 -0.1860184 -17.2138383

To fit a nonstationary multitype Strauss process with log-cubic polynomial trend:

> ppm(betacells, “polynom(x, y, 3), MultiStrauss(c("off", "on"),

+ r), rbord = 60)

For more detailed explanation and examples of modelling and the interpretation of model

formulae for point processes, see [11].

Copyright (©CSIRO 2010

214 Gibbs models for multitype point patterns

34.3.3 Plotting the fitted interaction

The fitted pairwise interaction in a point process model can be plotted using fitin. The value
returned by fitin is a function array (class "fasp").

> model <- ppm(betacells, “polynom(x, y, 3), MultiStrauss(c("off",
+ "on"), r), rbord = 60)

> plot(fitin(model))

Fitted pairwise interactions

off on

0.8
L
0.8
I

off
04
L

Pairwise interaction
0.4
!

Pairwise interaction

0.0
I
0.0
1

T T T T T T T T
0 20 40 60 0 20 40 60

Distance Distance

0.8
1

on

Pairwise interaction
0.4

Pairwise interaction

0.0
I
0.0
1

0 20 40 60 0 20 40 60

Distance Distance

34.3.4 Simulating a Gibbs model

A fitted Gibbs point process model can be simulated using rmh.ppm or simulate.ppm.
> rmh(model, verbose = FALSE)

marked planar point pattern: 139 points
multitype, with levels = off on
window: rectangle = [28.08, 778.08] x [16.2, 1007.02] microns

It’s also possible to simulate any specified Gibbs model using rmh.default with the model
specified ‘by hand’ using rmhmodel.default.

Copyright (©CSIRO 2010

34.3 Fitting Gibbs models to multitype data 215

PART VIII. HIGHER DIMENSIONS AND OTHER SPATIAL
DATA

Part VIII of the workshop deals with point patterns in 3D, space-time, and multi-dimensional
space time. It also covers line segment patterns and stochastic geometry techniques.

Copyright (©CSIRO 2010

216

Line segment data

35 Line segment data

spatstat also has some facilities for handling spatial patterns of line segments.

For example, the copper dataset in spatstat contains a dataset copper$Lines that records
the locations of geological faults in a survey region.

> data(copper)

> L <- copper$Lines

> L <- rotate(L, pi/2)
> plot(L)

A spatial pattern of line segments is represented by an object of class "psp". It consists of
a list of line segments (given by the coordinates of their two endpoints), and a window in which
the line segments were observed. The line segments may also carry marks.

Objects of class "psp" can be created by the function psp or obtained by converting other
data using the function as.psp.

Capabilities available for this class include:

is.psp

[.psp
marks.psp
marks<-.psp
as.data.frame.psp
endpoints.psp
midpoints.psp
unitname.psp
rescale.psp
lengths.psp
angles.psp
rotate.psp
shift.psp
affine.psp
crossing.psp
selfcrossing.psp
density.psp
rshift.psp
superimposePSP
identify.psp
as.mask.psp
pixellate.psp

check whether an object is a psp

subset operator (also performs clipping)
extract marks

assign marks

extract coordinates and marks

extract endpoints of line segments

compute midpoints of line segments
determine units of length

change units of length

compute lengths of line segments

compute orientation angles for line segments
rotate a line segment pattern

shift a line segment pattern

apply affine transformation

find intersection points between line segments
find intersection points between line segments
kernel-smoothed intensity image

apply random shift to each line segment
combine several line segment patterns
point-and-click to identify line segments
convert line segments to binary mask
measure the length of line in each pixel

Copyright (©CSIRO 2010

217

There are also the usual methods

plot.psp plot a line segment pattern
print.psp print information on a line segment pattern
summary.psp compute summary of a line segment pattern

> summary (L)

146 line segments
Lengths:

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.09242 6.61400 12.18000 15.02000 19.95000 65.48000
Total length: 2192.57251480451 km
Length per unit area: 0.196937548404655
Angles (radians):

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.008107 0.549500 1.747000 1.378000 2.113000 2.912000
Window: rectangle = [-158.233, -0.19]x[-0.335, 70.11]km
Window area = 11133.3 square km
Unit of length: 1 km

> plot(distmap(L))
> plot(L, add = TRUE)

distmap(L)

14

0 2 4 6 810

For measuring distances to and from line segments, there are the following facilities:

pairdist.psp distances between line segments

crossdist.psp distances between two sets of line segments
nndist.psp closest distances between line segments

nncross closest distances between points and line segments

nearestsegment closest line segment to each point
project2segment point on line segment closest to specified point

It’s also possible to generate random points that lie on a set of line segments:
runifpointOnLines fixed number of random points on lines
rpoisppOnLines Poisson process on lines

Copyright (©CSIRO 2010

218 Point patterns in 3D

36 Point patterns in 3D

Basic support for three-dimensional point patterns has recently been added to spatstat.
A point pattern in 3D is an object of class "pp3". It is created by the function pp3.

> X <= pp3(x = runif(100), y = runif(100), z =
+ 1))

> summary (X)

runif (100), box3(c(0,

Three-dimensional point pattern

100 points

Box: [0, 1] x [0, 1] x [0, 1] units

Volume 1 cubic unit

Average intensity 100 points per cubic unit

The window containing the point pattern is currently required to be a 3D rectangular box,
stored as an object of class "box3", created by the function box3. Facilities available for box3
objects include print, summary, diameter, volume, shortside and eroded.volumes.

Facilities available for pp3 objects include:

print print basic information
summary print detailed summary of data
plot plot 3D points

as.data.frame extract coordinates and marks

npoints number of points

coords extract coordinates

coords<- change coordinates

marks extract marks

marks<- change marks

unmark remove marks

unitname extract name of unit of length

unitname<- set name of unit of length

pairdist matrix of distances between all pairs of points
crossdist distances between all pairs of points in two patterns
nndist nearest neighbour distance

nnwhich identify nearest neighbour

F3est three-dimensional empty space function
G3est three-dimensional nearest neighbour function
K3est three-dimensional K-function

pcf3est three-dimensional pair correlation function
envelope simulation envelopes of summary functions
nnclean Byers-Raftery nearest neighbour cleaning

Random 3D point patterns can be generated by runifpoint3 and rpoispp3. Currently the
only 3D point pattern data installed in spatstat is the dataset osteo.

> data(osteo)

> X <- osteo$pts[[36]]
> par(mfrow = c(1, 2))
> plot(X)

> plot(K3est (X))

Copyright (©CSIRO 2010

219

1ty col key label meaning
iso 1 1 iso K3[iso](r) isotropic-corrected estimate of K3(r)
trans 2 2 trans K3[trans](r) translation-corrected estimate of K3(r)
theo 3 3 theo K3[pois](r) theoretical Poisson K3(r)
> par (mfrow = c(1, 1))
X K3est(X)
§ — iso
° o ﬁ B - trans
N 3 ° ° 5 100 > §A
' o0 80 o
o 0" ° 60 S
? 40 3
20
g 0 o -

r (microns)

37 Point patterns in multi-dimensional space-time

Experimental support for multi-dimensional space-time point patterns has recently been added
to spatstat. These objects belong to the class "ppx" and are created by the function ppx.
There may be any number of dimensions of space, and any number of dimensions of time.

df <- data.frame(x = runif (100, max = 3), y = runif (100, max
z = runif (100, max = 2), t = runif(100))

bb <- boxx(c(0, 3), c(0, 3), c(0, 2), c(0, 1))

X <- ppx(data = df, domain = bb, temporal = "t")

summary (X)

vV V. Vv + V

Multidimensional point pattern
100 points
3-dimensional space coordinates (x,y,z)
1-dimensional time coordinates (t)
Domain:

4-dimensional box:
[0, 3] x [0, 3] x [0, 2] x [0, 1] units

=3),

The point pattern may have marks of any type, stored as a hyperframe.

> marks(X) <- with(as.hyperframe(df), disc(centre = c(x, y)))
> X

Copyright (©CSIRO 2010

220

Point patterns in multi-dimensional space-time

Multidimensional point pattern

100 points

1 column of marks:

Domain:

marks

4-dimensional box:
[0, 3] x [0, 3] x [0, 2] x [0, 1] units

The window containing the point pattern is currently required to be a rectangular box, stored
as an object of class "boxx", created by the function boxx. Facilities available for boxx objects
include print, summary, diameter, volume, shortside and eroded.volumes

Facilities currently available for ppx objects include:

print
summary
as.data.frame
npoints
coords
coords<-
marks
marks<-
unmark
unitname
unitname<-
pairdist
crossdist
nndist
nnwhich

print basic information

print detailed summary of data

extract coordinates and marks

number of points

extract coordinates

change coordinates

extract marks

change marks

remove marks

extract name of unit of length

set name of unit of length

matrix of distances between all pairs of points
distances between all pairs of points in two patterns
nearest neighbour distance

identify nearest neighbour

Random hyperdimensional point patterns can be generated by runifpointx and rpoisppx.
There is also code to compute the theoretical distribution of the nearest neighbour distances,
i.e. the distance from a reference point to the k-th nearest neighbour in a uniform Poisson point
process in m dimensions:
dknn probability density
pknn cumulative probability

gknn quantiles

rknn random generator

Copyright (©CSIRO 2010

221

38 Replicated data and hyperframes

Sometimes the data may consist of several point patterns. We may have replicated point pattern
data obtained by repeating an experiment, such as the locations of cell nuclei in 10 different
samples of tissue. These data could be stored in a simple list Z, where the ith entry in the list,
Z[[i]l], is the ¢th point pattern object.

A hyperframe is like a data frame, except that the entries can be any type of object. For
example, a hyperframe can include a column, each of whose entries is a point pattern. The only
constraint is that all the entries in a column must be of the same type.

A hyperframe is a convenient way to store replicated point pattern data together with aux-
iliary data. A hyperframe can store the results of a designed experiment where the “response”
is a point pattern and the covariates are other types of data.

The following facilities are available:

hyperframe create a hyperframe

as.hyperframe convert other data to a hyperframe
print.hyperframe print a representation of a hyperframe
dim.hyperframe dimensions of hyperframe
$.hyperframe extract column of hyperframe
[.hyperframe extract subset of hyperframe
[<-.hyperframe replace subset of hyperframe
as.data.frame.hyperframe convert hyperframe to data frame
cbind.hyperframe combine several hyperframes
rbind.hyperframe combine several hyperframes
with.hyperframe compute an expression in each row of hyperframe

The dataset osteo installed in spatstat contains three-dimensional point patterns recorded
in several sampling volumes in each of several bone samples [15]. It is a hyperframe with the
following columns:

id string identifier of bone sample

shortid last numeral in id

brick serial number of sampling volume within bone sample
pts three dimensional point pattern (class pp3)

depth the depth of the brick in microns

> data(osteo)
> osteo[1:5,]

Hyperframe:

id shortid brick pts depth
1 c77zad 4 1 (pp3) 45
2 cT77zad 4 2 (pp3) 60
3 cT77zad 4 3 (pp3) 55
4 c77zad 4 4 (pp3) 60
5 cT77zad 4 5 (pp3) 85

The command with.hyperframe can be used to evaluate an expression in each row of the
hyperframe. For example, to count the number of points in each of the first 10 patterns:

> with(osteo, npoints(pts))[1:10]

1 2 3 4 5 6 7 8 910
13 11 11 12 14 12 16 15 18 16

Copyright (©CSIRO 2010

222 Stochastic geometry

To plot the three-dimensional K-function estimates of the first 3 patterns:

> plot(with(osteo[1:3,], K3est(pts)))

with(osteo[1:3,], K3est(pts))

1 2 3

150000
I

— iso — iso

150000
L

rans
theo

rans
theo

150000
I

100000
100000
L
100000
L

50000
I

0 50000
L L
[50000
L L

o

39 Stochastic geometry

Spatstat provides some basic facilities for stochastic geometry (model simulation and tools for
image analysis).

The dataset heather contains Diggle’s [32] heather data, a binary pixel mask of the pres-
ence/absence of heather (Calluna vulgaris) in a survey plot in Sweden. Three versions of the
data are given.

> data(heather)
> plot (heather)

heather

medium coarse

Elementary morphological operations can be applied using erosion, dilation, opening
and closing along with geometrical operations such as complement.owin, intersect.owin,
union.owin, setminus.owin. The areas of dilations and erosions can be computed using either
distmap or eroded.areas, dilated.areas. Connected components can be identified using
connected.

The empirical spherical contact distribution or empty space function of such a dataset can
be computed using Hest:

> X <- heather$fine
> H <- Hest(X)

> plot (H)

Copyright (©CSIRO 2010

223

0.6 0.8
|

H(r)

0.4

0.2

0.0

T T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30

r (metres)

Patterns of line segments are represented by objects of the class "psp" described elsewhere.
Patterns of infinite lines in the two-dimensional plane are represented by objects of the class
"infline" created by the function infline. The command rpoisline creates a random tes-
sellation delineated by a Poisson line process. Switzer’s random set is generated by rMosaicSet
and the analogous random field is generated by rMosaicField.

> X <- rpoislinetess(5)
> Y <- rMosaicSet(X, p = 0.5)

> plot(Y, col = "grey")

Copyright (©CSIRO 2010

224 Further information on spatstat

40 Further information on spatstat

Help files

For information on a particular command in spatstat, consult the online help file by typing
help(command). The help files are detailed and extensive. The complete manual is over 700
pages long.

For examples of the use of a particular command, read the examples section in the help file,
or type example (command) to see the examples executed.

Quick reference

Type help(spatstat) for a quick-reference overview of all the functions available in the package.
For a demonstration of many of the capabilities of spatstat, type demo(spatstat).
For a visual display of all the datasets supplied in spatstat, type demo(data).

Website

The website wuw . spatstat . org contains information on recent updates to the package, frequently-
asked questions, bug fixes, literature and other developments.

Updates

Spatstat is updated approximately once a month. Descriptions of the updates are given
on the spatstat.org website, and can also be accessed from within the package, by typing
latest.news () or news(package="spatstat").

Modelling

For more spatstat examples on fitting point process models, see [11]. For more discussion on
point process modelling strategies, see [3].

Citation

If you use spatstat in a research publication, it would be much appreciated if you could cite
the paper [10], or mention spatstat in the acknowledgements.

In doing so, you will help us to justify the expenditure of time and effort on maintaining and
developing the package.

Citation details are also available in the package by typing citation(package="spatstat").

Queries and requests

If you have difficulty in getting the package to do what you want, or if you have a suggestion for
additional features that could be added, please contact the package authors, Adrian.Baddeley@csiro.au
and r.turner@auckland.ac.nz, or email the R special interest group in spatial and geographical
statistics, r-sig-geo@stat.math.ethz. ch.

Copyright (©CSIRO 2010

REFERENCES 225

References

1]

[13]

[14]

F.P. Agterberg. Automatic contouring of geological maps to detect target areas for mineral
exploration. Journal of the International Association for Mathematical Geology, 6:373-395,
1974.

L. Anselin. Local indicators of spatial association — LISA. Geographical Analysis, 27:93-115,
1995.

A. Baddeley. Modelling strategies. In A.E. Gelfand, P.J. Diggle, M. Fuentes, and P. Guttorp,
editors, Handbook of Spatial Statistics, chapter 20, pages 339-369. CRC Press, Boca Raton,
2010.

A. Baddeley, M. Berman, N.I. Fisher, A. Hardegen, R.K. Milne, D. Schuhmacher, R. Shah,
and R. Turner. Spatial logistic regression and change-of-support for spatial Poisson point
processes. FElectronic Journal of Statistics, 4:1151-1201, 2010. doi: 10.1214/10-EJS581.

A. Baddeley, Y.-M. Chang, Y. Song, and R. Turner. Diagnostics for transformation of
covariates in spatial Poisson point process models. Submitted for publication.

A. Baddeley, J. Mgller, and A.G. Pakes. Properties of residuals for spatial point processes.
Annals of the Institute of Statistical Mathematics, 60:627-649, 2008.

A. Baddeley, J. Mgller, and R. Waagepetersen. Non- and semiparametric estimation of inter-
action in inhomogeneous point patterns. Statistica Neerlandica, 54(3):329-350, November
2000.

A. Baddeley, E. Rubak, and J. Moller. Score, pseudo-score and residual diagnostics for
goodness-of-fit of spatial point process models. Submitted for publication.

A. Baddeley and R. Turner. Practical maximum pseudolikelihood for spatial point patterns
(with discussion). Australian and New Zealand Journal of Statistics, 42(3):283-322, 2000.

A. Baddeley and R. Turner. Spatstat: an R package for analyzing spatial point patterns.
Journal of Statistical Software, 12(6):1-42, 2005. URL: www. jstatsoft.org, ISSN: 1548-
7660.

A. Baddeley and R. Turner. Modelling spatial point patterns in R. In A. Baddeley, P. Gre-
gori, J. Mateu, R. Stoica, and D. Stoyan, editors, Case Studies in Spatial Point Pattern
Modelling, number 185 in Lecture Notes in Statistics, pages 23-74. Springer-Verlag, New
York, 2006. ISBN: 0-387-28311-0.

A. Baddeley, R. Turner, J. Mgller, and M. Hazelton. Residual analysis for spatial point
processes (with discussion). Journal of the Royal Statistical Society, series B, 67(5):617-666,
2005.

A.J. Baddeley. Spatial sampling and censoring. In O.E. Barndorff-Nielsen, W.S. Kendall,
and M.N.M. van Lieshout, editors, Stochastic Geometry: Likelihood and Computation, chap-
ter 2, pages 37-78. Chapman and Hall, London, 1999.

A.J. Baddeley and J. Mgller. Nearest-neighbour Markov point processes and random sets.
International Statistical Review, 57:89-121, 1989.

Copyright (©CSIRO 2010

226 REFERENCES

[15] A.J. Baddeley, R.A. Moyeed, C.V. Howard, and A. Boyde. Analysis of a three-dimensional
point pattern with replication. Applied Statistics, 42(4):641-668, 1993.

[16] A.J. Baddeley and B.W. Silverman. A cautionary example on the use of second-order
methods for analyzing point patterns. Biometrics, 40:1089-1094, 1984.

[17] A.J. Baddeley and M.N.M. van Lieshout. Area-interaction point processes. Annals of the
Institute of Statistical Mathematics, 47:601-619, 1995.

[18] G. Barnard. Contribution to discussion of “The spectral analysis of point processes” by
M.S. Bartlett. Journal of the Royal Statistical Society, series B, 25:294, 1963.

[19] M. Bell and G. Grunwald. Mixed models for the analysis of replicated spatial point patterns.
Biostatistics, 5:633—-648, 2004.

[20] M. Berman. Testing for spatial association between a point process and another stochastic
process. Applied Statistics, 35:54—62, 1986.

[21] M. Berman and T.R. Turner. Approximating point process likelihoods with GLIM. Applied
Statistics, 41:31-38, 1992.

[22] J. Besag and P.J. Diggle. Simple Monte Carlo tests for spatial pattern. Applied Statistics,
26:327-333, 1977.

[23] J.E. Besag and P. Clifford. Generalized Monte Carlo significance tests. Biometrika, 76:633—
642, 1989.

[24] R. Bivand, E.J. Pebesma, and V. Gémez-Rubio. Applied spatial data analysis with R.
Springer, 2008.

[25] D.R. Brillinger. Comparative aspects of the study of ordinary time series and of point
processes. In P.R. Krishnaiah, editor, Developments in Statistics, pages 33-133. Academic
Press, 1978.

[26] S. Byers and A.E. Raftery. Nearest-neighbour clutter removal for estimating features in
spatial point processes. Journal of the American Statistical Association, 93:577-584, 1998.

[27) E. Choi and P. Hall. Nonparametric analysis of earthquake point-process data. In
M. de Gunst, C. Klaassen, and A. van der Vaart, editors, State of the art in probability and
statistics: Festschrift for Willem R. van Zwet, pages 324-344. Institute of Mathematical
Statistics, Beachwood, Ohio, 2001.

[28] N. Cressie and L.B. Collins. Analysis of spatial point patterns using bundles of product
density LISA functions. Journal of Agricultural, Biological and Environmental Statistics,
6:118-135, 2001.

[29] N. Cressie and L.B. Collins. Patterns in spatial point locations: local indicators of spatial
association in a minefield with clutter. Naval Research Logistics, 48:333-347, 2001.

[30] N.A.C. Cressie. Statistics for Spatial Data. John Wiley and Sons, New York, 1991.

[31] D.J. Daley and D. Vere-Jones. An Introduction to the Theory of Point Processes. Springer
Verlag, New York, 1988.

Copyright (©CSIRO 2010

REFERENCES 227

[32]

[33]

[34]

[35]

[36]

[37]

[39]

[40]

[43]

[44]

[45]

[46]

[47]

[48]

P.J. Diggle. Binary mosaics and the spatial pattern of heather. Biometrics, 37:531-539,
1981.

P.J. Diggle. Statistical analysis of spatial point patterns. Academic Press, London, 1983.

P.J. Diggle. A point process modelling approach to raised incidence of a rare phenomenon
in the vicinity of a prespecified point. Journal of the Royal Statistical Society, series A,
153:349-362, 1990.

P.J. Diggle. Statistical Analysis of Spatial Point Patterns. Hodder Arnold, London, second
edition, 2003.

P.J. Diggle, N. Lange, and F. M. Benes. Analysis of variance for replicated spatial point
patterns in clinical neuroanatomy. Journal of the American Statistical Association, 86:618—
625, 1991.

P.J. Diggle, J. Mateu, and H.E. Clough. A comparison between parametric and non-
parametric approaches to the analysis of replicated spatial point patterns. Advances in
Applied Probability (SGSA), 32:331-343, 2000.

P.J. Diggle and B. Rowlingson. A conditional approach to point process modelling of
elevated risk. Journal of the Royal Statistical Society, series A (Statistics in Society),
157(3):433-440, 1994.

M. Dwass. Modified randomization tests for nonparametric hypotheses. Annals of Mathe-
matical Statistics, 28:181-187, 1957.

R. Foxall and A. Baddeley. Nonparametric measures of association between a spatial point
process and a random set, with geological applications. Applied Statistics, 51(2):165-182,
2002.

A.C.A. Hope. A simplified Monte Carlo significance test procedure. Journal of the Royal
Statistical Society, series B, 30:582-598, 1968.

C.V. Howard, S. Reid, A.J. Baddeley, and A. Boyde. Unbiased estimation of particle density
in the tandem-scanning reflected light microscope. Journal of Microscopy, 138:203-212,
1985.

F. Huang and Y. Ogata. Improvements of the maximum pseudo-likelihood estimators
in various spatial statistical models. Journal of Computational and Graphical Statistics,
8(3):510-530, 1999.

J. Illian, A. Penttinen, H. Stoyan, and D. Stoyan. Statistical Analysis and Modelling of
Spatial Point Patterns. John Wiley and Sons, Chichester, 2008.

J.F.C. Kingman. Poisson Processes. Oxford University Press, New York, 1993.

G.M. Laslett. Censoring and edge effects in areal and line transect sampling of rock joint
traces. Mathematical Geology, 14:125-140, 1982.

P.A.W. Lewis. Recent results in the statistical analysis of univariate point processes. In
P.A.W. Lewis, editor, Stochastic point processes, pages 1-54. Wiley, New York, 1972.

J.K. Lindsey. The analysis of stochastic processes using GLIM. Springer, Berlin, 1992.

Copyright (©CSIRO 2010

228 REFERENCES

[49] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller. Equation of
state calculations by fast computing machines. Journal of Chemical Physics, 21:1087-1092,
1953.

[50] J. Mgller and R. P. Waagepetersen. Modern spatial point process modelling and inference
(with discussion). Scandinavian Journal of Statistics, 34:643-711, 2007.

[51] J. Mgller and R.P. Waagepetersen. Statistical Inference and Simulation for Spatial Point
Processes. Chapman and Hall/CRC, Boca Raton, 2004.

[52] Y. Ogata. Statistical models for earthquake occurrences and residual analysis for point
processes. Journal of the American Statistical Association, 83:9-27, 1988.

[53] M. Prokesovd, U. Hahn, and E.B. Vedel Jensen. Statistics for locally scaled point processes.
In A. Baddeley, P. Gregori, J. Mateu, R. Stoica, and D. Stoyan, editors, Case studies in
spatial point process modeling, number 185 in Lecture Notes in Statistics, pages 99-123.
Springer, New York, 2005.

[54] B.D. Ripley. Modelling spatial patterns (with discussion). Journal of the Royal Statistical
Society, series B, 39:172-212, 1977.

[55] B.D. Ripley. Simulating spatial patterns: dependent samples from a multivariate density.
Applied Statistics, 28:109-112, 1979.

[56] B.D. Ripley. Spatial Statistics. John Wiley and Sons, New York, 1981.
[57] B.D. Ripley. Statistical Inference for Spatial Processes. Cambridge University Press, 1988.

[58] A. Sérkkd. Pseudo-likelihood approach for pair potential estimation of Gibbs processes.
Number 22 in Jyvaskyla Studies in Computer Science, Economics and Statistics. University
of Jyvaskyla, 1993.

[59] M. Schlather, P. Riberio, and P.J. Diggle. Detecting dependence between marks and lo-
cations of marked point processes. Journal of Royal Statistical Society Series B, 66:79-93,
2004.

[60] D. Stoyan and P. Grabarnik. Second-order characteristics for stochastic structures con-
nected with Gibbs point processes. Mathematische Nachrichten, 151:95-100, 1991.

[61] D. Stoyan and H. Stoyan. Fractals, Random Shapes and Point Fields. John Wiley and
Sons, Chichester, 1995.

[62] J.W. Tukey. Discussion of paper by F.P. Agterberg and S.C. Robinson. Bulletin of the In-
ternational Statistical Institute, 44(1):596, 1972. Proceedings, 38th Congress, International
Statistical Institute.

[63] M.N.M. van Lieshout. Markov Point Processes and their Applications. Imperial College
Press, London, 2000.

[64] M.N.M. van Lieshout and A.J. Baddeley. A nonparametric measure of spatial interaction
in point patterns. Statistica Neerlandica, 50:344-361, 1996.

[65] R. Waagepetersen. An estimating function approach to inference for inhomogeneous
Neyman-Scott processes. Biometrics, 63:252-258, 2007.

Copyright (©CSIRO 2010

Index

analysis of deviance, 103
area-interaction process, 159

binary mask, 33, 48

circular windows, 46
classes, 32
in R, 32
in spatstat, 32
cluster models
fitting, 144, 152
inhomogeneous, 151
fitting, 152
complete spatial randomness, 88
and independence, 179, 204
definition, 88
Kolmogorov-Smirnov test, 91
quadrat counting test, 89
conditional intensity, 160
for marked point processes, 210
contrasts, 98, 208
covariate effects, 9
covariates, 7, 16, 98
in ppm, 98
Cox process, 141
CSRI, 179, 204
conditional intensity, 210
fitting to data, 207
simulating, 205

data entry, 38
checking, 43
GIS formats, 45, 49
marked point patterns, 181
marks, 40
point-and-click, 44
data sharpening, 148
datasets
inspecting, 21
provided in spatstat, 30
dispatching, 32
distance methods, 115
distances
empty space, 115, 116
nearest neighbour, 115, 122
pairwise, 115, 125
distmap, 115

edge effects, 116
empty space distances, 115, 116
empty space function, 117, 222
envelopes, 132

and Monte Carlo tests, 132

for any fitted model, 136

for any simulation procedure, 137

in spatstat, 133

of summary functions, 132
exploratory data analysis, 23

for marked point patterns, 200

for multitype point patterns, 187

fitted model, 166
goodness-of-fit, 106, 172
interpretation of coefficients, 98
methods for, 99
residuals, 107, 173
simulation of, 104

fitting models
by Huang-Ogata method, 170
kppm, 144, 152
maximum pseudolikelihood, 162
to marked point patterns, 207, 212
via summary statistics, 144

fv, 37

geometrical transformations, 57
Gibbs models, 156
area-interaction, 159
Diggle-Gates-Stibbard, 159
Diggle-Gratton, 159
fitting, 162
by Huang-Ogata method, 170
maximum pseudolikelihood, 162
ppm, 162
fitting to marked point patterns, 212
goodness-of-fit, 172
hard core process, 157
in spatstat, 165
infinite order interaction, 159
multitype, 210
maximum pseudolikelihood, 212
multitype pairwise interaction, 210
pairwise interaction, 159
residuals, 173
simulation, 161

229

230

INDEX

simulation of fitted model, 168
soft core, 159
Strauss process, 158
Strauss-hard core, 159
GIS formats, 45, 49
goodness-of-fit, 106
for fitted Gibbs model, 172
for Poisson models, 106

hard core process, 157
multitype, 211
heather data, 222
Huang-Ogata method, 170
hyperframe, 221
hyperframe, 32

im, 32, 63
images, 63
computing with, 70
creating, 63
from raw data, 63
exploratory inspection of, 68
extracting subset, 69
plotting, 66
returned by a function, 65
independence of components, 179, 197
intensity
function, 79
kernel estimator, 79
homogeneous, 78
inhomogeneous, 79
investigation of, 78
measure, 79
of multitype point process, 187
interaction, 8, 11
distance methods, 115
exploratory methods, 114
in spatstat, 165
multitype, 210, 212
in spatstat, 212
plotting a fitted interaction, 214
Q-Q plot, 175
simple models, 139
summary functions, 115

K function, 24, 125
for multitype point pattern, 190
inhomogeneous, 149
kernel estimator of intensity, 79, 80
kernel smoothing of marks, 200

Kolmogorov-Smirnov test

of CSR, 91

of inhomogeneous Poisson, 107
kppm, 144, 152

line segments, 216

LISA, 148

local features, 148

locally scaled point process, 153
lurking variable plot, 109

maptools package, 45
mark connection function, 195
mark correlation function, 202
marked point patterns
cutting marks into bands, 185
data entry, 181
exploratory data analysis, 200
exploring marks, 200
inspecting, 183
joint and conditional analysis, 179
manipulating, 184
methodological issues, 179
model-fitting, 207, 212
probabilistic formulation, 178
randomisation tests, 179
separating into types, 185
summary functions, 190
marks, 6, 16, 178
categorical, 41
data entry, 40
exploratory data analysis, 200
manipulating, 184
operations on, 56
smoothing, 200
spatial trend in, 200
versus covariates, 15
markstat, 190
marktable, 189
Matern cluster process, 140
maximum likelihood, 95
maximum pseudolikelihood, 162, 212
for multitype Gibbs models, 212
improvements over, 170
methods, 32
default method, 34
dispatch, 32
minimum contrast, 144
model validation, 106, 171

Copyright (©CSIRO 2010

INDEX

231

models, 25, 224
Monte Carlo test, 132
pointwise, 133
simultaneous, 134
multidimensional point pattern, 219
multitype hard core process, 211
multitype point pattern, 10, 11, 27, 41
multitype point patterns
exploratory data analysis, 187
separating into types, 185
summary functions, 190
multitype point process
intensity, 187
multitype Strauss process, 211

nearest neighbour cleaning, 148
nearest neighbour distances, 115, 122
nndist, 115

nuisance parameters, 168

owin, 32, 46

pairdist, 115
pairwise distances, 115, 125
pairwise interaction process, 157
point pattern, 6
data entry, 38
in many dimensions, 219
in space-time, 219
in three dimensions, 218
marked, 178
marks, 6, 16
multitype, 10, 11
needs window, 54
point process model for, 13
standard model, 14
point process, 13
point process models, 25
area-interaction, 159
Diggle-Gates-Stibbard, 159
Diggle-Gratton, 159
Gibbs, 156
hard core, 157
infinite order interaction, 159
pairwise interaction, 157, 159
soft core, 159
Strauss, 158
Strauss-hard core, 159
Poisson cluster processes, 140
Poisson line process, 223

Poisson line tessellation, 223
Poisson models
fitting, 96
goodness-of-fit, 106
homogeneous, 88
inhomogeneous, 95
log-likelihood, 96
marked, 204
maximum likelihood, 95
residuals, 107
Poisson point process
homogeneous
definition, 88
simulation, 88
inhomogeneous
definition, 95
fitting, 96
likelihood, 96
motivation, 95
simulation, 95
Poisson-derived models, 139
polygonal windows, 33, 47
pp3, 32, 218
ppm, 99, 166
marked Gibbs point process models, 212
marked Poisson point process models, 207
methods for, 100
ppp, 32
combining several, 61
extracting subset, 55
format, 53
geometrical transformations, 57
in arbitrary window, 51
manipulating, 53
needs window, 54
operations on, 55
random perturbations, 58
ways to make, 44
pPpPX, 32, 219
probability density, 156
profile pseudolikelihood, 168
pseudolikelihood, 162
profile pseudolikelihood, 168
psp, 32, 216

quadrat counting, 23, 79
quadrat counting test

of CSR, 89
quadrat test

Copyright (©CSIRO 2010

232 INDEX

of inhomogeneous Poisson, 106 critique, 130
edge effects, 116
R, 18 envelopes, 132
contributed packages, 19 F, 117
for spatial data formats, 45 for multitype point patterns, 190
for spatial statistics, 19 G, 122
where to get, 18 inference using, 132
random labelling, 179, 198 inhomogeneous K, 149
random perturbations, 58 J, 128
random thinning, 95 K, 125
randomisation tests, 179, 197 L, 126
for marked point patterns, 197 mark connection, 195
rectangular windows, 33, 46 mark correlation, 202
replicated point patterns, 221 model-fitting with, 144
residuals, 107, 173 pair correlation, 126
for fitted Gibbs model, 173 Switzer’s random set, 223

for Poisson models, 107

lurking variable plot, 109 tess, 32
Q-Q plot, 174 tests -
smoothed residual field, 108 X~ quadrat counting, 89

Kolmogorov-Smirnov, 91, 107
Monte Carlo, 132

thinning, 141

Thomas process, 140

return value, 35
rpoispp, 88, 95
runifpoint, 89

sequential models, 142 three dimensional point pattern, 218
shapefiles, 45 tips, 32, 36, 42, 56, 116, 119, 134, 181
shapefiles package, 45 treatment contrasts, 98

simulation

unitname, 43

of fitted Gibbs model, 168 -
units of length, 43

of fitted Poisson model, 104

smoothed residual field, 108 validation, 106, 171

sp package, 45

spatstat, 20, 224 windows, 46
citing, 20, 224 binary mask, 33, 48
getting started, 20 circular, 46
help files, 224 GIS formats, 49
installing, 20 needed in any point pattern, 54
queries and requests, 224 operations on, 50
updates, 224 polygonal, 33, 47
website, 224 rectangular, 33, 46

spherical contact distribution, 222 returned by functions, 49

split, 28

standard model, 14 x? quadrat counting test, 89

stochastic geometry, 222
Strauss process, 158
fitting to data, 163
multitype, 211
summary functions, 115
and Monte Carlo tests, 132

Copyright (©CSIRO 2010

Workshop: Analysing Spatial Point Patterns in R Perth 2010

Practice Session 1

This session gives a general orientation to R and spatstat.
If you have not already done so, you'll need to

e install the R system on your computer (see information sheet How to install R)
e install the spatstat package in R (see information sheet How to install spatstat).
e Start R.

e Load the spatstat package by typing library(spatstat). Check that version 1.21-2
or later is loaded.

1. We will study a dataset that records the locations of Ponderosa Pine trees (Pinus pon-
derosa) in a study region in the Klamath National Forest in northern California. The
data are included with spatstat as the dataset ponderosa.

(a) Type data(ponderosa) to access the data;
(b) assign the data to a shorter name, like X or P;
(c) plot the data;

(d) find out how many trees are recorded;

(e) find the dimensions of the study region;

(f) obtain an estimate of the average intensity of trees (number of trees per unit area).
2. The Ponderosa data, continued:

(a) When you type plot (ponderosa), the command that is actually executed is plot. ppp,
the plot method for point patterns. Read the help file for the function plot.ppp,
and find out which argument to the function can be used to control the main title
for the plot;

(b) plot the Ponderosa data with the title “Ponderosa Pine Trees” above it;
(c) from your reading of the help file, predict what will happen if we type

plot (ponderosa, chars="X", cols="green")

then check that your guess was correct;

(d) try different values of the argument chars, for example, one of the integers 0 to 25,
or a letter of the alphabet. (Note the difference between chars=3 and chars="+",
and the difference between chars=4 and chars="X").

3. The following table records the locations of 10 scintillation events observed under a mi-
croscope. Coordinates are given in microns, and the study region was 30 x 30 microns,
with the origin at the bottom left corner.

zr Y

13 3

15 15
2T 7

17 11
8 10
8 17
1 29
14 22
19 19
23 29

Enter the data into R as two vectors x and y. Create a point pattern X from the data,
and plot the point pattern.

Supplementary Exercises

4. The dataset longleaf contains the Longleaf Pines dataset giving the locations of trees
and their diameters at breast height.
(a) Read the help file for the data,
(b) access the dataset and plot it;
(c) re-plot the data so that the tree diameters are displayed at a physical scale that is

10 times the physical scale of the location coordinates.

5. The file anthills.txt is available on a USB stick from the workshop demonstrators, or
at this URL

http://school.maths.uwa.edu.au/homepages/adrian/anthills.txt

It records the locations of anthills recorded in a 1200 x 1500 metre study region in north-
ern Australia. Coordinates are given in metres, along with a letter code recording the
ecological ‘status’ of each anthill.

(a) read the data into R as a data frame, using the R function read.table.

Since the input file has a header line, you will need to use the argument header=TRUE
when you call read.table.

It may be useful to change the working directory first: use the setwd command,
or the pull-down menu File > Change Dir.

(b) check the data for any peculiarities.

(c) create a point pattern hills containing these data. Ensure that the marks are a
factor, and that the unit of length is given its correct name.

(d) plot the data.

Supplementary Exercises

6. (a) Compute a kernel estimate of the intensity for the Japanese Pines data using a
Gaussian kernel with standard deviation o = 0.15.

(b) Find the maximum and minimum values of the intensity estimate over the study
region. [Hint: use summary.im or range. im|

(c) The kernel estimate of intensity is defined so that its integral over the entire study
region is equal to the number of points in the data pattern, ignoring edge effects.
Check whether this is approximately true in this example.

[Hint: use summary.im or integral. im|

7. The command rpoispp(2, win=square(10)) generates realisations of the Poisson pro-
cess with intensity A = 2 in the square [0, 10] x [0, 10]. Warning: the argument win is not
the second argument so it must be named explicitly.

(a) Repeat the command plot(rpoispp(2, win=square(10))) several times to build
your intuition about the appearance of a completely random pattern of points.

(b) What is the expected number of points in the random pattern that this command
will generate?

8. The update command can be used to re-fit a point process model using a different model
formula.

(a) Type the following commands and interpret the results:

fit0 <- ppm(japanesepines, ~1)
fitl <- update(fit0, “x)

fitl

fit2 <- update(fitil,
fit2

.ty

(b) Now type step(fit2) and interpret the results.

9. Fit Poisson point process models to the Japanese Pines data, with the following trend
formulas. Read off an expression for the fitted intensity function in each case.
TREND FORMULA FITTED INTENSITY FUNCTION
“1

X

“sin(x)

“xty
“polynom(x,y,2)
“factor(x < 0.4)

10. Make image plots of the fitted intensities for the inhomogeheous models above.

Workshop: Analysing Spatial Point Patterns in R Perth 2010

Practice Session 2

This session covers tools for investigating intensity, including nonparametric methods (kernel
smoothing) and parametric modelling.
You’ll need to start R, load the spatstat library and set spatstat.options(gpclib=TRUE).

1. The dataset japanesepines contains the locations of Japanese Black Pine trees in a study
region.

(a)
(b)

(©)

(d)
(e)

Plot the japanesepines data.

Use the command quadratcount to divide the study region of the Japanese Pines
data into a 3 x 3 array of equal quadrats, and count the number of trees in each
quadrat.

Most plotting commands will accept the argument add=TRUE and interpret it to
mean that the plot should be drawn over the existing display, without clearing the
screen beforehand. Use this to plot the Japanese Pines data, and superimposed on
this, the 3 x 3 array of quadrats, with the quadrat counts also displayed.

Use the command quadrat.test to perform the x? test of CSR on the Japanese
Pines data.

Plot the Japanese Pines data, and superimposed on this, the 3 x 3 array of quadrats
and the observed, expected and residual counts. Use the argument cex to make the
numerals larger and col to display them in another colour.

2. Japanese Pines, continued:

(a)

(b)
()

(d)

()

Using density.ppp, compute a kernel estimate of the spatially-varying intensity
function for the Japanese pines data, using a Gaussian kernel with standard deviation
o = 0.1 units, and store the estimated intensity in an object D say.

Plot a colour image of the kernel estimate D.

Plot a colour image of the kernel estimate D with the original Japanese Pines data
superimposed.

Plot the kernel estimate without the ‘colour ribbon’.
[Hint: consult the help file for plot.im, the plot method for pixel images (objects of class
"im").]

Try the following command
persp(D, theta=30, phi=45, shade=0.4)

and find the documentation for the arguments theta, phi and shade.

3. The murchison dataset gives the locations of gold deposits and geological faults in a
survey area.

(a) Extract the data and rescale them to kilometres by typing

(b

(
(d
(e

C

)
)
)
)

data(murchison)

attach(murchison)

gold <- rescale(gold, 1000)

faults <- rescale(faults, 1000)
unitname(gold) <- unitname(faults) <- "km"

Plot the gold and faults datasets together on the same plot.
Compute the distance function of the geological faults as d <- distfun(faults)
Plot the distance function d and check that it is what you expected

Assuming that the intensity of gold deposits is a function A(u) = p(d(u)) where d(u)
is the distance function of the faults, plot a nonparametric estimate of the function
p by plot (rhohat (gold, d)).

4. Returning to the Japanese Pines data,

(a)
(b)
()
(d)
(e)
(f)

Fit the uniform Poisson point process model to the Japanese Pines data,
ppn(japanesepines, ~1)

Read off the fitted intensity. Check that this is the correct value of the maximum
likelihood estimate of the intensity (see the Notes, page 96, below equation (3)).

Fit the Poisson point process models with loglinear intensity (trend formula ~x+y)
and log-quadratic intensity (trend formula “polynom(x,y,2)) to the Japanese Pines
data.

extract the fitted coeflicients for these models using coef.

perform the Likelihood Ratio Test for the null hypothesis of a loglinear intensity
against the alternative of a log-quadratic intensity, using anova.

Generate 10 simulated realisations of the fitted log-quadratic model, and plot them,
using plot(simulate(fit, nsim=10)) where fit is the fitted model.

5. Murchison data, continued:

(a) Fit a Poisson point process model to the Murchison gold deposit data which assumes

that the intensity is a loglinear function of distance to the nearest fault,
ppm(gold, ~dfault, covariates=list(dfault=d))

Read off the fitted coefficients and write down the fitted intensity function.
Plot the fitted intensity as a colour image.

extract the estimated variance-covariance matrix of the coefficient estimates, using
vCov.

Plot the standard error of the fitted intensity as a colour image.

6. [The following questions are based on Section 8 of the Workshop Notes.] The
file region.txt is available on a USB stick from the demonstrators, or at this URL

http://school .maths.uwa.edu.au/homepages/adrian/region. txt
It contains the coordinates (in kilometres) of vertices of the polygonal boundary of a
study region.

(a) read the data into R as a data frame, using the R function read.table.

(b) create a window object representing the polygon.

)

)
(c) plot the region and the position of its centroid.
(d) obtain the bounding box of the region (the smallest rectangle containing the region).
)

(e) find the area, diameter and perimeter length of the polygon.

7. First type spatstat.options(gpclib=TRUE) to ensure that polygon computations are
enabled. Create and plot a window object (object of class "owin") representing each of
the following:

(a) the rectangle [0,10] x [0, 5] ;
(b) the disc of radius 4 centred at (5, 2);

(c) the intersection of these two windows.

	1-Lecture01-75.pdf
	2-lab1.pdf
	3-Lecture02-75.pdf
	4-lab2.pdf
	5-Lecture03-75.pdf
	6-lab3.pdf
	7-Lecture04-75.pdf
	8-lab4.pdf
	9-Short-refcard-1.pdf
	10-refcard.pdf
	11-ASC10Workshop.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

